废气余热利用
- 格式:ppt
- 大小:610.00 KB
- 文档页数:11
冷再生原理
冷再生原理是指在内燃机中利用废气余热加热进气的一种技术。
通过这种技术,可以提高内燃机的热效率,减少废气排放,从而实现能源的节约和环境的保护。
冷再生原理的实现需要利用再生器,再生器是一种热交换器,通常安装在内燃
机的进气道中。
再生器的作用是利用废气中的余热,将进气加热,提高进气温度,从而提高燃烧效率。
再生器通常由金属或陶瓷材料制成,具有良好的导热性能和耐高温性能。
冷再生原理的工作过程如下,首先,废气从内燃机的排气道中排出,其中含有
大量的热能。
再生器将这部分热能吸收,并传递给进气,使进气温度升高。
当进气温度升高后,燃料在进气中的混合效果更好,燃烧更充分,从而提高了内燃机的热效率。
冷再生原理的应用可以使内燃机在相同工况下提高功率输出,减少燃料消耗,
降低排放污染。
这对于汽车、船舶、发电机等内燃机设备来说,都具有重要的意义。
特别是在现代社会对能源和环境问题越来越重视的情况下,冷再生原理的应用将会更加广泛。
冷再生原理的发展也面临一些挑战。
首先,再生器的材料和制造工艺需要不断
改进,以提高其耐高温性能和传热效率。
其次,再生器的结构设计需要考虑内燃机的工作条件和空间限制,以确保其稳定可靠地工作。
此外,再生器的控制系统也需要精密调节,以适应不同工况下的进气温度变化。
总的来说,冷再生原理作为一种能源节约和环保的技术手段,具有重要的应用
前景。
随着材料科学、热工技术和控制技术的不断进步,冷再生原理将会在内燃机领域发挥越来越重要的作用,为实现能源可持续利用和环境保护做出贡献。
让你秒懂余热回收利用
余热的直接利用有以下途径:
1、预热空气或给水
利用高温烟道排气,通过高温换热器来加热进入锅炉和工业窑炉的空气,可提高燃烧效率,节约燃料。
2、干燥物料
利用各种生产过程中的排气来干燥材料和部件。
例如,陶瓷厂的泥胚、冶炼厂的矿料等。
3、生产热水和蒸汽
利用中低温的余热来生产热水和低压蒸汽,供生产工艺或生活需要。
热管式气-液式热管换热器
热管式余热热水器,能合理的将排放的高温废气进行余热回收,给水加热产生热水,根据需为生产或者生活供应热水。
热管式余热热水器采用高效的热管,换热速度快,效率高。
针对燃烧重油、煤等含硫量高的烟气余热回收时,突出了其明显排放烟温控制优势。
采用不同级别的热管启动温度,确保端排烟温度不低于露点温度,有效的避免酸露腐蚀问题。
自动控制补水。
热管式气-气式热管换热
热管换热器以超导热管为核心传热元件,高温烟气冲刷热管吸热端,使热管中工质蒸发成气体向冷却端流动,在冷却端冷凝放热,把空气加热。
热空气经管道为锅炉补风。
冷、热流体都在热管管外流过,两侧都可以用翅片强化,传热效率高,体积紧凑,压力降小,阻力损失小,从而节约了鼓风机和引风机的动力消耗。
热管的热侧(烟气侧)和冷侧(空气侧)是使用隔板分隔开的,热管和隔板之间有可靠的密封。
因此空气和烟气之间泄露的可能性很小,从整体结构上减少了漏风可能。
发动机排气余热利用:发动机排气余热的利用方式有多种。
首先,可以将废气余热通过热交换器转化为高温高压蒸汽,推动气轮机工作,带动发电机发电。
这种方式利用了废气的余热,实现了热能到电能的转化。
其次,还可以将废气余热通过温差发电的方式进行利用。
这种方式利用了温差发电的原理,将热能转化为电能。
不过,这种方式的使用率较低,且能量转换效率也较低。
另外,还可以通过回收钢铁、水泥、石化等企业排放的废气和烟气中的中低温废蒸汽、烟气,将这些废气余热转化为电能。
