输电线路覆冰灾害的防护
- 格式:docx
- 大小:78.86 KB
- 文档页数:4
输电线路绝缘子覆冰预测及防护方法综述摘要:随着经济的快速发展,我国电网结构日益复杂,远距离大容量跨区域的高压输电线路越来越多。
大部分输电线路属于架空线路,直接暴露在自然环境中,在湿冷的冬季,极易出现覆冰,严重覆冰会引发导线舞动、断线、倒塌等事故,引发大面积停电甚至系统崩溃。
因此,研究输电线路覆冰增长与其影响因素之间的关系,准确预测覆冰厚度,为防冰除冰决策提供可靠依据,具有十分重要的意义。
本文对输电线路绝缘子覆冰预测及防护方法进行分析,以供参考。
关键词:绝缘子;覆冰闪络;覆冰风险预测引言输电线路严重覆冰将导致杆塔受损、电力通信中断,对电力系统的安全稳定运行造成重大影响。
因此,输电线路覆冰预测的研究具有十分重要的意义。
目前,线路覆冰预测方法大致分2种:传统模型与智能模型。
传统模型包括物理模型和统计模型;物理模型的某些参数在实际工作中测量困难,应用存在一定局限性;而统计模型虽有较好的预测精度,但其对数据依赖性高并需要足够历史数据支撑,应用范围也有限。
随着人工智能快速发展,研究人员逐渐聚焦于智能模型的覆冰预测,使用最为广泛的有神经网络和支持向量机。
传统覆冰增长模型主要有Goodwin、Imai和Lenhard,这些模型均属于理论模型,实际应用效果并不理想。
随着人工智能的发展,智能算法在电力系统得到了广泛应用。
在覆冰预测领域,导线覆冰与其影响因素之间的关系,采用麻雀搜索算法对双向门控循环神经网络的超参数进行优化,在此基础上建立了导线覆冰增长预测模型。
提出了一种基于自适应变异粒子群优化BP神经网络的输电线路覆冰预测方法,采用该方法对重庆市多条输电线路覆冰情况进行了预测。
1覆冰产生原因线路表面的结构部位覆盖厚度较大的冰冻层是输电线路冰害的基本表现形式,会导致输电杆塔的结构发生失稳,或者造成线路绝缘子损坏及区域供电中断。
覆冰产生与外部环境气温突然改变有关,如发生降雪或霜冻等自然气候灾害,在此种情况下,凝固后的自然降水会附着在输电线路表面,产生积雪和冰冻层。
输电线路运维防治导地线覆冰舞动方案一.导地线覆冰舞动的发生,常与气候和气象条件有关。
在气温为一5~1℃、风力为8~12m∕s(4~6级)、导地线覆冰厚度3~20mm的情况下,易发生导地线舞动。
导地线舞动会给线路造成严重的损害,可使金具断裂,导地线落地,塔材、螺栓变形、折断,出现大面积停电。
因此运行单位应高度重视,建立健全有效的管理制度,降低舞动发生的几率。
二.导地线舞动较严重的地区,各级生产管理部门和运行单位应组织科研和技术人员成立防治导地线覆冰舞动工作小组,研究本地区导地线舞动形成的规律、特点,拟定相应的工作制度,制订防治导地线舞动的措施、计划。
通过不断治理和积累经验,逐步抑制导地线覆冰舞动的发生,减轻或避免导地线舞动造成的危害。
三.加强对导地线舞动的观测和记录,绘制出易舞线路和易舞区分布图。
开展对导地线舞动在线监测技术的研究,为预防和治理导地线舞动积累资料。
导地线舞动在线监测是利用观测装置,实时监测、记录导地线舞动的相关数据,如:覆冰厚度、性状、导地线舞动时的风速、风向、温度以及舞动的幅值、频率、波形等。
四.处于重冰区(覆冰厚度在20mm及以上)或易于结冰的线路,应制订或适时采取融冰及防冰措施,避免发生线路故障。
根据情况设置冰凌观测站,以便导地线发生覆冰时及时进行观测及记录;加强对冰凌资料的积累、分析,结合运行经验制定预防冰害事故措施。
五.根据线路设计和运行情况,对各种交叉跨越距离按可能发生的覆冰情况进行校验,重要交叉跨越档宜采用孤立档。
为减轻或防止导线脱冰跳跃和舞动对导线造成的损伤,悬挂导线时宜采用预绞丝护线条保护,不使用重锤和非固定型线夹。
六.北方地区初春季节冰雪开始融化,应提前清除绝缘子串上的冰雪,防止冰闪事故的发生。
也可采取一些防治措施:改变瓷(玻璃)绝缘子串的配置(如在绝缘子串中插入大盘径绝缘子),或在条件允许的情况下增加绝缘子串长度(如采用结构高度较高的绝缘子或适当增加片数)。
七.对已采用的防舞措施(装置),应定期进行巡视和检查,发现异常及时处理,确保其运行状况良好。
架空输电线路覆冰危害及防冰除冰的措施摘要:架空输电线路覆冰是一种广泛分布的自然现象。
导线结冰问题已成为世界各国的共同关注和有待解决的问题。
冰灾会影响维护的安全,造成大面积的冰闪跳闸和倒塔,造成严重的经济损失,影响交通运输和人民的生活安全。
关键词:架空输电线路;履冰;防冰除冰前言为了适应中国经济的发展,国内传输电压与负荷在不断提高,地区的架空输电线路越来越密集,范围也越来越大,因此跨越的区域和环境比较复杂。
而一旦遇到低温、冰雪等恶劣天气,架空线路就会造成覆冰问题的出现,这对稳定国家电力输送带来了巨大的威胁,一旦出现状况就会对社会经济造成不可弥补的损失。
