基于Ansys Workbench雅阁ISG温度场仿真分析
- 格式:pdf
- 大小:377.16 KB
- 文档页数:8
《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言焊接作为一种重要的工艺方法,广泛应用于各种工程结构中。
然而,焊接过程中产生的温度场和应力分布对焊接结构的质量、性能和使用寿命有着重要的影响。
因此,对焊接温度场和应力的研究具有非常重要的意义。
本文将通过ANSYS软件进行焊接温度场和应力的数值模拟研究,以期为焊接工艺的优化提供理论依据。
二、焊接温度场的数值模拟1. 建模与材料属性设定在ANSYS中建立焊接结构的几何模型,设定材料的热学性能参数,如热导率、比热容等。
同时,设定焊接过程中的热源模型,如高斯热源模型等。
2. 网格划分与边界条件设定对模型进行合理的网格划分,以便更好地捕捉温度场的分布情况。
设定边界条件,包括环境温度、对流换热系数等。
3. 求解与结果分析通过ANSYS的瞬态热分析模块进行求解,得到焊接过程中的温度场分布情况。
分析温度场的变化规律,研究焊接过程中的热循环行为。
三、焊接应力的数值模拟1. 建模与材料属性设定在ANSYS中建立与温度场分析相同的几何模型,设定材料的力学性能参数,如弹性模量、泊松比等。
同时,导入温度场分析的结果作为应力分析的初始条件。
2. 网格划分与约束条件设定对应力分析模型进行网格划分,并设定约束条件,如固定支座等。
这些约束条件将影响应力的分布情况。
3. 求解与结果分析通过ANSYS的结构分析模块进行求解,得到焊接过程中的应力分布情况。
分析应力的变化规律,研究焊接过程中的残余应力分布情况。
同时,结合温度场分析结果,研究温度与应力之间的关系。
四、结果与讨论1. 温度场分析结果通过ANSYS的数值模拟,得到了焊接过程中的温度场分布情况。
结果表明,在焊接过程中,焊缝处的温度较高,随着距离焊缝的增大,温度逐渐降低。
同时,随着时间的变化,温度场呈现出明显的热循环行为。
2. 应力分析结果在应力分析中,我们发现焊接过程中会产生较大的残余应力。
这些残余应力主要分布在焊缝及其附近区域,并呈现出一定的规律性。
《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着制造业和机械工程的不断发展,焊接作为连接各种金属材料的主要方法之一,其过程和结果的研究显得尤为重要。
焊接过程中,由于局部高温和材料相变,会产生复杂的温度场和应力分布。
这些因素对焊接接头的质量、强度和耐久性有着重要影响。
因此,对焊接温度场和应力的数值模拟研究具有重要的理论和实践意义。
本文将基于ANSYS软件,对焊接过程中的温度场和应力进行数值模拟研究。
二、焊接温度场的数值模拟研究1. 模型建立在ANSYS中,我们首先需要建立焊接过程的物理模型。
根据实际焊接条件和材料属性,设定合理的几何尺寸和材料参数。
同时,考虑到焊接过程中的热源分布、热传导和热对流等因素,我们采用适当的热源模型和边界条件。
2. 网格划分与求解在模型建立完成后,我们需要对模型进行网格划分。
网格的精细程度将直接影响模拟结果的准确性。
接着,我们设定求解器,根据热传导方程和边界条件进行求解。
通过求解,我们可以得到焊接过程中的温度场分布。
三、焊接应力的数值模拟研究1. 热弹性-塑性本构关系焊接过程中,由于温度的变化,材料将发生热膨胀和收缩。
这种热膨胀和收缩将导致应力的产生。
在ANSYS中,我们需要设定合理的热弹性-塑性本构关系,以描述材料的热膨胀和收缩行为。
2. 应力求解与分析根据热弹性-塑性本构关系和温度场分布,我们可以求解出焊接过程中的应力分布。
通过对应力结果进行分析,我们可以了解焊接接头的应力分布情况,从而评估焊接接头的质量和强度。
四、结果与讨论1. 温度场分布通过ANSYS模拟,我们可以得到焊接过程中的温度场分布。
温度场分布将直接影响焊接接头的质量和性能。
我们可以观察到,在焊接过程中,局部高温将导致材料发生相变和热膨胀。
同时,热对流和热传导将影响温度场的分布。
2. 应力分布在得到温度场分布的基础上,我们可以进一步求解出焊接过程中的应力分布。
