机器人操作臂动力学。
- 格式:ppt
- 大小:3.59 MB
- 文档页数:71
双连杆机械臂的动力学建模摘要:双连杆机械臂是机器人领域中最常见的机械臂之一,它由多个连接杆组成,具有较大的自由度和灵活性。
在机器人控制中,正确的动力学建模是实现精准控制的基础。
本文针对双连杆机械臂的动力学建模进行了研究和探讨,旨在为机器人控制领域的研究和实践提供指导和参考。
关键词:机械臂;双连杆;动力学建模;运动学分析;控制策略正文:1. 引言双连杆机械臂是一种常见的机械臂,其结构简单,功能强大。
在工业生产、医疗、服务机器人等领域中得到了广泛应用。
正确的动力学建模是实现机械臂精准控制的基础。
本文将通过运动学分析,建立双连杆机械臂的动力学模型,并探讨一些基本的控制策略。
2. 双连杆机械臂的运动学分析在运动学分析中,我们需要定义机械臂各关节角度的坐标系,即本体坐标系与工具坐标系。
本体坐标系是以机械臂基座为原点建立的,每个杆体的坐标系通过其所在关节的转动自由度与上一个杆体的坐标系相连,工具坐标系则是机械臂末端执行器的坐标系。
在建立好坐标系后,可以通过旋转矩阵和变换矩阵计算出各坐标系相对位置和角度,从而得出机械臂各关节的运动学参数。
3. 双连杆机械臂的动力学建模机械臂的动力学模型是描述机器人运动规律的数学模型,可以帮助我们预测机械臂在一定条件下的运动情况。
在动力学建模中,我们需要确定机械臂的运动学参数与动力学参数。
运动学参数是机械臂各关节的坐标系之间的相对位置和角度,动力学参数则是各关节的质量、惯性和阻力等物理参数。
4. 双连杆机械臂的控制策略机械臂的控制策略主要包括开环控制和闭环控制。
开环控制是指根据机械臂的运动规划,提前设置机械臂的控制器参数以实现所需运动。
闭环控制则是在机械臂运动的过程中,通过传感器反馈实时位置、速度和加速度等信息,及时调整机械臂的运动轨迹和动力输出。
常用的控制算法包括PID控制、模糊控制和神经网络控制等。
结论:本文针对双连杆机械臂的动力学建模进行了研究和探讨,并介绍了机械臂运动学分析和一些基本控制策略。
机械系统动力学作业---平面二自由度机械臂运动学分析平面二自由度机械臂动力学分析[摘要]机器臂是一个非线性的复杂动力学系统。
动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。
本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。
经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。
[关键字]平面二自由度机械臂动力学拉格朗日方程一、介绍机器人是一个非线性的复杂动力学系统。
动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。
机器人动力学问题有两类:■ ■■(1)给出已知的轨迹点上的■J- ■■■■■■,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q。
这对实现机器人动态控制是相当有用的。
(2)已知关节驱动力矩,求机器人系统相应的各瞬时的运动。
也就是说,给出关节力矩■ ■■向量T求机器人所产生的运动風&及&。
这对模拟机器人的运动是非常有用的。
二、二自由度机器臂动力学方程的推导过程机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。
机器人动力学方程的具体推导过程如下:(1)选取坐标系,选定完全而且独立的广义关节变量O r , r=l, 2,…,n。
(2)选定相应关节上的广义力F r :当O r是位移变量时,F r为力;当O r是角度变量时, F r为力矩。