1架空线路覆冰的成因与对电网的影响1.1架空线路覆冰的成因架空导线覆冰的形成原因是由多种条件决定的,主要有气象条件、地理条件、海拔高度、导线悬挂高度、导线直径、风向和风速、电场强度等。
气象条件对架空线路覆冰的影响主要是由线路经过地的环境温度、空气湿度以及风向风速等因素综合造成的。
架空线路覆冰问题并非偶然事件,在我国很多地方每年冬天都会发生架空线路覆冰问题。
但是不同地区、地形上架空线路覆冰的类型不太相同,具体来说可分为雨凇、雾凇、混合凇、湿雪4种。
1.2覆冰对电网的影响架空线路覆冰对电网的影响主要有过负载、绝缘子冰闪、覆冰的导线舞动、脱冰闪络等。
过载会导致架空线路出现机械和电气方面的故障,即会出现倒塔、金具的损坏和由弧垂增大而导致的闪络烧线等。
当绝缘子上覆冰时,可以看作绝缘子上出现了污秽而改变了绝缘子上的电场分布,特别是冰中往往会含有污秽,这就更易造成冰闪。
在风力的作用下,架空线路上的覆冰是不对称的,这就造成线路极易发生舞动,且舞动幅度较大、持续时间长。
对线路轻则引起相间闪络、线路跳闸,重则引起断线或倒塔。
2防冰与除冰技术2.1常见的防冰技术路径选择:应充分考虑规划路径沿线微气象、微地形因素和运行经验,尽量避开微地形、微气象区域。
实在无法避开的,应根据规程规定的重现期确定设计冰厚与验算冰厚,对重冰区及中重冰区过渡区段进行差异化设计,适当缩小档距,降低杆塔高度,提高线路抗冰能力。
输电线路覆冰闪络故障原因分析及防范措施摘要:覆冰可以分为雨凇和雾凇两种类型。
与雾凇的干增长方式相比,雨凇的湿增长方式常造成导线和绝缘子覆冰程度的差异。
湿增长条件下,过冷水滴具有一定的流动性,不容易在导线上堆积,但容易形成冰凌,从而增加绝缘子的桥接程度。
因此在雨凇覆冰时,绝缘子的覆冰厚度可能并不严重,但形成了严重的桥接,短接了绝缘子空气间隙,从而造成了线路覆冰闪络。
本文以某500kV输电线路为例,对覆冰闪络故障进行分析,并制定相应的防范措施。
关键词:输电线路;覆冰闪络;故障原因;防范措施1输电线路覆冰闪络故障的成因导致输电线路出现覆冰闪络故障的原因主要有四点:一方面,覆冰受到气候条件的影响。
当外界环境温度低于0℃,如果云中或者是雾中的水滴遇到输电线路时,就可能由于碰撞作用而出现冻结现象。
同时,在近地面层存在着冷平流现象,当外界气温低于0℃,就可能出现覆冰现象。
尤其在冬季,由于四川地区气温相对较低,但是湿度较高,很容易导致输电线路出现覆冰现象。
如果外界的气温越低,并且低温现象持续的时间越长,那么覆冰的厚度将会显著提升。
这样一来,不仅会增加导线的荷载,导致塔架坍塌等问题,同时还不利于输电工作的正常开展。
另一方面,地貌、地域因素也影响着覆冰现象。
对于输电线路的覆冰问题来说,其对于导线的破坏程度不仅受到当地山坡地形走势的影响,同时也受到坡向、分水岭以及风口、台地等地貌地域因素的影响。
比如在冬季,由于温湿气候与寒冷气候相交替出现,将加剧覆冰问题的严重程度。
此外,外界的海拔高程以及输电线路的走向、导线悬挂高度也会对覆冰现象的形成产生影响。
随着海拔高度的不断增加,东西走向的线路覆冰问题将会更加严重。
另外,线路的自身条件也影响着覆冰现象。
比如线路中绝缘子、导线的外表形状、直径以及刚度等因素,直接对过冷却水滴以及云粒的附着效应产生影响。
2典型缺陷覆冰跳闸分析2011—2015年某网省公司电网220kV及以上输电线路跳闸统计情况显示,输电线路年均覆冰跳闸6次,特别是2013年,覆冰跳闸达11次,占该年省公司电网跳闸总数的18%,仅次于雷击跳闸和风偏跳闸。
输电线路覆冰分析及保护对策摘要:这些年来,中国各个地区的输电线路经常出现冰害事故与覆冰的情况,严重影响了电力体系的正常输电工作与稳定安全。
而冰害事故是在冬季的时候输电线路安全运行的关键,因此要减小线路覆冰对输电线路的危害,电网的规划设计质量是最先要提升的。
适当安装易覆冰区域线路绝缘子串能消除覆冰线路冰闪情况。
关键词:输电线路;线路覆冰;冰灾事故;保护对策引言:输电线路覆冰的微气象条件是指某一个大范围内的部分地段,因为地形、位置、坡向、温度与湿度等发生特殊改变,导致部分地区产生有别于大范围的更为严重的覆冰条件。
因此把冰害事故的管理和预防做好已经变成输电线路管理工作中特别关键的、亟待实施的工作程序,这将有利于提升中国电网抗击自然灾害的能力。
1、输电线路覆冰的因素和特点线路覆冰出现在低温雨雪天气里,降水性质从开始的雨到雨夹雪最后到冻雨或大雪。
开始的液态降水对增加空气中的水汽含量有帮助,空气中发生过很多冷水滴,随着下降的气温,降水情况从液态到液固态并存到全固态,在导线表面愈聚愈厚的冰水混合物导致线路覆冰。
覆冰时空气超过85%的相对湿度,达到20~30毫米的降水量,在1.0~-5.0℃左右的日最低气温,在1~2.5米/秒的风速。
依据覆冰后的现场观测,辽北区域输电线路导地线在10~15毫米左右的覆冰厚度,达30毫米的最大厚度,近似圆形的覆冰层截面,呈坚硬的“冰棒”形状。
2、输电线路发生冰害事故的原因2.1雨凇覆冰产生相对大密度的覆在输电导线上。
