流体力学 基本概念复习进程
- 格式:doc
- 大小:45.50 KB
- 文档页数:27
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
第一章流体力学基本知识物质在自然界中通常按其存在状态的不同分为固体(固相)、液体(液相)和气体(气相)。
液体和气体因具有较大的流动性,被统称为流体,第一节流体的主要物理性质一、流体的密度和容重对于均质流体,单位体积的质量,称为流体的密度,即:ρ=m/V对于均质流体,单位体积的流体所受的重力称为流体的重力密度,简称重度,即:γ=G/V由牛顿第二定律得:G=m g。
因此,γ=G/V=mg/V=ρg流体的密度和重度随其温度和所受压力的变化而变化,在实际工程中,液体的密度和重度随温度和压力的变化而变化的数值不大,可视为一固定值;而气体的密度和重度随温度和压力的变化而变化的数值较大,设计计算中通常不能视为一固定值。
常用流体的密度和重度如下:水在标准大气压,温度为4°C时密度和重度分别为:ρ=1000kg/m3,γ=9.807kN/m3水银在标准大气压,温度为0℃时其密度和重度是水的13.6倍。
干空气在标准大气压,温度为20°C时密度和重度分别为:ρ=1.2kg/m3,γ=11.82N/m3二、流体的粘滞性流体在运动时,由于内摩擦力的作用,使流体具有抵抗相对变形(运动)的性质,称为流体的粘滞性。
对于静止流体,由于各流层间没有相对运动,粘滞性不显示。
流体粘滞性的大小,通常用动力粘滞性系数μ和运动粘滞性系数v来反映,实验证明,水的粘滞性随温度的增高而减小,而空气的粘滞性却随温度的增高而增大。
内摩擦力的大小可用下式表示:T=μAdu/dy式中T一一流体的内摩擦力;μ——流体的动力粘性系数;A——层与层的接触面积;du/dy——流体的速度梯度。
三、流体的压缩性和热胀性流体的压强增大,体积缩小,密度增大的性质,称为流体的压缩性。
流体温度升高,体积增大,密度减小的性质,称为流体的热胀性。
在很多工程技术领域中,可以把液体的压缩性和热胀性忽略不计。
但在研究有压管路中水击现象和热水供热系统时,就要分别考虑水的压缩性和热胀性。
▲连续介质模型:将流体作为无穷多稠密、没有间隙的流体质点构成的连续介质▲压缩性质和膨胀性质:流体在一定的温度下压强增大,体积减小;压强一定,温度变化,体积相应变化。
所有流体都具有这种特性。
▲流体黏性:流体流动时产生的内摩擦力的性质,是物体固有属性,但只有在运动状态下才能显现。
▲影响粘性的因素:①压强:压强改变对气体和液体的粘性的影响有所不同。
由于压强变化,对分子的动量交换影响非常小,所以气体的粘性随压强的变化很小。
压强增大时对分子的间距影响明显,故液体的粘性受压强变化的影响较气体大。
②温度:温度升高时气体的分子热运动加剧,气体的粘性增大,分子距增大对气体粘性的影响可以忽略不计。
对于液体,由于温度升高体积膨胀,分子距增大,分子间的引力减小,故液体的粘性随温度的升高而减小。
而液体温度升高引起的液体分子热运动的变化对粘性的影响可以忽略不计。
▲理想流体:为了处理工程实际问题方便起见建立一个没有黏性的理想流体模型,即把假想没有黏性的流体作为理想流体。
▲牛顿流体:剪切应力和流体微团角变形速度成正比的流体即符合牛顿内摩擦定律的流体▲非牛顿流体:剪切应力和角变形之间不符合牛顿内摩擦定律的流体称为非牛顿流体▲表面张力:自由液体分子间引力引起的,其作用结果使得液面好像一张紧的弹性膜▲毛细现象:由于内聚力和附着力的差别使得微笑间隙的液面上升和下降的现象▲绝对压强:以绝对真空为基准度量的压强▲相对压强/计示压强:以大气压为基准的度量▲真空:当被测流体的绝对压强低于大气压时,测得的计示压强为负值,负的表压强▲流体静压强:当流体处于平衡或相对平衡状态时,作用在流体上的应力只有法向应力而没有切向应力;此时,流体作用面上的法向应力就是静压强p,(单位Pa)▲流体静压强特性:①流体静压强的作用方向沿作用面的内法线方向。
