第2章 平面机构的结构分析
- 格式:pptx
- 大小:728.50 KB
- 文档页数:48
机械原理作业集(第2版)参考答案(注:由于作图误差,图解法的答案仅供参考)第一章绪论1-1~1-2略第二章平面机构的结构分析2-12-22-3 F=1 2-4 F=1 2-5 F=1 2-6 F=12-7 F=0机构不能运动。
2-8 F=1 2-9 F=1 2-10 F=1 2-11 F=22-12 F=12-13 F=1 2为原动件,为II级机构。
8为原动件,为III级机构。
2-14 F=1,III级机构。
2-15 F=1,II级机构。
2-16 F=1,II级机构。
F=1,II级机构。
第三章平面机构的运动分析3-13-2(1)转动中心、垂直导路方向的无穷远处、通过接触点的公法线上(2)P ad(3)铰链,矢量方程可解;作组成组成移动副的两活动构件上重合点的运动分析时,如果铰链点不在导路上(4) 、 (5)相等(6) 同一构件上任意三点构成的图形与速度图(或加速度图)中代表该三点绝对速度(或加速度)的矢量端点构成的图形, 一致 ;已知某构件上两点的速度,可方便求出第三点的速度。
(7)由于牵连构件的运动为转动,使得相对速度的方向不断变化。
3-31613361331P P P P=ωω 3-4 略3-5(1)040m /s C v .=(2)0.36m /s E v = (3) ϕ=26°、227° 3-6~3-9 略3-10(a )、(b )存在, (c )、(d )不存在。
3-11~3-16 略 3-17第四章 平面机构的力分析、摩擦及机械的效率4-14-24-3 )sin )((211212l l ll l l f f V +++=θ4-4 F =1430N 4-5~4-9略232/95.110s m v -==ωB v JI v4-10 )2()2(ρρη+-=b a a b4-11 5667.0 31.110==≤ηϕα 4-12 8462.0=η 4-13 605.0=η4-14 2185.0=η N Q 3.10297= 4-15 7848.0113.637==ηN F4-16 KW P 026.88224.0==η 4-17 KW P 53.96296.0==η4-18 ϕα2≤ 4-19 F =140N4-20 ϕαϕ-<<O 90第五章 平面连杆机构及其设计5-15-2(1) 摇杆(尺寸),曲柄(曲柄与连杆组成的转动副尺寸),机架(连杆作为机架) (2) 有,AB ,曲柄摇杆机构 ;AB ;CD 为机架(3) 曲柄 与 机架 (4) 曲柄摇杆机构、曲柄滑块机构、摆动导杆机构 (5) 曲柄摇杆机构、摆动导杆机构;曲柄滑块机构 (6) 等速,为主动件 (7) 7 (8) 往复 ,且 连杆与从动件 (9) 选取新机架、刚化搬移、作垂直平分线;包含待求铰链 且 位置已知 (10) 9 ; 5 5-3 70 < l AD <670 5-4~5-18 略5-19 l AC =150mm l CD =3000mm h =279.9 mm5-20 a =63.923mm b =101.197mm c =101.094mm d =80mm第六章 凸轮机构及其设计6-16-26-3(1)等加速等减速、余弦加速度(2)刚性、柔性(3)理论廓线(4)互为法向等距曲线(5)增大基圆半径、采用正偏置 (6)增大基圆半径、减小滚子半径(7)提高凸轮机构运动的轻巧性和效率、避免加速度过大造成冲击 6-4略 6-56-6 ~ 6-13略 6-146-15 6-16略第七章 齿轮机构及其设计7-1︒==6858.70822rad πδ︒='=︒≡====1803064.3432.1700min max 0δδαααmmh mm r 6332.343776.51240-='='-=δy x6395.185947.4060='-='=δy x7-27-3(1) (2)7-4 z = 41.45 7-5略7-6 (1) (2) 7-7 7-8略 7-9 7-10 7-11略7-12 (1) (2) (3) 7-13(1) (2) (3) 7-14略7-15 7-16略7-17 共有7种方案 7-18~7-19 略 7-20302021==z z mmr mms mm s a b a 0923.1052816.178173.6===634.1=εαmmj mmc mma t 77.269.494.15523.23='='='=α'smm v mm L /490==刀294-==x z 