由于雨凇覆冰是一个以“湿”为增长特征的经过,因为其粘附能力非常的强,所以通常状况下非常难掉落,再加上有风的助力,导线就会发生相对大振幅与低效率的振动,从而造成绝缘子、铁塔、金具与导线从不一样程度上受到不平衡的异常冲击而产生导线中间相对或是相间的发生闪络情况,影响着电力系统的正常运行与安全供电。
2.2绝缘子串冰凌闪络。
覆冰是一种特别方式的污秽,所以覆冰绝缘子放电和污秽绝缘子放电差不多,其放电经过也是从表面泄漏电流引发的。
输电线路绝缘子覆冰预测及防护方法综述摘要:架空输电线路是电力输送的重要通道。
随着我国电网规模的不断扩大,架空输电线路的数量日益增长。
近年来,极端恶劣天气频繁,输电线路覆冰灾害事故频发,据统计,覆冰灾害引起的线路故障占比高达37%。
因此,对输电线路覆冰预测模型进行研究,利用覆冰预测模型对输电线路覆冰厚度进行准确预测,对于减少覆冰灾害损失和提高供电可靠性具有重要意义。
本文对输电线路绝缘子覆冰预测及防护方法进行分析,以供参考。
关键词:输电线路;覆冰监测;覆冰风险预测引言输电线路覆冰会引起闪络、舞动、断线、倒塔等事故,威胁电力系统的安全稳定运行,由于我国地形地貌多样,输电线路多数要通过严寒地区。
因此,开展输电线路覆冰厚度预测研究对于减少线路遭受覆冰灾害,提高电力系统稳定性具有重要意义。
国内外研究人员针对覆冰预测模型开展了深入研究。
覆冰模型主要分为基于覆冰机理的数学物理模型,如Makkonen模型雾凇覆冰模型等,此类方法在预测精度上较高,但某些参数在实际观测中不易测量。
另一类是基于实际历史数据的统计模型,如BP神经网络、支持向量机回归模型及其优化算法等,但人工神经网络对样本需求量大,易陷入局部最优解,支持向量机适用于小样本且泛化能力较强,得到许多学者的重视。
采用粒子群算法优化SVM参数,并预测覆冰厚度,但模型误差较高,预测精度不足。
上述模型虽然能较准确地预测线路的覆冰厚度,但都没有考虑各影响因素的权重,不能准确地预测覆冰现象。
1覆冰厚度预测模型1.1数据预处理(1)去除异常数据依据输电线路形成覆冰的条件去除实测数据中的异常数据。
(2)线性插值对于缺失数据,利用线性插值使数据具有更好的连续性与平滑性,保证预测结果的准确性。
(3)数据归一化由于影响输电线路覆冰厚度的因素众多,且各因素数据的单位量纲不同,为避免不同数据集的值相距较大。
1.2数据选取及灰色关联度分析线路覆冰现实情况比较复杂,如果根据实际情况选择输入变量,则预测模型影响因素较多,使模型效率下降,学习时间变长;若过于简化输入量的个数,则导致模型预测准确性降低等问题。
对线路覆冰的分析及保护措施分析近年来,随着气候变化的加剧,各种极端天气现象也愈加频繁。
其中,冰雪覆盖是导致电力线路堆积的主要原因之一,给电力系统的运行和供电带来严重影响。
为了保障电力设施的可靠供电,必须对线路覆冰进行分析和防护,以应对极端天气条件下的各种应急情况。
一、线路覆冰的分析1.影响因素线路覆冰主要受到以下影响:空气温度、水气分压、风速和线路导线温度等。
其中,水汽分压是影响线路覆冰的主要因素。
当空气温度低于0℃,空气中的水汽降华成冰晶时,如果水汽分压越大,则成冰的速度越快,形成的冰晶也越大。
2.判断和分级标准为了对线路覆冰进行判断和分级,国内外均有相应的标准。
国内主要采用《电力行业天气灾害分级标准》(DL/T959-2005)中的标准。
按照标准,分为四级,从未受到覆冰影响的为一级,覆冰程度最轻的为二级,三级为中度覆冰,四级为重度覆冰。
国外也有相应的标准,例如美国和加拿大的标准都是从0.3英寸、0.5英寸、0.75英寸、1英寸等不同等级进行划分。
3.影响(1)额定负荷下的传输容量降低冰工状态下的输电线路对于电流而言,相当于使线路截面积缩小,因此减小触电体上(或回路中)通过电流容量。
(2)线路间隔偏小覆冰导致线路间隔缩小,各线路之间相互影响,产生短路、击穿等故障,对系统造成了严重影响。
(3)线路存在安全隐患覆冰时,线路可能会折断或倒塌,对周围环境和人员造成安全隐患。
二、线路覆冰的保护措施1.预防措施(1)选用适合于寒冷、湿润地区的线路型号由于不同的导线材质和构造方式对冰雪覆盖的敏感程度不同,因此需要根据实际情况选择适合于当地气候条件的导线型号。
同时,应选用防冰、抗风导线、防震器、防结冰剂等等。
(2)按照规范要求对线路进行人工清理和设备维护在冰雪覆盖严重时,对线路进行集中清理,可以有效地减轻线路上的冰雪覆盖,对加强线路的抗冰性有很大帮助。
同时,应按照要求对线路设备进行检查和维修,保证其正常运行。
一、预案背景随着冬季的到来,我国部分地区出现低温雨雪天气,导致输电线路覆冰现象频发,给电力系统的安全稳定运行带来严重威胁。
为有效应对覆冰灾害,保障电力供应安全,提高应急处置能力,特制定本预案。
二、预案目标1. 最大限度地减少覆冰灾害对电力系统的影响,确保电力供应稳定。
2. 及时发现和消除覆冰隐患,防止事故发生。