②静止流体中任一点的流体静压强和作用面在空间的方位无关,只是坐标点的连续可微函数。
▲欧拉平衡方程物理意义:在静止流体内部的任一点上,作用在单位质量流体上的质量力和流体静压强相平衡。
《流体力学》复习提纲第一部分:基本知识第一章 流体及其主要物理性质1. 流体的概念。
2. 连续介质假设的内容,质点的概念。
3. 液体和气体相对密度的定义。
4. 密度、重度、相度密度的相互计算。
5. 体积压缩系数和体积膨胀系数的定义,写出其数学表达式。
6. 动力粘度与运动粘度的相互计算、粘度的国际单位和物理单位及单位换算。
7. 作用在流体上的力的分类:分为质量力和表面力两大类。
8. 温度对液体和气体粘性的影响规律。
9. 什么是理想流体和实际流体。
10. 牛顿内摩擦定律的内容及其两种数学表达式。
重点习题:1-1,1-4,1-5,第二章 流体静力学1. 静压强的两个重要特性是什么?2. 欧拉平衡方程及其全微分形式3. 绝对压力、相对压力(表压力)、真空度三种压力的概念。
4. 工程大气压和标准大气压的区别。
5. 静力学基本方程C pz =+γ中每一项的几何意义和物理意义是什么?6. 绝对静止和两种典型的相对静止流体(等加速水平运动和绕轴等角速旋转运动)中的压力分布规律和等压面的形状。
7. 液式测压计的计算。
8. 掌握静止流体作用在平面和曲面上的总压力的计算方法(包括总压力的大小﹑方向和作用点)等,会进行有关计算。
重点习题:2-6,2-9,2-18,2-19第三章 流体运动学与动力学基础1. 研究流体运动的两种方法:拉格朗日法和欧拉法。
2. 欧拉法表示的质点加速度公式3. 定常流与非定常流的概念4. 流线与迹线的概念5. 流量的概念及三种流量表示方法及相互换算。
6. 欧拉运动方程7. 实际流体总流伯努利方程的三条水头线的画法和意义8. 水力坡降的概念。
9. 实际流体总流伯努利方程。
10. 节流式流量计的工作原理是什么?11. 理解测速管(或皮托管)的原理和用途。
12. 泵的扬程H 的概念及其与泵有效功率泵N 的关系?13. 连续性方程反映了什么物理基本原理?质量守恒定律14. 掌握连续方程﹑总流伯努利方程和动量方程的应用,动量方程部分应会进行弯管、渐缩管和平板等受力的计算。
《流体力学与流体机械》(上)复习提纲第一章流体及其物理性质1.流体如何定义?流体为什么具有流动性?流体与固体有何本质区别?液体与气体的特点有何不同?2.何谓流体微团和流体质点?把流体作为连续性介质假设有何实际意义?分析该假设的合理性。
3.理解和熟练掌握流体的密度、重度、比重和比容等重要物性参数的概念,特别需要注意比重和重度的区别,均匀流体和非均匀流体,以及混合流体的密度、重度等物性参数的应如何计算?重度与密度之间的关系,熟练掌握等压条件下气体密度的简化计算式(1-13)。
4.何谓流体的压缩性和膨胀性?流体压缩性和膨胀性的大小如何度量?流体的体积压缩系数βp、体积弹性系数E及体积膨胀系数β的单位是什么?如何用这三个系数的大小来判别流体压T缩性的大小?5.理解和熟练掌握理想气体状态方程的形式和物理意义,以及方程中各物理量的单位。
6.可压缩流体和不可压缩流体是如何定义的?液体就是不可压缩流体、而气体就是可压缩流体吗?不可压缩流体是真是存在的流体吗?引入不可压缩流体的概念有何实际意义?在什么情况下可以认为流体是不可压缩的?7.理解和掌握马赫数M的概念及其物理意义,为什么说当M<0.3时,流体的可压缩性可以忽略不计?8.何谓流体的粘性和粘性力(内摩擦力)?为什么流体会具有粘性?重点掌握流体的粘性是怎样产生的?流体与固体壁面间的粘性和粘性力是如何构成的?流体的内摩擦力与固体壁面间的摩擦力有何区别?它们所遵循的规律相同吗?9.深入理解和熟练掌握牛顿内摩擦定律的内容、数学表达式的形式及其物理含义和工程应用。