这种方式可以降低投资成本,提高能源回收利用率,有利于节能减排。
除此之外,还可以将发动机废气余热进行回收,通过换热设备将废气的余热转换成其他介质所需的热量,例如获取蒸汽、热水等,以供日常生活需求或采暖等用途。
这种方式可以直接将废气余热转化为有用热量,提高能源的利用率。
涂装烘干炉废气余热回收利用摘要:汽车生产过程中,涂装是其中重要的一个环节,在涂装环节通常会使用到烘干设备,而烘干系统大多会使用焚烧炉加热的方式,经过加热以后,产生200℃左右的废气,如果将这些废气直接排放到车间外,就会产生大量的能源浪费,同时也会对周围环境产生极大的污染。
因此,在本文中首先简单介绍了汽车涂装废气的主要来源,然后提出了几点废气余热回收利用的有效措施,希望能够进一步提升汽车生产环节的经济效益和社会效益。
关键词:涂装烘干炉;废气;余热回收中图分类号:TQ639 文献标识码:A引言作为汽车生产中的重要环节,汽车涂装过程中,一般都会选择废气焚烧的方式对挥发性有机化合物进行处理,然后再将经过处理后的废气应用到烘干炉加热中,在经过多次的换热以后,将这些废气逐步排放到空气中,但是这时排放出的废气温度仍然较高,其中所蕴含的热量可以具备重复利用的价值,我们将这一部分具备利用价值的废气称之为烘干炉余热。
如果能将这一部分余热进行有效的回收利用,也必然能够有效提升涂装系统的节能效果。
1 涂装废气来源汽车涂装过程中废气的主要来源包括烘干炉废气、喷漆室废气以及晾干间废气,在本文中主要针对烘干炉产生的废气进行研究和分析。
汽车涂装过程中,所使用的烘干炉主要包含电泳烘干炉、PVC烘干炉、中涂烘干炉、面漆烘干炉以及闪干烘干炉,烘干炉使用过程中所产生的废气,主要是指燃料和涂料系统中所产生的废气,在这其中涂料系统中所产生的废气大多数为面漆中所包含的溶剂成分、电泳漆膜、增塑剂、热分解生成物以及化学反应生成物等等,燃料系统所排放的废气大多是燃烧过程中产生的废气,一般为天然气燃烧废气。
在汽车涂装过程中,所产生的废气大部分来自于溶剂型涂料,其主要包含稀释剂、有机溶剂、平流剂等,在成膜的过程中所挥发出的有机物。
目前针对汽车涂装过程中所使用的涂料在烘干中产生的废气会选择以下两种处理措施:第一,进行催化燃烧,第二进行直接焚烧。
催化燃烧主要就是利用更加高效的催化剂,将废气中所包含的有机溶剂蒸汽进行氧化焚烧,由此产生二氧化碳和水,将废气中所包含的有害物质逐渐去除,通常涂料中所产生的废气大部分成分都是有机溶剂,其中还包含催化剂中的颜料、树脂以及可塑剂等等,使用这种方式进行处理,由于催化剂的寿命很难控制,所以在使用过程中应加大管控力度。
科技成果——烧结废气余热循环利用工艺技术适用范围钢铁行业烧结行业现状截止2014年,我国大中型烧结机共约600台,年产烧结矿约8亿t,烧结工序的平均能耗为55kgce/t。
烧结废气余热循环利用可节省烧结能耗5%以上,减少烧结CO2排放以及废气排放总量20%以上。
从2012年起,宝钢、宁波钢铁、沙钢等烧结机废气循环改造工程已陆续建成投运。
成果简介1、技术原理烧结低温废气自烧结支管风箱/环冷机排出后,再次被引入、通过烧结料层时,因热交换和烧结料层的自动蓄热作用,可以将其中的低温显热供给烧结混合料,与此同时热废气中的二噁英、PAHs、VOC 等有机污染物在通过烧结料层中高达1200℃以上的烧结带时被激烈分解,NOx在通过高温烧结带时亦能够通过热分解被部分破坏,尽管二噁英、PAHs、VOC等有机污染物在烧结预热带又可能重新合成,但废气循环烧结仍然可以显著减少有机污染物的排放,并大幅度削减废气排放总量。