3. 提高应急响应速度,降低事故损失。
三、预案组织机构及职责1. 应急领导小组:负责组织、协调、指挥覆冰灾害应急处置工作。
2. 应急指挥部:负责具体实施应急处置措施,协调各部门工作。
3. 应急救援队伍:负责现场救援、抢修、物资保障等工作。
4. 监测预警组:负责实时监测覆冰情况,及时发布预警信息。
5. 信息报送组:负责及时收集、整理、上报事故信息。
四、应急处置措施1. 监测预警(1)实时监测覆冰情况,及时发现异常情况。
(2)根据覆冰情况,发布预警信息,提醒相关部门和单位做好防范工作。
2. 应急响应(1)启动应急预案,成立应急指挥部,组织救援队伍。
(2)对覆冰严重的线路进行紧急抢修,确保电力供应。
(3)加强物资保障,确保救援工作顺利进行。
3. 现场救援(1)对覆冰严重的线路进行人工除冰,消除隐患。
(2)对损坏的设备进行更换,恢复电力供应。
(3)对现场进行安全检查,防止次生灾害发生。
4. 信息发布(1)及时发布事故信息,提高公众对覆冰灾害的认识。
(2)对救援进展情况进行实时更新,增强公众信心。
五、后期处置1. 事故调查(1)对事故原因进行调查,分析事故教训。
(2)对相关责任人进行追责。
2. 覆冰防治(1)加强输电线路的防冰措施,降低覆冰风险。
(2)对重点线路进行巡视检查,及时发现并消除隐患。
3. 应急演练(1)定期组织应急演练,提高应急处置能力。
(2)针对不同覆冰情况,制定针对性的应急措施。
六、附则1. 本预案自发布之日起实施。
2. 本预案由应急领导小组负责解释。
3. 各相关部门和单位应按照本预案的要求,做好覆冰灾害的防范和应急处置工作。
输电线路覆冰预防思路文章主要分析了输电线路受冰雪灾害影响的因素及其危害,并介绍了目前防治冰雪灾害的现状,提出了输电线路冰雪灾害预防的新思路。
标签:输电线路;冰雪灾害;综合防治思路2014年2月中下旬,受大面积降雪和冻雨天气影响,我国大部分地区电网再次遭遇继2008年特大冰雪灾害以来的又一次比较严重的持续低温雨雪冰冻灾害的考验。
随着极端恶劣气候出现的概率越来越大,电网之间的联系越来越紧密,电网遭受恶劣气候致命打击的几率更高。
如何利用目前比较成熟的管理措施、技术措施、冰雪灾害技术措施等手段,全过程贯彻冰雪灾害防治理念,使输电线路冰雪灾害危害降到最低,是我们必须面对的一个重大问题。
1 影响输电线路覆冰的因素1.1 气象因素输电线路覆冰主要发生在11月至次年3月间,尤其在入冬和倒春寒时覆冰发生的频率最高。
1.2 海拔高程因素就同一个地区来说,一般海拔高程愈高,愈易覆冰,覆冰也愈厚,且多为雾凇;海拔高程较低处,其冰厚虽较薄,但多为雨凇或混合冻结。
1.3 线路走向及悬挂高度因素东西走向的导线覆冰普遍较南北走向的导线覆冰严重。
因为冬季覆冰天气大多为北风或西北风,因此,在严重覆冰地段选择线路走廊时,应尽量避免导线呈东西走向。
1.4 导线直径因素在常见的小于或等于8m/s的风速下,直径小于或等于4cm的导线,相对较粗的导线的单位长度覆冰量比相对较细的导线重;对于直径大于4cm的导线,单位长度覆冰重量反比较细的导线轻;在大于8m/s的较大风速下,对于任何直径的导线,导线越粗覆冰越重,但覆冰厚度随导线直径的增加而减小。
1.5 导线表面电场因素现场观测及试验研究表明,电场强度较小时导线覆冰量、冰厚及密度随电场强度增加而增加,可当电场足够高时,带电导线的覆冰比不带电导线覆冰少很多,覆冰量与电压极性有明显关系;此外,在强电场作用下,导线覆冰的密度也较无电场时小。
2 输电线路覆冰的危害2.1 过负载危害过负载危害,即导线覆冰超过设计抗冰厚度(覆冰后质量、风压面积增加)而导致的事故。
浅析输电线路覆冰的危害与防范措施摘要:本文主要阐述了输电线路覆冰的危害与特点,并针对输电线路防冰除冰技术进行分析,最后也提出了输电线路导线覆冰的防范措施,仅供参考关键词:输电线路;覆冰危害;防范措施Abstract: This paper described the hazards and characteristics of the transmission line icing, and anti-icing de-icing technology for the transmission line analysis, the proposed Transmission Line Icing precautions are for reference onlyKeywords: transmission lines; Icing hazards; precautions1输电线路覆冰的危害1.1机械危害线路覆冰直接的危害就是导线、金具和支架负载,随着覆冰厚度的增加输电线路的水平负荷也在增加,严重的覆冰会导致导线、地线断裂,杆塔倒塌和金具损坏;不均匀的覆冰或者不同期脱冰会引起张力差,容易造成导线舞动,会造成导线断裂、杆塔横杆扭曲变形、绝缘子损伤和破裂[2]。