应力分布将直接影响焊接接头的强度和耐久性。
《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着制造业和工业自动化技术的飞速发展,焊接技术已经成为一种关键的加工手段,被广泛应用于机械、船舶、航空和汽车等领域。
焊接过程中的温度场和应力分布直接影响焊接质量和性能。
因此,通过数值模拟研究焊接过程中的温度场和应力分布具有重要意义。
本文利用ANSYS软件对焊接过程进行数值模拟,分析温度场和应力的变化规律,为优化焊接工艺和提高焊接质量提供理论依据。
二、ANSYS在焊接模拟中的应用ANSYS是一款广泛应用于工程领域的有限元分析软件,具有强大的热-结构耦合分析能力。
在焊接模拟中,ANSYS可以通过建立三维模型、设定材料属性、加载边界条件等方式,对焊接过程中的温度场和应力进行数值模拟。
通过ANSYS软件,我们可以更加直观地了解焊接过程中的温度分布和应力变化,为优化焊接工艺提供理论支持。
三、焊接温度场的数值模拟研究(一)模型建立与材料属性设定在ANSYS中建立焊接过程的有限元模型,设定材料属性,包括热导率、比热容、热膨胀系数等。
根据实际焊接工艺,设定加热速度、焊接速度、电流等工艺参数。
(二)温度场模拟与结果分析在设定的边界条件下,模拟焊接过程中的温度场变化。
通过分析温度场的分布规律,可以得出焊接过程中各部位的加热速度、峰值温度等信息。
结合实际工艺参数,可以优化焊接工艺,提高焊接质量和效率。
四、焊接应力的数值模拟研究(一)模型建立与材料属性设定与温度场模拟类似,在ANSYS中建立焊接过程的有限元模型,并设定材料属性。
考虑到焊接过程中的热-结构耦合效应,需要设定材料的热弹塑性本构关系。
(二)应力模拟与结果分析在模拟过程中,考虑热-结构耦合效应,分析焊接过程中的应力分布和变化规律。
通过分析应力场的分布、大小和变化趋势,可以得出焊接过程中各部位的应力状态和变形情况。
结合实际工艺参数和应力分布规律,可以优化焊接工艺,减少焊接过程中的残余应力和变形。
五、结论本文利用ANSYS软件对焊接过程中的温度场和应力进行了数值模拟研究。
基于Ansys Workbench雅阁ISG温度场仿真分析李新华1杨国威1李哲然2(1.湖北工业大学电气与电子工程学院,430068;2.华中科技大学控制科学与工程系,430074)摘要:本文研究基于Ansys Workbench ISG温度场仿真方法,在此基础上使用Ansys Workbench软件对本田Accord ISG不同工况下的温度场进行仿真,并与电枢绕组温升试验结果做比较,同时讨论电机温度对转子磁钢和磁桥结构的影响。
关键词:ISG,Ansys Workbench,温度场仿真,应力分析Accord ISG Temperature Field Simulation Based onAnsys WorkbenchLI Xinhua1,YANG Guowei1,LI Zheran2(1.School of Electrical & Electronic Engineering,Hubei University of Technology,Wuhan430068,China2.Department of control science and Engineering,Huazhong University of Science andTechnology,Wuhan 430074,China)Abstract:In this paper,ISG temperature field simulation method is researched based on Ansys Workbench.On this basis, the temperature field of the Honda Accord ISG different operating conditions are simulated by Ansys Workbench.And it is compared with the armature winding temperature rise test results.The impact of the motor temperature