(3)求出机器人各构件的动能和势能,构造拉格朗日函数。
(4)代入拉格朗日方程求得机器人系统的动力学方程。
下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。
1平更二自由度机械臂1、分别求出两杆的动能和势能设齐、B 2是广义坐标,Q i、Q2是广义力。
两个杆的动能和势能分别为:式中,’是杆1质心C i.,\ )的速度向量,\是杆2质心C i ( ' , J )的速度向量。
第!!卷!第"期#$%&!!!’$&"!!!!!平!原!大!学!学!报()*+’,-)./0’12*,’*’0#3+4052!!!!!667年8月!(9:;&!667工业机器人的力学分析姬清华!平原大学机电工程学院"河南新乡<7"66"#!!摘!要!随着机电一体化技术的迅速发展!工业机器人在工业生产中的地位越来越重要!本文从工业机器人的力学分析入手!分别作了静力学和动力学的分析研究!为工业机器人手部及运动各构件提供了力学的分析原理及方法"关键词!工业机器人#静力学#动力学#力矩中图分类号!5/!<!W !!!文献标识码!,!!文章编号!=66>?"@<<!!667#6"?6==8?6!!!收稿日期!!667?6"?6>作者简介!姬清华$=@A 8%&!男!河南新乡人!主要从事机电一体化及数控加工方面的研究"!!随着工业机器人技术的发展"工业机器人的力学分析变得至关重要$工业机器人力学分析主要包括静力学分析和动力学分析"它们是工业机器人操作机设计%控制器设计和动态仿真的基础$P 静力学分析静力学分析是研究操作机在静态工作条件下"手臂的受力情况$P &P 静力平衡方程如图=所示"为开式链手臂中单个杆件的受力情况$杆件)通过关节)和)N =分别与杆件)U =和)N =相连接"以)关节的回转轴线和)N =关节回转轴线为2)U =和2)坐标分别建立两个坐标系)U =和)$令5)U =")表示)U =杆作用在杆上的力"5)")N =表示)杆作用在)N =杆上的力"则U 5)")N =表示)N =杆作用在)杆上的力"*)为)杆的重心"重力<1作用在*)上"于是杆件)的力平衡方程为&5)U =")N 5)N =")N <)1K 6)K ="!"’"#若以5)")N =代替5)N =")"则有&5)U =")U 5)")N=N <)1K 6!=#!!又令;)U =为)U =杆作用于)杆上的力矩"U ;)")N =为)N =杆作用于)杆的力矩"则力矩平衡方程为;)U =")U ;)")N=U !&)")N =N &)"*)#V 5)U =")N !U &)"*)#V U 5)")N =K 6!!)K ="!"’"!!#式中"第三项为5)U =")对重心取矩"第四项为U 5)")N =对重心取矩$若工业机器人操作机由#个杆件构成"则由式图=!杆件的受力分析!=#和式!!#可列出!#个方程"两式共涉及力和力矩!#g !个"因此"一般需结出两个初始条件方程才能有解$在工业机器人作业过程中"最直接受影响的是操作机手部与环境之间的作用力和力矩"故通常假设这两个量为已知"以使方程有解$从施加在操作机手部的力和力矩开始"依次从末杆件到机座求出所施加的力和力矩"将式!=#和式!!#合并并变成从前杆到后杆的递推公式"即5)U =")K 5)")N=U <)1;)U =")K ;)")N =N !&)U =")N &)"*)#V 5)U =")U !&)"*)V 5)")N =#!!)K ="!"’"#P &N 关节力和关节力矩为了使操作机保持静力平衡"需要确定驱动器对相应杆件的输入力和力短与其所引起的操作机(8==( 万方数据手部力和力矩之间的关系!