1.2电气危害绝缘子覆冰或被冰凌桥接后,绝缘强度下降,泄漏距离缩短,容易引起绝缘子闪络;融冰过程中冰体表面的水膜会溶解污秽物中的电解质,提高融冰水或冰面水膜的导电率,引起绝缘子串电压分布的畸变,从而降低了覆冰绝缘子串的闪络电压,形成绝缘子闪络。
导线舞动时还可能造成相间短路故障。
2输电线路危害的特点2.1输电线路覆冰倒塔(断线)的特点输电线路覆冰倒杆(塔)断线的特点:一是由于覆冰时杆(塔)两侧的张力不平衡造成的。
在一些地形起伏较大的地区,两相邻的杆(塔)在高度和距离上存在很大的差距,在还未覆冰时两侧就形成了较大的不平衡张力,当输电线路上出现大密度的覆冰时,杆(塔)两侧的不平衡张力加剧,当张力不断加大,直至到达杆(塔)、导线所能承受的极限时,就出现了导线断落或杆(塔)倒塌的现象。
输电导线覆冰舞动机理及防治措施
输电导线覆冰舞动机理及防治措施
一、输电导线覆冰舞动机理
输电导线覆冰舞动是指在寒冷的天气条件下,输电导线上的冰块或雪块会因气流的作用而被不断地刮擦,产生舞动效果,将随着气流的移动而舞动起来。
当冰块覆盖的面积越大,舞动的幅度也会更大,有时甚至会刮断输电线路,造成电网安全隐患。
输电导线覆冰舞动的主要机理是由于冰块被大风吹动,在导线表面会产生摩擦力,使得冰块不断地滑动,这就会产生输电导线覆冰舞动的现象。
此外,天气情况不同,气流强度也不尽相同,所以输电导线覆冰舞动的幅度也会有所不同。
二、输电导线覆冰舞动的防治措施
1.采取技术措施
(1)对输电线路的支撑结构进行加固,使其更加牢固,减少输电导线覆冰舞动的可能性。
(2)安装自动化监控系统,及时发现输电线路存在的异常情况,及时采取措施,防止输电线路受到损坏。
(3)配备定时自动清洗装置,使输电线路上的冰块得到及时清除,避免因覆冰而造成的危害。
2.采取操作措施
(1)建立完善的巡检制度,定期对输电线路进行检查,及时发现存在的问题,及时采取措施。
(2)及时观测气象信息,根据天气情况采取措施,如果气温低,风力较大,应及时采取措施,如采取增强支撑结构等措施,以防止输电导线受到损坏。
(3)及时采取除冰措施,及时清除输电线路上的冰块,以防止因冰块覆盖而造成的危害。
总之,输电导线覆冰舞动是一种不可预测的现象,其危害威力极大,如果不采取相应的措施,可能会造成严重的后果,因此,应该及时采取技术措施和操作措施,来有效地预防和控制输电导线覆冰舞动,以保障输电线路的安全运行。
500kV输电线路覆冰闪络故障原因分析及防范措施内蒙古自治区呼和浩特市 010100摘要:覆冰积雪是美丽的自然现象。
然而。
对于输电线路。
覆冰则是一种自然灾害。
严重覆冰会引起输电线路机械和电气性能降低。
覆冰对输电线路机械和电气性能的影响导致覆冰事故频繁发生,已严重威胁了中国电力系统的安全运行,并造成了重大的经济损失和社会影响。
我国经济发展迅速,城市建设发展越来越快,优质电能能否得到正常的供应在国家发展,国民生活是否舒适等方面中占有举足轻重的地位。
而做好 500kV 架空输电线路防冰闪故障工作,是现阶段远程输电工作中迫在眉睫的任务,做好这项工作,才能有效降低事故的发生机率,避免对电能的浪费,对国家资源的浪费,同时也能够保护工作人员的生命安全。
关键词:500kV 架空输电线路;防冰闪;故障我国能源集中分布在西南、西北区域,远离东部经济中心,采用特高压交流输电技术,能实现远距离、大容量的电能传输。
为了缓解我国负荷中心和发电能源分布不均衡、输电容量日益提高和线路走廊日趋紧张的问题,我国需大力发展特高压交直流输电。
近年来,国家电网公司从我国能源战略高度出发,综合分析我国能源分布、能源传输需求和发展变化趋势,确定了建设以特高压电网为骨干网架、各级电网协调发展的坚强智能电网。
特高压输电线路具有输送容量大、送电距离远、输电损耗小、节省线路走廊等优点。
在我国海拔比较高的地区,尤其是在水系流域发达、地形复杂的山区,冬季覆冰闪络事故较为普遍。
一、冰闪形成的原因1、绝缘子串发生在积雪的前后,这时候线路很有可能会被覆冰,温度回暖以后冰融化,大量杂质因为冰释集中到表面,导致外面线路的绝缘性能下降。
水滴冻结过程中溶解的导电杂质还具有“晶释效应”,不管什么样的聚集方式水的杂质在冻结的过程都会被排出晶体外面,融冰之后,杂质的导电物质也会快速进入水膜,导致水膜的导电率提高,绝缘子串的闪络电压降低。
导致绝缘子覆冰闪络的主要原因之一是伞裙被冰棱桥接导致爬距失效。
输电线路覆冰的形成、危害及防治0 引言输电线路严重覆冰将会造成主网线路发生倒塔(杆)及断线事故,形成大面积停电、电网崩溃瓦解的重特大电网事故。
因此,加强和改善输电线路的抗覆冰能力,有效降低输电线路事故,构造坚强电网,是我们电力企业义不容辞的责任。
1 输电线路覆冰的形成1.1 导线覆冰的基本物理过程当过冷却在0 ℃及其以下的云中或雾中水滴与输电线路导线表面碰撞并结冻时,覆冰现象产生。