of the rotor magnet and the magnetic bridge structure are also discussed.Keywords:ISG,Ansys Workbench,temperature field simulation,stress analysis1 引言轻度混合动力汽车集成式起动-发电机ISG(ISG: Integrated Starter Generator)功率和转矩密度高、运行工况多变、特别是工作环境温度高、散热条件差,这些都给电机设计带来了新的挑战,仅按有常规的电磁设计是不够的,还需要对其进行温度场的仿真分析与设计。
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一章引言活塞作为发动机最主要的受热零件之一,它的工作情况直接关系到内燃机的工作可靠性和使用耐久性,同时直接影响到内燃机的排放性能,其性能的好坏直接影响整机的性能。
高压气体燃烧产生的高温使活塞顶部乃至整个活塞温度很高,且温度分布很不均匀,导致活塞产生热应力和热变形。
随着内燃机在强化程度和热负荷水平上的大幅度提高,由于特殊工况,而导致的热负荷问题更加突出。
如何正确模拟内燃机的特殊工况,准确计算活塞的温度场是解决这个问题的关键。
如果得到其温度场,便可有目的地进行设计,减小热负荷。
有限元方法的基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
因此,对活塞进行温度场、应力场以及热负荷和机械负荷共同作用的藕合应力场进行有限元分析,了解活塞的热负荷和综合应力分布情况,进而改进活塞,提高其工作可靠性具有重要意义。
本文利用Pro/Engineer软件的实体建模方法,建立了某汽油机活塞的三维实体模型,对其温度场在三维有限元软件ANSYS中进行了模拟分析。
1.1活塞热状态概述活塞是内燃机中处在非常不利的条件下的一个重要零件[1]。
活塞受高温燃气周期行的加热作用。
燃气的最高瞬时温度一般都高达1600 ~ 1800℃,燃气平均温度也高达600 ~ 800℃左右。
随着内燃机的平均有效压力和活塞平均速度的不断提高,就伴随着燃气最高温度和平均温度相应升高。
高温燃气与活塞顶面通过对流和辐射两种方式将热量传给活塞,从而使活塞组的热负荷显著提高。
评定活塞热状态首先是活塞顶的最高温度,一般活塞顶的最高温度高达300 ~ 350℃左右,随着汽缸直径增大则其最高温度更高,再加上大缸径活塞其壁较厚,则内外壁面的温差较大,从而使产生的热应力也较大。
基于ANSYS的温度场仿真分析引言:在工程领域中,温度场分布的仿真分析是一项重要的工作。
温度场分布的准确预测和优化设计对于许多工业过程和产品的设计和改进至关重要。
在这里,我们将介绍一种基于ANSYS软件的温度场仿真分析方法。
一、ANSYS软件简介ANSYS是一种广泛使用的通用有限元分析(FEA)软件。
它提供了强大的功能,可以进行多种物理和工程仿真分析。
其中,温度场分布的仿真分析是ANSYS的一个主要功能之一二、温度场仿真分析的步骤1.几何建模:使用ANSYS的几何模块进行物体的几何建模。
可以通过绘制二维或三维几何形状来定义和创建模型。
2.网格划分:对几何模型进行网格划分,将其划分为小的单元,以便进行离散化计算。
网格划分的质量直接影响到仿真结果的准确性和计算速度。
3.边界条件设置:根据具体的问题,设置物体表面的边界条件。
边界条件包括固定温度、传热系数、对流换热等。
边界条件设置的准确与否对温度场的分布有重要影响。
4.材料属性定义:为物体的各个部分定义材料属性,包括热导率、热容量等。
这些属性是模型中的重要参数,直接影响到温度场的分布。
5.求解和后处理:设置求解算法和参数,开始进行仿真计算。
求解器根据网格和边界条件,通过计算方程的数值解确定温度场的分布。
计算完成后,可以进行后处理,生成温度场分布的图表和报告。
三、温度场仿真分析的应用温度场仿真分析在多个工程领域中得到广泛应用。
以下是几个示例:1.电子设备散热优化:通过温度场仿真分析,可以评估电子设备中的热量分布,优化散热设计,确保电子设备的正常运行和寿命。