令*)为驱动元件)的第)个驱动器的驱动力或驱动力矩"并假设关节处无摩擦"则有当关节是移动副时"如图!所示"*)应与该关节的作用力5)U =")在2)U =上的分量平衡"即*)K -O)U =5)U=")式中-)U =为)U =关节轴的单位向量!上式表明驱动器的输入力只与5)U =")在2)U =轴上的分量平衡"其他方向的分量由约束力平衡"约束力不作功!当关节是转动副时"*)表示驱动力距"它与作用力矩;)U =")在2)U =轴上的分量相平衡"即*)K -O)U =;)U=")图!!移动关节上的关节力N 动力学分析动力学分析是研究操作机各主动关节驱动力与手臂运动的关系"从而得出工业机器人动力学方程!目前已提出了多种动力学分析方法"这里仅就用牛顿欧拉方程建立工业机器人动力学方程作简要介绍!图"!杆件动力学方程的建立!!动力学方程可以用两个方程表达#一个用以描述质心的移动"另一个描述质心的转动!前者称为牛顿运动方程"后者称为欧拉运动方程!取工业机器人手臂的单个杆件作为自由体"其受力分析如图"所示!图中(*)为杆件)相对于固定坐标系的质心速度"+)为杆件)的转动角速度!因为固定坐标系是惯性参考系"所以将杆件)的惯性力加入到静力学方程式$=%中"于是有牛顿运动方程#5)U =")U 5)")N=N <)1U <)W (*)K 6)K ="!"&"#$"%作用在杆件)上的惯性矩是该杆件的瞬时角动量对时间的变化率!令+)为角速度向量"B )为杆件)质心处的惯量"于是角动量为B )+)!因为惯量随杆件方位的变化而变化"所以角动量对时间的导数不仅包含B )W +)"而且包含因B )的变化而引起的变化+)V B )+)"即陀螺力矩"上述两项加到静力学力矩平衡式$!%中"得;)U =")U ;)")N =N &)"*)V 5)")N =U &)U ="*)V 5)U =")U B W +)U +)V B )+)K 6)K ="!"&"#$<%公式$"%和$<%是单个杆件的动力学特性关系式"若将工业机器人的:个杆件均列出相应的上述两个方程"即得到工业机器人完整的动力学方程组的基本形式#牛顿’欧拉方程!!!参考文献!!="徐元昌#陶学恒&工业机器人!["&北京$中国轻工业出版社#=@@@&!!"陈小川#刘晓冰&虚拟制造体系及其关键技术!("&计算机辅助设计与制造#=@@@#%=6&&!""盛晓敏#邓朝晖&先进制造技术!["&北京$机械工业出版社#!66<&!<"邱士安&机电一体化技术!["&西安$西安电子科技出版社#!66<&【责任编校!李东风】@"@"’-.()(45B %*$’")*(!"U 474#_K +)"2?$,’$C "*0$#)*$+$#DX +"*8&)*$+X #1)""&)#1H "I $&8<"#8’5%)#1.3$#6#)("&7)8."9)#:)$#1"!"#$#<7"66"40)#$%@7(#1’*##_C G BG B ;F E J C II ;T ;%$J M ;:G$O [;H B E G F E :C H D "G B ;F $K $GE J J %C ;IC :C :I 9D G F L BE T ;K ;H $M ;M $F ;E :IM $F ;C M J $FG E :G &5B C D E F G CH %;E :E %L c ;D O F $M M ;H B E :C H D "I C D H 9D D ;D O F $MG B ;D G E G C H D E :II L :E M C H D D ;J E F E G ;%L E :I$O O ;F D G B ;G B ;$F C ;D $O E :E %L c C :Q E F M M $T ;M ;:G E :I H $M J$:;:G $O F $K $G D &A %.:41/(#F $K $G (D G E G C H D (I L :E M C H D (M $T ;M ;:G )A ==) 万方数据工业机器人的力学分析作者:姬清华, JI Qing-hua作者单位:平原大学,机电工程学院,河南,新乡,453003刊名:平原大学学报英文刊名:JOURNAL OF PINGYUAN UNIVERSITY年,卷(期):2005,22(3)被引用次数:2次1.