何谓速度梯度?10.深入理解和熟练掌握流体的动力粘度和运动粘度的物理本质及含义、二者之间的区别与联系,分析影响流体的粘性的两大主要因素——压力和温度对流体的粘性的影响。
11.处于静止状态或等速运动状态下的流体是没有粘性的吗?何谓流体的粘性切应力?12.了解流体粘度的常用测量方法及恩氏粘度的概念,以及恩氏粘度如何转换成运动粘度和动力粘度。
《流体力学》各章节复习要点第一章:流体力学基本概念1.流体力学的研究对象是流体运动的性质、规律和力学行为。
2.流体和固体的区别,流体的分类和性质。
3.流体的基本力学性质,包括压强、密度和粘度等。
4.流体的运动描述,包括质点、流线、流管和速度场等概念。
5.流体的变形和应力,包括剪切应力、正应力、黏性和流变性等。
第二章:流体静力学1.流体静压力的基本特征,流体静力学方程和压强的传递规律。
2.流体的浮力,浸没体和浮力的计算方法。
3.子液面、大气压和液体柱的压强和压力计的应用。
4.流体的液面,压强分布和压力容器。
第三章:流体动力学基本方程1.流体运动描述的方法,包括拉格朗日方法和欧拉方法。
2.质点、质点流函数和速度场等的关系。
3.流体的基本方程,包括连续性方程、动量方程和能量方程。
4.流体的不可压缩性和可压缩性假设。
第四章:定常流动和流动的形态1.定常流动和非定常流动的概念和特点。
2.流体流动的形态,包括层流和紊流。
3.流体的压强分布和速度分布。
4.流体的速度分布和速度云。
第五章:流体的动能和势能1.流体的动能、动能方程和功率。
2.流体的势能、势能方程和能率。
3.流体的势能和扬程。
第六章:粘性流体力学基本方程1.粘性流体的三个基本性质,包括黏性、切变应力和流变规律。
2.线性流体的黏性流动,包括牛顿黏性流体模型和黏性损失。
3.非线性流体的黏性流动,包括非牛顿流体和粘弹性流体。
第七章:边界层流动1.边界层的概念和特点。
2.压强分布和速度分布的边界层。
3.边界层和物体间的摩擦阻力。
第八章:维持边界层流动的力1.维持边界层流动的作用力,包括压力梯度、粘性力和凸面力。
2.维持边界层流动的条件和影响因素。
第九章:相似定律和模型试验1.流体力学中的相似原理和相似定律。
2.物理模型和模型试验的概念和应用。
第十章:流体力学的应用1.流体力学在水利工程中的应用,包括水力学、河流动力学和波动力学等。
2.流体力学在能源领域中的应用,包括风力发电和水力发电等。
第二讲流体动力学基础【内容提要】流体运动的基本概念:恒定总流的连续性方程,恒定总流的能量方程【重点、难点】恒定总流的连续性方程和能量方程的运用。
【内容讲解】一、流体运动的基本概念(一)流线和迹线流线是在流场中画出的这样一条曲线:同一瞬时,线上各流体质点的速度矢量都与该曲线相切,这条曲线就称为该瞬时的一条流线。
由它确定该瞬时不同流体质点的流速方向。
流线的特征是在同一瞬时的不同流线一般情况下不能相交;流线也不能转折,只能是光滑的曲线。
迹线是某一流体质点在一段时间内运动的轨迹,迹线上各点的切线表示同一质点在不同时刻的速度方向。
(二)元流和总流在流场中任取一微小封闭曲线,通过曲线上的每一点均可作出一根流线,这些流线形成一管状封闭曲面称流管。
由于速度与流线相切,所以穿过流管侧表面的流体流动是不可能的。
这就是说位于流管中的流体有如被刚性的薄壁所限制。
流管中的液(气)流就是元流,元流的极限是一条流线。
总流是无限多元流的总和。