2.汽车发动机冷却系统:通过温度场仿真分析,可以预测汽车发动机冷却系统中的温度分布,优化冷却器的大小和位置,提高冷却效果。
3.空调系统设计:通过温度场仿真分析,可以预测房间内的温度分布,优化空调系统的风口布置和参数设置,实现舒适的室内温度。
4.熔炼和混合过程优化:通过温度场仿真分析,可以预测熔炼和混合过程中的温度分布,优化加热和冷却控制,提高生产效率和产品质量。
基于AnsysWorkbench雅阁ISG温度场仿真分析本文基于Ansys Workbench对雅阁ISG的温度场进行了仿真分析。
ISG是内燃机启动器和发电机的组合装置,也称为轴承式起动机(Starter Generator,简称SG),是目前汽车发动机的“绿色”起动技术之一。
首先,我们需要构建ISG的三维模型,并设置ISG工作时的工况条件,包括工作电流、转速等。
然后,我们将模型导入Ansys Workbench中,通过选择热传导法,建立ISG的温度场分析。
在分析过程中,我们可以将ISG的温度场分为静态和动态两种情况进行分析。
其中,静态分析主要用于分析ISG在静止状态下的温度分布情况,而动态分析则可以直观地反映ISG在工作状态下的温度场分布情况。
通过静态分析,我们可以发现ISG在不同位置的温度分布存在一定的差异。
其中,发电机部分温度分布状态相对均匀,而起动机部分温度分布则表现出较强的集中性,这主要是由于起动机部分工作时电磁场的分布差异所导致的。
而通过动态分析,我们可以得知ISG在不同工作状态下的温度分布情况也会有所不同。
例如,在高负载状态下,ISG的温度分布相对均匀而稳定,在低负载状态下则出现温度分布的不均匀性。
最后,我们可以对ISG的改进进行模拟分析,以寻找最优的改进方案。
例如,可以通过对ISG内部的散热结构进行优化设计,以提高ISG的散热效率并减少温度的集中分布。
综上所述,通过Ansys Workbench的仿真分析,我们可以深入研究ISG的温度场分布情况,并寻找最优的改进方案,以提高ISG的效率和稳定性。
此外,在ISG使用过程中,温度对于ISG的运行状态有着重要的影响。
温度过高会导致ISG内部元件的热膨胀而失去原本的机械性能,从而导致ISG的故障或损坏,进一步影响到整个发动机的运行状态。
因此,在ISG的设计过程中,需要考虑机械结构和散热系统的优化,以确保其能够承受各种环境下的温度影响而稳定运行。
基于Ansys Workbench雅阁ISG温度场仿真分析李新华1杨国威1李哲然2(1.湖北工业大学电气与电子工程学院,430068;2.华中科技大学控制科学与工程系,430074)摘要:本文研究基于Ansys Workbench ISG温度场仿真方法,在此基础上使用Ansys Workbench软件对本田Accord ISG不同工况下的温度场进行仿真,并与电枢绕组温升试验结果做比较,同时讨论电机温度对转子磁钢和磁桥结构的影响。
关键词:ISG,Ansys Workbench,温度场仿真,应力分析Accord ISG Temperature Field Simulation Based onAnsys WorkbenchLI Xinhua1,YANG Guowei1,LI Zheran2(1.School of Electrical & Electronic Engineering,Hubei University of Technology,Wuhan430068,China2.Department of control science and Engineering,Huazhong University of Science andTechnology,Wuhan 430074,China)Abstract:In this paper,ISG temperature field simulation method is researched based on Ansys Workbench.On this basis, the temperature field of the Honda Accord ISG different operating conditions are simulated by Ansys