在冬季当温度低于0 ℃时,大气中的小水滴将发生过冷却;在高海拔或高空甚至在夏季水滴也会发生过冷却。
处于过冷却水滴包围的输电线路导线与气流中过冷却水滴发生碰撞,并冻结在导线表面而形成覆冰。
导线表面发生覆冰现象必须满足三个条件,即:①大气中必须有足够的过冷却水滴;②过冷却水滴被导线捕获;③过冷却水滴立即冻结或在离开表面前冻结。
1.2 导线覆冰的发展过程严冬或初春季节,当气温下降至-5-0℃,风速为3-15m/s时,如遇大雾或毛毛雨,首先将在导线上形成雨凇;如气温升高,天气转晴,雨凇则开始融化,覆冰过程随温度升高终止;如天气骤然变冷,气温下降,出现雨雪天气,冻雨或雪则在黏结强度很高的雨凇冰面上迅速增长,形成密度大于0.6g/cm3的较厚的冰层;如温度继续下降至-15--8℃,原有冰层外侧积覆雾凇。
这种过程将导致导线表面形成雨凇-混合凇-雾凇的复合冰层。
如在这种过程中,天气变化,出现多次晴-冷天气,则融化加强了冰的密度,如此往复发展将形成雾凇和雨凇交替重叠的混合冻结物,即混合凇。
导线覆冰首先在迎风面上生长,如风向不发生急剧变化,迎风面上覆冰厚度就会继续增加。
当迎风面冰达到一定厚度,其重量足以使导线扭转时,导线发生扭转现象;导线再扭转,覆冰就会继续成长变大,终于在导线上形成圆形或椭圆形覆冰。
1.3 导线覆冰的必要条件导线覆冰的必要条件是:①具有足可冻结的气温,即0℃以下;②具有较高的湿度,即空气相对湿度一般在85%以上;③具有可使空气中水滴运动之风速,即大于1m/s的风速。
0前言在输变电工程中,导线覆冰现象较为普遍,输电线路覆冰引起的故障严重地影响了电力系统的正常运行。
覆冰可以引起导线舞动、杆塔倾斜、倒塌、断线及绝缘子闪络,从而造成重大事故。
导线覆冰是一个复杂的过程,覆冰量与导线半径、过冷水滴直径、含风量、风速、风向、气温及覆冰时间等因素有关。
根据全国覆冰情况的统计数据,发现北方地区虽然气温低,但因气候干燥,所以较少出现重覆冰。
即使偶尔出现,也由于覆冰量很少,对送电线路不构成太大的威胁,在冬季,有高空西南暖湿气流的长江以南高海拔地区受覆冰灾害影响较严重。
1导线覆冰的危害根据对我国输电线路覆冰事故的分析,覆冰线路的危害可以归纳为以下4类。
文章编号:1003-8337(2006)02-0012-03输电线路覆冰的危害及防护李政敏,庾振平,胡琰锋(西安供电局送电工区,陕西西安710032)摘要:输电线路覆冰可引起导线舞动、杆塔倾斜、倒塌、断线及绝缘子闪络等问题。
要减轻导线覆冰带来的危害,在新建线路时,首先要充分掌握该地区的冰雪情,并仔细研究输电走廊的微气候、微地形,尽量避开重冰区;无法避开时,应在重冰区采取抗冰设计。
为加强已有线路的抗冰害能力,应视具体情况区别对待,可增大爬电距离,改善绝缘子伞裙结构,在绝缘子表面涂憎水涂料以及对杆塔横担和绝缘子进行清扫,这些都是解决覆冰绝缘子冰闪的有效方法。
最后,简述了应用在输电线路中的除冰技术。
关键词:导线覆冰;绝缘子冰闪;抗冰设计;除冰技术中图分类号:TM726文献标识码:BTransmissionLineRegelationHarmandProtectionLIZheng-min,YUZhen-ping,HUYan-feng(PowerSupplyBureauofXi’an,Xi’an710032,China)Abstract:Transmissionlineregelationmaycauseconductorgalloping,poleleaningorcollapse,conductorbreakingorinsulatorflashoveretc.Forrelaxingharmcausedbyconductorregelation,theiceandsnowsituationatnewlinesiteshallbeknown,andthemicroclimateandgeographicmicro-fea-turesoflinerouteshallbecarefulevaluated.Theheavy-icingareashallbedetoured.Incaseifitisnotpossible,thedeicingmeasureshallbeconsidered.Forstrengthingrelegation-resistanceabilityofaexistingline,someeffectivemeasurecanbeadoptedsuchasincreasingcreepagedistance,improvinginsulatorshedprofile,hydrophobiccoatingoninsulatorsurface,andperiodiccleaning.Deicingtech-nologywasalsointroduced.Keywords:lineregelationharm;ice-flashover;deicingdesign;clearingicetechnology收稿日期:2006-01-12作者简介:李政敏(1971-),男,陕西渭南人,工程师,主要从事送电线路检修工作。