因此,在分析总流前,先分析元流流动,再将元流积分就可推广到总流。
与元流或总流的流线相垂直的截面称过流断面,用符号A表示其断面面积。
在流线平行时,过流断面为平面,流线不平行则过流断面为曲面。
(三)流量和断面平均流速(四)流动分类1.按流动是否随时间变化将流动分为恒定流和非恒定流。
若所有的运动要素(流速、压强等)均不随时间而改变称为恒定流。
反之,则为非恒定流。
恒定流中流线不随时间改变;流线与迹线相重合。
在本节中,我们只讨论恒定流。
2.按流动是否随空间变化将流动分为均匀流和非均匀流。
流线为平行直线的流动称为均匀流。
如等直径长管中的水流,其任一点的流速的大小和方向沿流线不变。
反之,流线不相平行或不是直线的流动称为非均匀流。
即任一点流速的大小或方向沿流线有变化。
在非均匀流中,当流线接近于平行直线,即各流线的曲率很小,而且流线间的夹角也很小的流动称为渐变流。
否则,就称为急变流。
渐变流和急变流没有明确的界限,往往由工程需要的精度来决定。
**流函数:由连续性方程导出的、其值沿流线保持不变的标量函数。
**粘性:在运动状态下,流体内部质点间或流层间因相对运动而产生内摩擦力以抵抗剪切变形,这种性质叫做粘性。
粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。
粘度又分为动力黏度.运动黏度和条件粘度。
**内摩擦力:流体内部不同流速层之间的黏性力。
**牛顿流体:剪切变形率与切应力成线性关系的流体(水,空气)。
**非牛顿流体:黏度系数在剪切速率变化时不能保持为常数的流体(油漆,高分子溶液)。
**表面张力:1.表面张力作用于液体的自由表面上。
2.气体不存在表面张力。
3.表面张力是液体分子间吸引力的宏观表现。
4.表面张力沿表面切向并与界线垂直。
5.液体表面上单位长度所受的张力。
6.用σ 表示,单位为N/m。
**流线:表示某瞬时流动方向的曲线,曲线上各质点的流速矢量皆与该曲线相切。
性质:a、同一时刻的不同流线,不能相交。
b、流线不能是折线,而是一条光滑的曲线。
c、流线簇的疏密反映了速度的大小。
**过流断面:与元流或总流的流向相垂直的横断面称为过流断面。
(元流:在微小流管内所有流体质点所形成的流动称为元流。
总流:若流管的壁面是流动区域的周界,将流管内所有流体质点所形成的流动称为总流。
)**流量:单位时间内通过某一过流断面的流体体积称为该过流断面的体积流量,简称流量。
**控制体:被流体所流过的,相对于某个坐标系来说,固定不变的任何体积称之为控制体。
控制体的边界面,称之为控制面。
控制面总是封闭表面。
占据控制体的诸流体质点随着时间而改变。
**边界层:水和空气等黏度很小的流体,在大雷诺数下绕物体流动时,黏性对流动的影响仅限于紧贴物体壁面的薄层中,而在这一薄层外黏性影响很小,完全可以忽略不计,这一薄层称为边界层。
**边界层厚度:边界层内、外区域并没有明显的分界面,一般将壁面流速为零与流速达到来流速度的99%处之间的距离定义为边界层厚度。
**边界层的基本特征:(1) 与物体的特征长度相比,边界层的厚度很小。
(2) 边界层内沿厚度方向,存在很大的速度梯度。
(3) 边界层厚度沿流体流动方向是增加的,由于边界层内流体质点受到黏性力的作用,流动速度降低,所以要达到外部势流速度,边界层厚度必然逐渐增加。
(4) 由于边界层很薄,可以近似认为边界层中各截面上的压强等于同一截面上边界层外边界上的压强值。
(5) 在边界层内,黏性力与惯性力同一数量级。
(6) 边界层内的流态,也有层流和紊流两种流态。