Workbench.And it is compared with the armature winding temperature rise test results.The impact of the motor temperature of the rotor magnet and the magnetic bridge structure are also discussed.Keywords:ISG,Ansys Workbench,temperature field simulation,stress analysis1 引言轻度混合动力汽车集成式起动-发电机ISG(ISG: Integrated Starter Generator)功率和转矩密度高、运行工况多变、特别是工作环境温度高、散热条件差,这些都给电机设计带来了新的挑战,仅按有常规的电磁设计是不够的,还需要对其进行温度场的仿真分析与设计。
本田汽车公司的雅阁(Accord)混合动力汽车采用中度混合(mild hybrid),即并联混合动力方案,发动机与电动机同轴,传动结构简单,与普通汽车引擎室差别不大。
据本田厂方数据,Accord混合动力汽车在城市路况下百公里综合油耗仅为8.1升,这对于一台3.0升6缸引擎来说已经相当不易了。
Accord ISG是一款在业界具有广泛影响的电机。
该电机为16极/24槽配合永磁同步电机,采用组合式定子铁心结构,q=0.5分数槽集中绕组,见图1;转子为内置式V 形磁钢(接近一字形),每极有3个磁桥,两极之间有V 形沟,见图2[1]。
目前电机温升计算方法有三种,即简化公式法[2]、等效热路法[3]和温度场法[4-5]。
简化公式方法比较简单,只能计算电机的平均温度,计算结果不太精确;等效热路法计算精度比简化公式法高,但要提高计算精度,需要增加网络节点和热阻数,计算工作量大大增加;温度场法采用现代数值方法来求解热传导方程,将求解区域离散成许多小单元后,在每个单元中建立方程,再对总体方程组进行求解。
温度场法是一种快速和准确的数值计算方法,是现代电机温升计算的主流方法。
本文首先研究基于Ansys Workbench ISG 温度场仿真方法,在此基础上使用Ansys Workbench 软件对本田Accord ISG 不同工况下的温度场进行仿真,并与电枢绕组温升试验结果做比较,同时讨论电机温升对转子磁钢和磁桥结构的影响。
2 温度场仿真方法电机内部存在损耗导致电机发热,使其温升增高。
电机内部损耗的组成比较复杂,但主要是铜耗和铁耗。
本文研究铁耗和铜耗所引起的电机发热。
铜耗可按路的方法计算,而铁耗必须用有限元方法来计算。
电机铁耗由定子铁耗和转子铁耗两部分构成。
对于同步运行ISG 电机,由于转子铁耗较小,从简化ISG 温度场仿真的角度出发,可以认为定子铁心内各处铁耗密度相等,即视定子铁心内为均匀磁场,且只考虑定子铁心内的铁耗。
然而由于电机定子铁心各处磁密并不相同,定子铁心各处的铁耗密度也会不一样;另一方面,谐波磁场也会在转子铁心中产生一定铁耗。
如果均值铁耗密度代入进行电机温度场仿真会有一定误差。
为了考虑上述问题,可以采用Ansoft 二维有限元与Ansys Workbench 联合仿真方法分析电机中的温度场,基本步骤如下:第一步:计算电机给定工况下的内热源,铁耗通过二维有限元动态仿真计算,即根据已知数据建立二维有限元铁耗模型并进行给定工况下ISG 的铁耗仿真;图1 Accord ISG 组合定子铁心图2 Accord ISG 转子第二步:建立ISG 三维温度场有限元模型,将该模型和第一步铁耗仿真结果导入Ansys Workbench 软件;第三步:给定边界条件,在Workbench 环境下进行三维有限元温度场仿真。
根据文献[6-7 ]提供的数据建立Accord ISG 的1/8二维有限元铁耗模型(见图3)并仿真;应用Solidworks 软件建立ISG 三维温度场模型(见图4),并将该模型和第一步给定工况下ISG 铁耗仿真结果导入Ansys Workbench 软件中,图5为最高转速工况时导入后的铁耗分布。
图6(a )为该工况下铁耗不均匀分布时定子温度场的仿真结果。