输电线路运维防治导地线覆冰舞动方案随着输电线路的不断增长和使用年限的延长,导线的覆冰问题日益凸显。
覆冰不仅会威胁到输电线路的安全运行,还会对电网的可靠性和稳定性造成影响。
因此,建立有效的输电线路运维防治导地线覆冰舞动方案至关重要。
首先,在输电线路的设计和安装过程中,需要考虑导地线的结构和材料选择。
导地线的结构应该尽量平滑,并能够减少冰的粘附。
此外,导地线应选用具有较高的耐覆冰性能的材料,如防冰复合导线等,以减少导地线覆冰的可能性。
其次,定期巡视和检测输电线路是防治导地线覆冰舞动的有效手段。
特别是在冬季,应加强对导地线覆冰情况的监测,及时发现并处理覆冰问题。
巡视人员应具备专业的技术知识,能够准确判断导地线的覆冰情况,并采取相应的措施进行处理。
针对导地线覆冰问题,可以采取以下措施进行防治:1.热线风干法:利用高温气体或热风对导地线进行加热,使覆冰融化,并迅速风干。
这种方法具有操作简单、效果显著的特点,但由于使用高温气体会对环境产生一定影响,因此在实际应用中需要注意环保问题。
2.冰网法:在导地线上设置冰网,冰网可通过防冰导线串联进行加热,或者通过自身发热融化冰雪。
冰网法防冰效果稳定,但需要定期维护冰网的状态,并随时检查冰网是否存在故障。
3.预冲法:在开始覆冰的时候,及时切断覆冰环节,以防止冰温度与导线温度相等。
这种方法需要及时的冰珠生成时刻,并且需要有足够的预浸过程来防止短路。
4.人为清冰法:在覆冰严重的地区,可以派遣专业清冰队伍进行清理。
清冰作业时需要注意对导地线和人员的保护,并采取相应的安全措施。
综上所述,输电线路运维防治导地线覆冰舞动方案包括导地线的结构和材料选择、定期巡视和检测、热线风干法、冰网法、预冲法以及人为清冰法等多个方面。
通过合理的选择和应用这些方案,可以有效地防止和控制导地线覆冰舞动问题,保障电网的安全运行。
浅谈输电线路覆冰及防范措施摘要:输电线路覆冰是影响电网安全稳定运行的重要因素。
输电线路覆冰,会导致杆塔荷载过大,导线弧垂变大,脱冰时导地线发生跳跃等现象。
近几年来,大面积覆冰事故在全国各地时有发生,输电线路覆冰导致跳闸及倒塔的事故越来越严重。
本文主要探讨输电线路覆冰原因及其防范措施。
关键词:输电线路覆冰危害防范输电线路覆冰的微气象条件是指某一个大区域内的局部地段,由于地形、位置、坡向、温度和湿度等出现特殊变化,造成局部区域形成有别于大区域的更为严重的覆冰条件。
这种微气象条件覆冰具有范围小、隐蔽性强等特点,使得输电线路设计、运行维护人员难以采取防冰抗冰措施。
1 输电线路覆冰的成因和分类空气中的“过冷却”水滴和湿雪下落过程中碰到温度低于零度的架空线后,会在架空线表面冻结成冰。
覆冰大致可分为雨凇覆冰、混合凇、软雾凇、白霜、雪五种类型。
雨凇覆冰,超冷却的降水碰到温度不高于0 ℃的物体表面时所形成的玻璃状的透明或无光泽的表面粗糙的冰覆盖层,附着能力很强,密度较大,约(0.5 ~0.9)×103kg /m3。
架空线覆冰常常指雨凇冰。
雨凇覆冰是混合凇覆冰的初级阶段。
由于冻雨持续期一般较短,因此,导线覆冰为纯粹的雨凇覆冰的情况相对较少。
混合凇,气温0 ℃以下,风比较猛时,容易形成混合凇。
在混合凇覆冰条件下,水滴冻结比较弱,积冰有时透明,有时不透明,冰在导线上粘合力很强。
导线长期暴露于湿气中,便形成混合凇。
混合凇是一个复合覆冰过程,密度较高,生长速度快,对导线危害特别严重。
软雾凇,是由于山区低层云中含有的过冷水滴,在极低温度与风速较小情况下形成的。
这种积冰呈白色、不透明、晶状结构、密度小,在导线上附着力相当弱。
最初的结冰是单向的,由于导线机械失衡,逐渐围绕导线均匀分布,在此情况下,这种冰对导线一般不构成威胁。
白霜、雪,白霜是空气中湿气与0 ℃以下的物体接触时,湿气往冷物体表面凝合形成的,白霜在导线上的粘结力十分微弱,即使是轻轻地振动,也可以使白霜脱离所粘结导线的表面,与其他类型覆冰相比,白霜基本不对导线构成严重危害。
0引言作为易发生输电线路覆冰的国家之一,冰灾对输电线路的影响已经严重威胁了我国电网的正常运行,同时给我国电网和社会经济造成了巨大的损失。
近几年,全国不断发生大面积的覆冰事故,由于覆冰所导致的输电线路跳闸及杆塔倒塌事故已经越来越严重。
比较典型的大事故就是2008年南方发生的雪灾,严重影响了国民经济的正常发展和人民生活的正常进行,并对社会稳定性构成了较大威胁。
因此,对输电线路覆冰的机理及其防护措施进行研究,有助于促进我国电网建设,提高电网供电可靠性,减小覆冰造成的灾害。
1输电线路覆冰的形成在严冬或初冬季节特别容易形成输电线路的覆冰,其形成过程如下:首先若气温下降到了-3℃以下,当风速达到10m/s 以上时如再遇雨夹雪天气,则将在输电线路上形成雨凇。
此时若再遇到气温升高的现象,则雨凇将发生融化的现象,即形成了一层覆冰。