邱士安机电一体化技术 20042.盛晓敏;邓朝晖先进制造技术 20043.陈小川;刘晓冰虚拟制造体系及其关键技术 1999(10)4.徐元昌;陶学恒工业机器人 19991.陈登瑞六自由度机械手本体结构关键技术研究[学位论文]硕士 20062.张烈霞工业机器人运动及仿真研究[学位论文]硕士 2006本文链接:/Periodical_pydxxb200503036.aspx。
《工程机械臂系统结构动力学及特性研究》篇一摘要随着科技的飞速发展,工程机械臂作为一种广泛应用于工业制造、航空航天等领域的机器人设备,其重要性逐渐显现。
本篇文章以工程机械臂系统为研究对象,主要研究其结构动力学及特性。
本文将介绍工程机械臂的构造和原理,以及动力学特性的分析和应用。
通过理论分析、实验研究、数据统计等多种方法,力求对工程机械臂的结构动力学及特性进行深入的研究和探讨。
一、引言工程机械臂作为机器人领域中的一种重要设备,在工程实践中起着重要的作用。
了解其结构动力学和特性对优化设计和使用至关重要。
因此,对工程机械臂的结构、动态特性及其控制系统的研究成为许多研究者和工程师关注的重点。
二、工程机械臂的构造与原理1. 结构构造:工程机械臂主要包括上肢、转盘、摆臂等部件,其中包含液压缸、驱动电机等重要部分。
每个部件之间采用特殊的关节连接,通过精确的机械运动来实现操作功能。
2. 工作原理:工程机械臂利用电控系统、液压系统等实现对目标的精准抓取和移动,从而实现作业目的。
其中,控制系统的精度直接决定了机械臂的工作效率和准确度。
三、结构动力学分析1. 动力学模型:通过建立工程机械臂的动力学模型,可以分析其运动过程中的力学特性和动态响应。
这包括对机械臂的刚度、阻尼、惯性等特性的研究。
2. 动态响应分析:通过分析机械臂在各种工况下的动态响应,可以了解其在实际应用中的性能表现和潜在问题。
这有助于优化设计,提高机械臂的稳定性和可靠性。
四、特性研究1. 运动特性:工程机械臂具有高精度、高速度、高效率的运动特性,能够适应各种复杂的作业环境。
2. 负载能力:机械臂的负载能力是衡量其性能的重要指标之一。
通过对机械臂的结构和材料进行优化设计,可以提高其负载能力,满足不同作业需求。
3. 控制系统特性:控制系统的性能直接影响机械臂的工作效率和准确度。
研究控制系统的特点,如响应速度、控制精度等,有助于优化机械臂的性能。
五、实验研究与数据分析为了验证上述理论分析的准确性,我们进行了一系列实验研究并收集了相关数据。
教案首页课程名称农业机器人任课教师李玉柱第3章机器人运动学和动力学计划学时 3教学目的和要求:1.概述,齐次坐标与动系位姿矩阵,了解平移和旋转的齐次变换;2.机器人的运动学方程的建立与求解*;3.机器人的动力学*重点:1.机器人操作机运动学方程的建立及求解;2.工业机器人运动学方程3.机器人动力学难点:1. 机器人动力学方程及雅可比矩阵基本原理思考题:1.简述齐次坐标与动系位姿矩阵基本原理。
2.连杆参数及连杆坐标系如何建立?3.机器人动力学方程及雅可比矩阵基本原理是什么?第3章机器人运动学和动力学教学主要内容:3.2 齐次坐标与动系位姿矩阵3.3 齐次变换3.4 机器操作机运动学方程的建立与求解3.5 机器人运动学方程3.6 机器人动力学本章将主要讨论机器人运动学和动力学基本问题。