如果视铁耗为均匀分布,可将内热源计算结果直接施加于ISG 三维温度场模型并仿真,仿真结果见图6(b )。
1从图6可以看出,铁耗均匀分布时,定子最高温度出现在定子齿中心,达195°C ,且每个齿的温度分布相同,但这只是一种近似算法。
铁耗不均均匀分布时,定子最高温度出现在定子齿边缘,达197.7°C ,且每个齿的温度分布并不相同,显然,铁耗不均均匀分布时温度磁场的仿真结果更接近于实际情况,但数据导入比较费时。
以上两种方法温度场最高温度计算结果比较接近,定子最高温度误差只有1.4 %。
图3 1/8铁耗计算模型图6 Accord ISG 最高转速工况时定子温度场的仿真结果(a )铁耗不均匀分布(b)铁耗均匀分布图4 三维温度场计算模型图5最高转速工况时的铁耗分布3 温度场仿真结果及分析按前面所述方法对Accord ISG 不同工况下的温度场进行仿真分析。
仿真时ISG 的环境温 度设定为70° C ,ISG 模型与空气对流换热系数取5×10-6 W/mm 2﹒° C 。
表1给出了Accord ISG 不同工况下铜耗的计算结果。
表1 ISG 不同工况下铜耗的计算结果将不同工况时的铁耗仿真结果直接导入Ansys Workbench 软件,然后使用Ansys Workbench 对Accord ISG 进行温度场仿真。
考虑到最大功率为短时工作制,这里采用暂态温度场仿真,仿真时间取100秒,其它工况采用稳态温度场仿真,仿真时间取一个小时。
额定工作点、最大功率工作点和最高转速工作点三种工况下ISG 温度场仿真结果如图7所示,表2给出了电机内各部件的最高温度及所在的位置。
表2 ISG 内各部件的最高温度及所在的位置图7 Accord ISG 不同工况下温度场仿真结果 (a )额定工作点 (b )最大功率(c )最高转速仿真结果表明,对于额定工况,电枢绕组端部温度最高,定子铁心(齿部)次之,转子磁钢处最低;对于最高转速工况,定子铁心(齿部)温度最高,电枢绕组(槽内导体)次之,转子磁钢处最低;最大功率工况由于工作时间短,电机内各部件的温度都较低。
由于铁耗急剧增加,三种工况中最高转速工况电机内各部件的温度最高,特别是磁钢温度接近200°C ,应引起高度关注。
文献[1]公布了Accord ISG 电枢绕组的温升试验结果,见图8。
当负载转矩为70 Nm 时,绕组(端部)最高温度由起始的160°C 直线上升;持续一段时间后负载转矩下降至65 Nm 左右,此时温度停止上升,维持在160°C 左右;再经过一段时间后负载转矩升至75 Nm 左右,绕组端部温度再次上升,最后稳定在200°C 左右。
为了验证本文温度场仿真方法的正确性,对上述工况Accord ISG 进行了温度场仿真。
绕组端部最高温度仿真结果见图9,仿真时没有考虑负载转矩的波动。
比较两图可知,绕组端部最高温度曲线略低于试验曲线,但二条曲线基本吻合。
由于仿真时只考虑了铁耗和铜耗,而没有计及其它损耗对温度的影响,使得绕组端部最高温度曲线略低于试验曲线。
4 温度对转子的影响温度上升对ISG 的性能以及结构安全性等都会带来一系列影响,下面重点讨论对转子稀土磁钢和磁桥结构安全性的影响。
4.1 温度对磁钢的影响众所周知,稀土磁钢是一种耐温能力较差的永磁材料。
温升的较大上升,不仅导致稀土磁钢磁性能的下降,还可能会造成磁钢的不可逆退磁。
图10、11分别为Accord ISG 额定和最高转速两个工况下转子磁钢的温度场仿真结果。
绕组端部温度(°C)时间(分钟)转矩(N m )绕组温度(°C ) 图8 给定负载下ISG 电枢绕组最高温度试验曲线 图9 给定负载下ISG 电枢绕组最高温度仿真曲线从上图可以看出,磁钢高温区始终出现在轴向端部,最高温度点在共顶角,因此必须加强对磁钢端面的散热;另一方面,额定工况下磁钢最高温度为146.7°C ,如选用耐温150°C 的稀土磁钢尚可安全运行,而最高转速工况磁钢最高温度达194.2°C ,耐温150°C 的稀土磁钢则有失磁风险。
图12给出了Accord ISG 最高转速工况下磁钢最高温度与工作时间关系的温度场仿真曲线。
曲线表明,最高转速工况下ISG 工作时间小于28分钟,磁钢最高温度不超过150°C ,选用耐温150°C 的稀土磁钢磁钢是安全的,否则会存在失磁风险。