**滞止参数:设想某断面的流速以等熵过程减小到零,此断面的参数称为滞止参数。
**滞止参数性质:(1)在等熵流动中,滞止参数值不变;(2)在等熵流动中,速度增大,参数值降低;(3)气流中最大音速是滞止音速;(4)在有摩擦的绝热过程中,机械能转化为内能,总能量不变。
**层流:是指流体质点不互相混杂,流体质点作有条不紊的有序的直线运动。
特点:1.有序性。
2.水头损失与流速的一次方成正比。
3.在流速较小且雷诺数Re较小时发生。
4.层流遵循牛顿内摩擦定律,粘性抑制或约束质点作横向运动。
**湍流:黏性流体质点互相掺混,局部压强、速度等随时间和空间有随机脉动的流动。
**雷诺数:临界流速v与过流断面的特性几何尺寸(管径)d、流体的动力粘度μ和密度ρ有关,这四个量可以组成一个特征数(量纲一的量或无量纲数)称雷诺数 Re 。
**雷诺应力:紊流时均流动中由于流速脉动引起质点间的动量交换而产生的附加应力。
**马赫数:流场中某点的速度与该点处的声速之比。
流体与气体:两者均具有易流动性,即在任何微小切应力作用下都会发生变形或流动,故二者统称为流体。
区别:气体易于压缩;而液体难于压缩。
液体有一定的体积,存在自由液面;气体能充满任意形状的容器,无一定体积,不存在自由液面。
牛顿内摩擦定律:流体内摩擦力的大小与流体的性质有关,与流体的速度梯度和接触面积成正比。
(切应力与剪切变形速度成正比)实际流体:自然界中存在的具有粘性的流体。
理想流体:假想的完全没有粘性的流体。
利用理想流体的概念可以在研究上大简化问题,找出规律后再考虑粘性的影响进行修正,这种修正多数借助实验。
表面力:作用在隔离表面上的力,其大小和受力作用的表面面积成正比,包括垂直于作用面的压力和平行于作用面的切力。
应力:单位面积上的表面力。
质量力:作用在隔离体内每个流体质点上的力,其大小是和流体的质量成正比的,因为在均质流体中必然和体积相关,因此又称体积力,主要包括重力和惯性力。
连续介质:质点连续地充满所占空间的流体或固体。
连续介质模型:把流体看作是全部充满、内部没有任何间隙的质点所组成的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型。
恒定流:若流场中各空间点上的任何流动要素均不随时间变化,则称流动为恒定流,也称为定常流。
非恒定流:若流场中各空间点上的其中任何一个流动要素随时间变化,则称流动为非恒定流,也称为非定常流。
迹线:表示一流体质点的运动轨迹线,它是单个质点在运动过程中所占据的空间位置随时间连续变化的轨迹。
流谱:在充满流动的整个空间内可以绘出一族流线,称为流谱。
断面平均流速:过流断面上各点的速度平均值称为断面平均流速。
控制体边界(控制面)的特点:控制面相对于座标系是固定的。
在控制面上可以有质量交换。
在控制面上,受到控制体以外物体加在控制体之内物体上的力。
在控制面上可以有能量交换。
流体微团:是指体积微小,随流体一起运动的一团流体物质。
特点:包含无数个流体质点。
各流体质点间存在相对位置变化。
能够体现膨胀、变形、转动等尺度变化。
拉格朗日方法:是以流场中每一流体质点作为描述对象的方法,它以流体个别质点随时间的运动为基础,通过综合足够多的质点(即质点系)运动来确定整个流体的流动。
----质点系法欧拉法:是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法——流场法。
流体质点的加速度(流速对时间求导)有两部分组成:1)时变加速度(当地加速度)——流动过程中流场由于速度随时间变化而引起的加速度;2)位变加速度(迁移加速度)——流动过程中流场中速度分布不均,因位置变化而引起的加速度。
紊流:是指随流速增大,流层逐渐不稳定,质点相互混掺,流体质点沿很不规则无序的路径运动。
紊流特点:①无序性、随机性、有旋性、混合性。
②在圆管流中水头损失与流速的1.75~2次方成正比。