先后引入了齐次坐标与动系位姿矩阵、齐次变换,通过对机器人的位姿分析,介绍了机器人运动学方程;在此基础上有对机器人运动学方程进行了较为深入的探讨。
3.1 概述机器人,尤其是关节型机器人最有代表性。
关节型机器人实质上是由一系列关节连接而成的空间连杆开式链机构,要研究关节型机器人,必须对运动学和动力学知识有一个基本的了解。
分析机器人连杆的位置和姿态与关节角之间的关系,理论称为运动学,而研究机器人运动和受力之间的关系的理论则是动力学。
3.2 齐次坐标与动系位姿矩阵3.2.1 点的位置描述在关节型机器人的位姿控制中,首先要精确描述各连杆的位置。
为此,先定义一个固定的坐标系,其原点为机器人处于初始状态的正下方地面上的那个点,如图3-1(a)所示。
记该坐标系为世界坐标系。
在选定的直角坐标系{A}中,空间任一点P的位置可以用3×1的位置向量A P表示,其左上标表示选定的坐标系{A},此时有A P=XYZ P P P ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦式中:P X、P Y、P Z—点P在坐标系{A}中的三个位置坐标分量,如图3-1(b)。
3.2.2 齐次坐标将一个n维空间的点用n+1维坐标表示,则该n+1维坐标即为n维坐标的齐次坐标....。
空间二连杆机器人的动力学建模及其动态过程仿真一引言1.机器人机械臂的运动学与动力学分析方法机器人的运动学和动力学既包含有一般机械的运动学、动力学内容,又反映了机器人的独特内容。
工业机器人的运动学主要讨论了运动学的正问题和逆问题。
假设一个构型已知的机器人,即它的所有连杆长度和关节角度q1 t q2 t q3 t … qn t ,…都是已知的,其中n 为自由度数,那么计算机器人末端执行器相对于参考坐标系的位姿就称为运动学的正问题分析。
换言之,如果已知机器人所有的关节变量,用正运动学方程就能计算任一瞬间机器人的位姿。
然而,如果希望机器人的末端执行器到达一个期望的位姿,就必须要知道机器人q1 q2 qn T操作臂每一个连杆的几何参数和所有关节的角矢量q 利用操作臂连杆几何参数和末端执行器期望的位姿来求解关节角矢量是运动学逆问题。
运动学正问题可以利用齐次变换法来求解。
设i 杆坐标系相对于基座坐标系的位姿齐次变换矩阵是bTi ,则T A1 A2 A3 An 1 An b i 1 1式中Ai 为i 杆坐标系相对于i 1 杆坐标系的坐标变换矩阵。
相对于正运动学方程,机器人逆运动学方程显得更为重要。
由于按给定末端执行器的位姿求解关节变量是在关节空间中进行非线性方程的求解,其中涉及多值性和奇异现象,因此,这一逆问题成为机器人运动学中的一个重要内容。
机器人的控制器将用这些方程来计算关节值,并以此来运行机器人到达期望的位姿。
机器人逆问题可有多种解法,如逆变换法、旋量代数法、数值迭代法、几何法等,其中Jaeobian 矩阵的速算法占有重要的地位。
机器人作为多自由度可编程的工作系统,在运动学中研究的内容还有末端操作器运动规划、工作空间确定、位姿精度分析与补偿等。
目前,对于一般机器人运动学的逆问题大部分都得到了解决,但是,对于有任意结构和有冗余自由度机器人的运动学逆问题,研究得还不够充分。
机器人操作臂的动力学建模主要是研究各主动关节的驱动力与操作臂运动的关系。
机械臂是一种由一系列连接在一起的关节构成的装置,它可以模拟人类的手臂动作,用于完成一系列的机械操作。
机械臂广泛应用于工业生产线、医疗设备、航空航天领域等各个领域。
机械臂的运动控制和动力学是机械臂技术的核心,下面我们将对机械臂的物理原理、运动学和动力学等知识点进行总结。