若此时的天气开始转晴,则覆冰就停止生长并可能出现融化的现象。
当天气突然变冷时再在黏结度较高的雨凇表面快速增长,形成第二层的覆冰。
这个过程如此反复,即会在输电线路上形成较厚的冰层。
天气变暖时的短暂融化加强了冰的密度,而气温骤然下降则会使覆冰快速生长。
同时风速和风向也对覆冰的形成起着重要的作用。
根据我国风向的实际情况,东西走向的覆冰比南北走向的覆冰严重的多,因此,当输电线路穿过重灾区时应尽量避免东西走向。
同时输电线路悬挂的高度对覆冰也有重要影响,一般情况下,悬挂的越高其覆冰现象越严重,输电线路越粗其覆冰也越严重。
2输电线路覆冰的危害2.1线路超重过载事故若输电线路的覆冰达到一定程度,积累了足够的体积和重量,则此时其弧垂将发生明显增大,导致输电线路对地间距减小,从而引发闪络事故的发生。
与此同时,在强风的作用下,两根带冰的输电线路很可能发生碰撞,这就增加了短路故障及断线故障发生的概率,造成短路跳闸或者断线事故的发生,严重威胁输电线路的正常运行。
如果覆冰的重量足够大,则可能超出金具、杆塔及绝缘子的承受范围,导致杆塔发生下沉、爆裂甚至折断倒塌的现象。
输电线路覆冰灾害的防
护
集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-
输电线路覆冰灾害的防护摘要:自2008年1月12日开始,贵州全省各地区遭受了五十年一遇的冰冻灾害,给输电线路带来了巨大损害,文章通过介绍覆冰形成、线路冰害的类型,着重分析绝缘子覆冰特性及对运行中的线路提出预防措施。
关键词:覆冰;冰害;冰害防护
在我国,导线覆冰主要发生在西南、西北及华中地区。
贵州省按地区冬季平均气温计算,大都在0℃以上,受北方南下冷空气及西南暖湿气流共同影响下,自2008年1月12日开始,全省各地区持续低温多雨、雨夹雪天气,遭遇了50多年来最为严重的一次大范围、长时间的冰冻灾害。
贵州电网被分割瓦解成7块,贵州电网累计受到冰害破坏的电力线路达5029条,占贵州全省线路总数的77%;全省50多个市县被迫停电;停运的变电站649所,占贵州全部变电站的69%;倒杆线路有416条。
由此可见,由覆冰、舞动引起的输电线路倒杆(塔)、断线及跳闸事故,严重威胁到电网的安全稳定运行及供电可靠性。
1覆冰形成原因和过程
导线覆冰首先是由气象条件决定的,是受温度、湿度、冷暖空气对流、环流以及风等因素决定的综合物理现象。
云中或雾中的水滴在0℃或更低时与输电线路导线表面碰撞并冻结时,覆冰现象就产生了。
贵州省地处云贵高原,海拔在1500m以上,境内沟壑纵横,地势高低不平,空气潮湿,受西伯利亚寒流和太平洋暖湿气流的共同影响,2008年初贵州
大面积的遭受了覆冰危害。
导线表面发生覆冰现象必须满足以下几个条件:大气中必须有足够的过冷却水滴,过冷却水滴与导线接触,过冷却水滴立即冻结在导线表面。
覆冰按形成条件及性质可分为A、B、C、D、E五种类型。
A型称雨凇覆冰,是在冻雨期发生于低海拔地区的覆冰,持续时间一般较短,环境温度接近冰点,风相当大,积冰透明,在导线上的粘合力很强,冰的密度很高,雨凇覆冰是混合凇覆冰的初级阶段,由于冻雨持续期一般较短,因此,导线覆冰为纯粹的雨凇覆冰的情况相对较少。
B型称混合凇,当温度在冰点以下,风比较猛时,则形成混合凇。
在混合凇覆冰条件下,水滴冻结比较弱,积冰有时透明,有时不透明,冰在导线上粘合力很强。
导线长期暴露于湿气中,便形成混合凇。
混合凇是一个复合覆冰过程,密度较高,生长速度快,对导线危害特别严重。
C型称软雾凇,是由于山区低层云中含有的过冷水滴,在极低温度与风速较小情况下形成的。
这种积冰呈白色、不透明、晶状结构、密度小,在导线上附着力相当弱。
最初的结冰是单向的,由于导线机械失衡,逐渐围绕导线均匀分布,在此情况下,这种冰对导线一般不构成威胁。
D型和E型分别为白霜、雪,白霜是空气中湿气与0℃以下的物体接触时,湿气往冷物体表面凝合形成的,白霜在导线上的粘结力十分微弱,即使是轻轻地振动,也可以使白霜脱离所粘结导线的表面,与其他类型覆冰相比,白霜基本不对导线构成严重危害。
空气中的干雪或冰晶很难粘结到导线表面。
只有当空气中的雪为“湿雪”时,导线才会出现积雪现象。
当有强风时,雪片易被风吹落,导线覆雪不可能发生,故导线覆雪受风速制约,因此平原地区或低地势无风地区,导线覆雪现象较山区常见。
导线覆冰的基本物理过程是严冬或初春季节,当气温下降至-5~0℃,风速为3~15m/s时,如遇大雾或毛毛雨,首先将在导线上形成雨凇,这时如果气温再升高,雨凇则开始融化,如天气继续转晴,则覆冰过程就停止;这时如果天气骤然变冷,出现雨雪天气,冻雨和雪则在粘结强度较高的雨凇面上迅速增长,形成较厚的冰层;如温度继续下降至-15~-8℃,原有冰层外则积覆雾凇。
在这样一个过程中,出现多次晴~冷变化天气,短暂的融化加强了冰的密度,如此往复发展将形成雾凇和雨凇交替重叠的混合冻结物,即混合凇。