8.04.88==x z 0399.02='x 9899.482234117229.1142444153.44='''=='==K K Kρθα mmr K K 3433.702444='= α8879.22α='mm r mm r 2.618.4021='='mmd z mmm 120304===5.0-=x mms 827.4=058.1-=x7-21 7-22 略7-23正传动, 7-24~7-25 略 7-26(1)正传动(2) 7-27 略 7-287-29 略第八章 齿轮系及其设计8—18—28—3(1)从动轮齿数的连乘积除以主动轮齿数的连乘积、数外啮合次数或用画箭头的 (2)用画箭头的(3)有无使行星轮产生复合运动的转臂(系杆) (4)相对运动原理(5)一个或几个中心轮、一个转臂(系杆)、一个或几个行星轮(6)转化轮系中A 轮到B 轮的传动比、周转轮系中A 轮到B 轮的传动比、AB i 可以通过H ABi 求解(7)找出周转轮系中的行星轮、转臂及其中心轮 (8)传动比条件、同心条件、均布装配条件、邻接条件(9)传动比很大结构紧凑效率较低、要求传动比大的传递运动的场合、传动比较小效率较高、传递动力和要求效率较高的场合mm a 5892.90='mm r a 93.581=13.7291β=116.36v z = 2.6934γε=2222(1)175(2)185163(3) 5.7106(4)112.5a f d mm d mm d mma mmβ=====(10)差动轮系 8-4 8-58-6 8-7 8-8 8-98-10 8-11 8-12(a ) (b ) 8-13(1) (2) 8-14 z 2≈68 8-15 8-168-17 (1) (2) 8-188-198-20 m in /28.154r n B -=8-21只行星轮满足邻接条件件,只行星轮不满足邻接条34144803mml z H ==8-22 162/108/5463/42/2136/24/12321===z z z第九章 其他常用机构9-1 9-2 9-3 9-4mms 075.0=232==n k mml B 3=8.658=ϕm in/84r n =mm R 975.23=32143211''-=z z z z z z i H m in/3r n H =NF 64.308=5.141-=i 072.016-=i m in /600r n H -=m in/385.15r n H =31=H i 8.11=H i 0=H n min /667.653197min /2min /340042r n r n r n A ≈===m in /47.26r n c =m in/1350r n c -=min /6349.063407r n ≈=4286.0731-≈-=H i .1533.433=i第十章 机械的运转及其速度波动的调节10-110-210-3 2 05.050kgm J Nm M e er =-=10-4222212334111()()e e z z J J J J m m e M M Qe z z =++++=- 10-520.14.20J kg m M Nm ==-10-6 2334.()cos cos ABr G l h J M F G gφφ==- 10-7332.18221857e e J kgm MNm ==10-811100/50/rad s rad s αω==10-9maxmax minmin 30.048140.962/2 39.038/0,2rad s rad s δωφπωφπ=====10-102280.4730.388F FJ kgm J kgm '== 10-1102max max 623.1/min104.1654 2.11329F n r J kgm φ===10-12max max minmin 0.06381031.916/min 968.08/mine bn r nr δφφφφ===== 10-1326maxmin 302F eb f Nm J kgm ωφωφ==→→第十一章 机械的平衡11-111-211-3 2.109252.66o b b r cm θ==11-412.31068.5273bA bB m kg m kg==11-511-611-711-8)(2)(2 , )b )( )( , )a ⅡⅡ ⅠⅠ ⅡⅡ ⅠⅠ 上下动不平衡静平衡上下动不平衡静平衡mrr m mr r m mr r m mr r m b b b b b b b b ====oⅡb Ⅱo b Ⅰgm W W W 90 84.08419 gm 0628.1Ⅱb 3Ⅰb ==='==θθ0B 0A 120 285.0 8584.260 285.0 8584.2======bA bB bA bA kg m kgmm W kg m kgmm W θθ0Ⅱb 0Ⅰb 147 725.0 290316 65.1 660======b Ⅱb Ⅱb Ⅰb Ⅰkg m kgmm W kg m kgmm W θθ。