一、机械臂的基本结构机械臂通常由基座、臂部、腕部和末端执行器组成。
基座是机械臂的支撑结构,臂部和腕部是机械臂的关节结构,末端执行器是机械臂的最终执行器,可以根据需要选择各种不同的末端执行器,如夹爪、吸盘等。
机械臂的基本结构决定了它的灵活性和推拉力。
二、机械臂的运动原理机械臂的运动原理是基于关节和运动控制系统的协同作用,通过关节的旋转、伸缩和扭转等运动,控制机械臂的末端执行器完成各种复杂的动作。
在控制系统方面,通常采用控制算法和传感器等技术来实现机械臂的精准运动控制。
三、机械臂的运动学机械臂的运动学研究的是机械臂从初始位置到最终位置的轨迹规划和运动控制。
在运动学分析中,通常使用坐标系、转换矩阵等数学工具,来描述机械臂各个关节之间的运动关系和姿态。
机械臂的运动学是机械臂运动控制的基础,可以帮助工程师设计出合理的运动轨迹和控制算法。
四、机械臂的动力学机械臂的动力学研究的是机械臂在运动过程中的受力和力学特性。
在动力学分析中,需要考虑机械臂的质量、惯性、摩擦力等物理特性,以及各个关节和执行器的动力输出。
动力学分析可以帮助工程师优化机械臂的结构和参数设置,提高机械臂的运动性能和工作效率。
五、机械臂的控制系统机械臂的控制系统是机械臂技术的核心,它包括传感器、执行器、控制算法和人机交互界面等组成部分。
传感器可以实时监测机械臂的位置、速度和力度等物理量,控制算法可以根据传感器反馈的信息来实现机械臂的精准运动控制,人机交互界面则是用户与机械臂之间的交互界面,可以通过界面来实现机械臂的远程操作和监控。
六、机械臂的应用领域机械臂可以广泛应用于各个领域,如工业生产线上的装配和搬运、医疗设备中的手术辅助和病人护理、航空航天领域中的航天器维护和舱内操作等。
工业机器人运动学与动力学研究随着科技的不断进步,机器人已经不再是科幻电影中的特效,而是成为现实生活中不可或缺的一部分。
机器人技术在各个领域的应用也越来越广泛,其中最重要的之一便是工业机器人。
工业机器人的出现,不仅可以减少人力成本,提高生产效率,同时也能增加生产安全性。
但是,工业机器人的研究要涉及到运动学和动力学两个方面。
一、工业机器人运动学工业机器人的运动学研究主要是研究它的运动轨迹、运动状态和运动控制等方面。
工业机器人的运动学研究主要涉及以下三个方面:1. 运动规划运动规划是工业机器人控制系统设计和开发中重要的一步,其目的是规划机器人端执行器的运动控制路径。
运动规划分为离线规划和在线规划两种类型,离线规划是事先规划好机器人要执行的动作,然后将规划好的路线保存在计算机中,机器人执行时直接调用保存的路线;而在线规划则是在机器人运动过程中不断地对路线进行优化和改进,以达到更加精准的控制。
2. 运动学分析机器人的运动学分析主要研究的是机器人的动作轨迹和基于轨迹控制。
通过动作模型的建立和动作轨迹的分析,可以更好地实现机器人的运动控制,提高运动精度和稳定性。
3. 运动仿真运动仿真是利用计算机对机器人运动学特性进行模拟和分析的过程。
通过建立合理的仿真模型和仿真环境,可以更加有效地进行机器人运动的规划和控制设计,提高生产效率和效益。
二、工业机器人动力学另外一个重要的机器人研究方向则是动力学,也就是研究机器人的力学与动力学性质,以便更好地掌握机器人的运动规律和性能。
工业机器人动力学研究的过程主要包含以下三个方面:1. 机器人控制机器人控制是通过对机器人运动规律的研究和掌握,确定机器人运动状态的过程。
机器人控制的目的就是控制机器人输出的力或扭矩等物理变量,以达到精准控制机器人运动的目的。
2. 动力学分析机器人的动力学分析是研究机器人手臂运动过程中力和运动状态之间关系的过程。
通过建立机器人动力学模型,可以更准确地预测运动状态和力学响应,并对机器人进行优化设计和仿真计算。