烧结废气余热循环利用可以富集SO2,提高脱硫效率,并使NOx被降解、二噁英在高温下热解、粉尘被吸附并滞留于料层,减少排入大气的烟气量,降低废气净化装置及运行成本,并提高已有烧结机的产能。
2、关键技术(1)烧结低温余热利用、废气减量、污染物同步脱除的方法、工艺和装置;(2)循环烧结系统在线控制技术包括循环烟温和氧含量调控、烟道防结露、循环风箱组合优化、循环烧结工艺与主工艺衔接等技术;(3)循环烧结过程仿真模型包括烧结终点温度控制、风氧平衡、烧结质量预报与控制、循环烧结传热、节煤量实计、管路优化等子模型;(4)循环烧结条件下配矿结构优化和提产增效技术包括提高废气循环烧结利用系数及烧结矿转鼓强度的方法,提高烧结铁精矿用量和生产率的矿料使用方法等。
4、工艺流程烧结废气余热循环利用工艺流程图主要技术指标1、烧结工艺节能5%以上;2、烟气总量减排20%以上。
技术水平本技术已申请30余项相关专利,目前已授权10项。
2014年11月,在宁钢循环烧结示范工程作为首批低碳技术创新和产业化示范工程通过了国家发改委工程验收组的项目验收。
焦化厂焦炉烟道废气余热利用途径及设计方案1、热管技术:用热管余热锅炉回收焦炉烟道废气余热生产蒸汽技术,因其投资省,见效快而快速发展。
烟道废热余热回收生产蒸汽的工艺原理:热流体的热量由热管传给放热端水套管内的水,并使其汽化,所产汽—水混合物经蒸汽上升管达到汽包,经集中分离后再经蒸汽主控阀输出。
由于热管不断将热量输入水套管内的水,并通过外部汽—水管道的上升及下降完成基本的汽—水循环,达到将热流体降温,并转化为蒸汽的目的。
焦炉烟道废气余热生产蒸汽的工艺流程:在焦炉主烟道翻板阀前开孔,将焦炉主烟道废气引出,经调节型蝶阀入余热回收系统,换热降温后约170 ℃的烟气通过风机抽送,再经开关型蝶阀排入主烟道翻板阀后的地下主烟道,最后经焦炉烟囱排入大气。
锅炉水被加热后汽化,经汽包并计量后并入蒸汽管网,供各生产车间使用。
余热回收系统由软化水处理装置、除氧器、水箱、除氧给水泵、锅炉给水泵、热管蒸汽发生器、软水预热器汽包、上升管、下降管等组成。
其核心技术是热管技术回收烟气中的显热,将软化水加热成水蒸气,其工艺流程图如图图所示。
焦炉烟道废气余热回收生产蒸汽系统是一项节能减排工程,产生的饱和蒸汽可并入焦化厂蒸汽管网,供低压蒸汽用户使用。
2、煤调湿:煤调湿是将炼焦煤在装炉前除去一部分水分,保持装炉煤水分稳定在6%左右,然后装炉炼焦。
利用焦炉烟道废气煤调湿工艺不但可以节省能源,减少废气、废水、废热的排放,而且可以提高装炉煤堆密度及炼焦初期升温速度、缩短结焦时间,从而实现节能降耗的目的。
煤调湿装置的热源主要有导热油、蒸汽和焦炉烟道废气等。
相比较而言,以导热油和蒸汽为热源的煤调湿工艺存在设备繁琐、运行费用高等问题;以焦炉烟道废气为热源的煤调湿工艺可以利用废气余热干燥入炉煤,热效率高,节能效果好。
目前以焦炉烟道废气为热源的煤调湿工艺主要有流化床式、风动选择式和沸腾流化床式等。
2.1、流化床煤调湿:XXX厂采用焦炉烟道废气对煤料干燥的流化床煤调湿装置,其工艺流程为:将粉碎后的煤料由煤仓送往流化床干燥机,从分布板进入的焦炉烟道废气直接与煤料接触,对煤料进行干燥,调湿后的粗煤粒从干燥机排入螺旋输送机,剩余的煤粉随焦炉烟道废气进入袋式除尘器,回收的煤粉通过螺旋输送机送入皮带机上,为抑制扬尘,采用加湿机对干煤粉适当加湿,使煤粉和粗煤粒一起经皮带机送到焦炉煤塔,工艺流程图见下图。