结构力学多媒体课件2 平面体系的几何组成分析Geometric construction analysis基本要求:明确几何组成分析的目的,领会几何不变体系、几何可变体系、瞬变体系和刚片、约束、自由度等概念。
掌握几何不变体系的简单组成规则,能灵活运用三个规则对平面体系进行组成分析。
重点:几何不变体系的简单组成规则难点:如何正确应用几何不变体系的简单组成规则对平面体系进行几何组成分析,二元体的概念。
教学内容:﹡几何不变体系、几何可变体系及几何组成分析的目的﹡刚片、自由度和约束的概念﹡平面体系的计算自由度﹡无多余约束几何不变体系的组成规则﹡几何组成分析举例﹡结构的几何组成和静定性的关系§2-1 概述结构是由若干根杆件通过结点间的联接及与支座联接组成的。
结构是用来承受荷载的,因此必须保证结构的几何构造是不可变的。
问题:是不是若干杆件随意组合都能成为结构?1、几何不变体系和几何可变体系结构几何不变体系:体系受到任意荷载作用后,在不考虑材料变形的条件下,几何形状和位置保持不变的体系。
§2-1 概述1、几何不变体系和几何可变体系机构意荷载作用后,在不考虑材料变形的条件下,几何形状和位置可以改变的体系。
显然只有几何不变体系可作为结构,而几何可变体系是不可以作为结构的。
因此在选择或组成一个结构时必须掌握几何不变体系的组成规律。
§2-1 概述1、几何不变体系和几何可变体系P ∆瞬变体系:本来是几何可变,经微小位移后成为几何不变体系。
这是几何可变体系的一种特殊情况。
ααA BCP F NCA FNCBCPαsin2PF NCA=因此瞬变体系是不能作为结构使用的。
§2-1 概述1、几何不变体系和几何可变体系⎪⎩⎪⎨⎧⎩⎨⎧瞬变体系常变体系几何可变体系几何不变体系体系 (图1) P (图2) P P∆(图3)§2-1 概述2、几何组成分析几何组成分析(机动分析或构造分析)—判断一个杆系是否是几何不变体系,同时还要研究几何不变体系的组成规律。
第二章机构的结构分析(一)基本内容本章介绍机构可能运动和具有确定运动的条件;机构运动简图绘制的方法:所究机构的结构分析的基本知识。
1.运动副:两构件直接接触形成的可运动联接称为运动副。
2.自由度:构件所具有的独立运动的数目(或确定构件位置的独立参变量的数目)的称为自由度。
作平面运动的自由构件具有三个自由度。
3.约束:两构件组成运动副后,其相对独立运动受到限制,自由度随之减少。
我们把对独立运动所如的限制称为约束。
4.平面运动副的特点及分类转动副:只能相对转动,具有一个相对独立运动故其自由度为1,约束数为2。
移动副:只能相对沿一个方向独立移动,其自由度为1,约束数为2。
平面高副:具有两个独立相对运动,其自由度为2,约束数为1。
按接触特性,面接触的运动副称为低副;点、线接触称高副。
平面低副:转动副和移动副都属平面低副,均为具有一个自由度和受到2个约束。
平面高副:同上述。
5.机构运动简图:用简单线条和符号来代表构件和运动剧,并按一定比例表示各运动副的相对位置所绘制的图形称机构运动简图。
机构示意图、不按比例绘制运动副间位置的图形称机构简图或机构示意图。
6.机构的形成两个以上构件以运动副联接而成的系统称为运动链。
将运动链的一个构件固定机架,当它的一个或几个原动件独立运动吋,其余从动件随之作确定的运动,这种运动链便成为机构。
7.平面机构的自由度:整个运动链相对其中一杆(机架)的自由度(简称运动链相对自由度),亦即机构的自由度。
平面机构自由度计算公式为:F=3n-Pi -Ph其中n:活动构件数;Pi低副数;Ph高副数1)若F≤O,构件间不可能产生相对运动,运动链蜕化成刚性桁架。
2)若F>0,当原动件数>F,运动链将遭破坏;当原动件数<F时,运动链运动不确定;当原动件数=F时,构件间才能获得确定相对运动。
这也是运动链成为机构的必要条件。
8.按照机构运动简图计算机构自由度时,还应注意以下一些特殊问题:(1)复合铰链:当两转动副轴线间的距离缩小到零时,两轴线重合为一,便得复合铰链。