Hf=kv 1.75~2③在流速较大(雷诺数较大)时发生。
4 紊流发生是受粘性和紊动共同作用的结果有旋流:亦称“涡流”。
流体质点(微团)在运动中不仅发生平动(或形变),而且绕着自身的瞬时轴线作旋转运动。
无旋流:亦称“势流”、“有势流”。
流体在运动中,它的微小单元只有平动或变形,但不发生旋转运动,即流体质点不绕其自身任意轴转动。
恒定流:是指流场中的流体流动,空间点上各水力运动要素均不随时间而变化。
严格的恒定流只可能发生在层流,在紊流中,由于流动的无序,其实流速或压强总有脉动,但若取时间平均流速(时均流速)非恒定流:是指流场中的流体流动,空间点上各水力运动要素均随时间的变化而变化。
在非恒定流情况下,流线的位置随时间而变;流线与迹线不重合。
在恒定流情况下,流线的位置不随时间而变,且与迹线重合。
均匀流中迁移加速度为0,各过水断面上的流速分布图沿程不变,过水断面是平面,沿程各过水断面的形状和大小都保持一样。
非均匀流中迁移加速度不等于0,流场中相应点的流速大小或方向或同时二者沿程改变,即沿流程方向速度分布不均。
(非均匀流又可分为急变流和渐变流)。
皮托管测流速:常见的皮托管是由装有一半圆球探头的双层套管组成,并在两管末端联接上压差计。
探头端点A处开一小孔与内套管相连,直通压差计的一肢;外套管侧表面沿圆周均匀地开一排与外管壁相垂直的小孔(静压孔),直通压差计的另一肢。
测速时,将皮托管放置在欲测速度的恒定流中某点A,探头对着来流,使管轴与流体运动的方向相一致。
流体的速度接近探头时逐渐减低,流至探头端点处速度为零。
总水头线:沿流管各总水头值的连线,是流管坐标的函数。
水头线:沿流管各测压管水头值的连线,是流管坐标的函数。
水力坡度:单位长度上的水头损失。
测压管水头线坡度:单位长度上测压管水头的降低或升高。
对均匀流动,则总水头线与测压管水头线平行。
产生流动阻力和能量损失的根源:流体的粘性和紊动。
沿程阻力:当限制流动的固体边界使流体作均匀流动时,流动阻力只有沿程不变的切应力形成的阻力。
沿程水头损失:由沿程阻力作功而引起的水头损失。
沿程水头损失:主要由于“摩擦阻力”所引起的,随流程的增加而增加。
雷诺实验揭示了水流的两种流动状态:层流和紊流;并测定了流动损失及水流速度与流态之间的关系。
临界流速判别:因不同的管径大小、流体种类和流体温度,得到的临界流速不同。
雷诺数的物理意义:雷诺数是以宏观特征量表征的流体质点所受惯性力与粘性力之比。
紊流核心:粘性底层之外的液流统称为紊流核心。
绝对粗糙度(Δ):粗糙突出管壁的平均高度。
相对粗糙度:管壁的绝对粗糙度Δ与管径d的比值。
当量粗糙度:把直径相同、紊流粗糙区λ值相等的人工粗糙管的粗糙突起高度Ks定义为该管材工业管道的当量粗糙。
附面层(边界层):粘度小的流体(如水和空气)绕过物体运动时,摩擦阻力主要发生在紧靠物体表面的一个流速梯度很大的流体薄层内,粘性影响起主要作用。
形状阻力:指流体绕曲面体或具有锐缘棱角的物体流动时,附面层要发生分离,从而产生旋涡所造成的阻力。
这种阻力与物体形状有关,故称为形状阻力。
卡门涡街:圆柱绕流问题:随着雷诺数的增大边界层首先出现分离,分离点并不断的前移,当雷诺数大到一定程度时,会形成两列几乎稳定的、非对称性的、交替脱落的、旋转方向相反的旋涡,并随主流向下游运动,这就是卡门涡街。
绕流阻力:细长流线型物体,以平板为例,绕流阻力主要由摩擦阻力来决定,阻力系数与雷诺数有关。
钝头曲面物体,以圆柱和圆球为例,绕流阻力既与摩擦阻力有关,又与压差(形状)阻力有关。
在低雷诺数时,主要为摩擦阻力,阻力系数与雷诺数有关。
在高雷诺数时,主要为压差(形状)阻力。
表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。