高中数学必修三古典概型的几种解题技巧
- 格式:docx
- 大小:11.39 KB
- 文档页数:2
3.2.1古典概型一. 三维目标:1.知识与技能:(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.2.过程与方法:通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法.3.情感态度与价值观:(1)体会数学知识与现实世界的联系,培养逻辑推理能力.(2)体会理论来源于实践并应用于实践的辩证唯物主义观点.二.德育目标:鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力.三.教学重点与难点:1.重点:理解古典概型及利用古典概型求随机事件的概率.2.难点:如何判断一个试验是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.四.授课类型:新授课五.课时安排:1课时六.教具:多媒体七.教学过程:(一)导入新课:通过介绍概率论的起源,最初刺激数学家研究概率论问题来自赌博者的请求,400多年前为了破解一个赌桌上如何分配金币的谜团,数学家开始了对概率论的相关问题的思索,那这究竟是一场怎样的赌局,赌局中遇到了哪些问题,这些问题中又包含了哪些数学原理呢?设置悬念,激发学生的兴趣.(二)讲解新课:17世纪的一天梅尔和保罗参加赌博,他们每人拿出6枚金币作为赌注,并约定谁先胜3局谁就得到所有的金币,可是比赛进行到梅尔胜2局保罗胜1局的时候意外中断,这个时候这12枚金币的归属就成了难题,该如何分配呢?梅尔和保罗对于金币的分配存在着非常大的分歧,他们请教了法国当时著名的两位数学家,两位数学家围绕这一数学问题开始了深入细致的研究,苦思了近3年后依据不同的思想方法给出了相同的答案,那就是梅尔得到9枚金币,保罗得到3枚金币,为什么会有这样的分配结果呢?本节课我们就以其中一位数学家的思想方法为例,看看他是如何解决这一问题的.数学家在这一简单游戏的基础上,归纳总结出了与它具有相同特征的数学模型,就被我们称为古典概率模型,简称古典概型.古典概型具有哪些特征呢?1.古典概型的特征:(1)有限性:在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性:每个基本事件发生的可能性是均等的.2.古典概型的概率公式:P (A )=(三)讲解范例:例1.把1、2两个数字均匀分布在一个圆盘上,将圆盘旋转两次,求所得的数字之和为3的概率.例2.在石头、剪子、布这个传统游戏中,两人猜拳同手势的概率是多少?通过对以上例题的讲解,师生共同归纳总结出古典概型的解题步骤:1.判断是否符合古典概型;2.求出基本事件的总数和事件A 所包含的基本事件的个数;3.利用古典概型概率计算公式进行计算.(四)练习:1.从1,2,3,4,5五个数字中,任取两数,求两数都是奇数的概率.2.从含有两件正品 1a ,2a 和一件次品1b的3件产品中,每次任取1件,(1)每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.(2)每次取出后放回,连续取两次,求取出的两件产品中恰有一件次品的概率.(五)小结: _________________________________ 事件A 包含的基本事件数 试验的基本事件总数1.古典概型的特征:有限性、等可能性;2.古典概型的概率公式:P (A )= ;3.古典概型的解题步骤.(六)课后作业:A 层次:成才之路78页1,2,3B 层次:成才之路79页4,5,6(七)板书设计:_________________________________ 事件A 包含的基本事件数 试验的基本事件总数。
用心 爱心 专心 “古典概型”求解三注意解古典概型问题时,要首先验证它的两个特点:(1)有限性:做一次试验,可能出现的结果为有限个,即只有有限个不同的基本事件.(2)等可能性:每个基本事件发生的可能性是相等的.虽然计算公式()m P A n=比较简单,但是这类问题的解法多样,技巧性强,下面说一下在解题中需要注意的几个问题.一、试验必须具有古典概型的两大特征———有限性和等可能性例1 掷两枚均匀的硬币,求出现一正一反的概率.解:这个试验的基本事件(所有可能结果)共有4种:(正,正),(正,反),(反,正),(反,反),事件A “出现一正一反”的所有可能结果为:(正,反),(反,正),∴21()42P A ==. 评注:均匀硬币在抛掷过程中出现正、反面的概率是相等的,并且试验结果是有限个.二、计算基本事件的数目时,须做到不重不漏例2 从1,2,3,4,5这5个数字中任取三个不同的数字,求下列事件的概率:(1)A ={三个数字中不含1和5};(2)B ={三个数字中含1或5}.解:这个试验的所有可能结果为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种.(1)事件A 为(2,3,4),故1()10P A =. (2)事件B 的所有可能结果为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)共9种.故9()10P B =. 评注:如果计算某事件容易重复或遗漏,可利用其对立事件求解.三、利用事件间的关系例3 有3个完全相同的小球a b c ,,,随机放入甲、乙两个盒子中,求两个盒子都不空的概率.解:a b c ,,三个小球随机放入甲、乙两个盒子的基本事件为: 甲盒 a b c ,, a b ,a a c ,bc , b c 空 乙盒 空 c b c , b a c a , a b , a b c ,,两个盒子都不空的对立事件是至少有一个盒子为空,所包含事件:甲盒子a b c ,,,乙盒子空;甲盒子空,乙盒子a b c ,,,共两个,故23184P =-=. 评注:在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和事件,由公式12312()()()()n n P A A A A P A P A P A =+++求得,或采用正难则反的原则,转化为求其对立事件,再用公式()1()P A P A =-求得.。
高二数学必修三第一章重难点解析:古典概型古典概型的基本概念1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件;2.等可能基本事件:若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件;3.古典概型:满足以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等;4.古典概型的概率:如果一次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为nP(A)?m.n知识点一:古典概型的基本概念*例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析:题意分析:本试题考查一次试验中用列举法列出所有基本事件的结果,而画树状图是列举法的基本方法.解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利用树状图将它们之间的关系列出来.解答过程:解法一:所求的基本事件共有6个:A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d}解法二:树状图解题后的思考:用树状图求解一次试验中的基本事件数比较直观、形象,可做到不重不漏.掌握列举法,学会用数形结合、分类讨论的思想解决概率的计算问题.**例2:(1)向一个圆面内随机地投射一个点,如该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?(2)如图,某同学随机地向一靶心射击,这一试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么?思路分析:题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进行判定解决.解答过程:答:(1)不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.(2)不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.解题后的思考:判定是不是古典概型,主要看两个方面,一是实验结果是不是有限的;另一个就是每个事件是不是等可能的.***例3:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择正确的答案.假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?思路分析:题意分析:本题考查古典概型概率的求解运算.解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考生掌握了全部或部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可将此问题看作古典概型.解答过程:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的.从而由古典概型的概率计算公式得:P(答对\答对所包含的基本事件的个数1==0.25基本事件的总数4解题后的思考:运用古典概型的概率公式求概率时,一定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发生的基本事件数,再借助于概率公式运算.小结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第一个关键点;理解一次试验中的所有基本事件数,和事件A发生的基本事件数,是解决概率问题的第二个关键点.知识点二:古典概型的运用*例4:同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?(4)为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析:题意分析:本题考查了古典概型的基本运算问题.解题思路:先分析“同时掷两个骰子的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运用举一反三的思想自行设问、解答.解答过程:解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示掷1号骰子的结果,第二个数表示掷2号骰子的结果.(可由列表法得到)1号骰子2号骰子1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰子的结果共有36种.(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1)(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=A所包含的基本事件的个数41==基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为P(A)=A所包含的基本事件的个数2=基本事件的总数21这就需要我们考察两种解法是否满足古典概型的要求了.可以通过展示两个不同的骰子所抛掷出来的点,感受第二种方法构造的基本事件不是等可能事件.解题后的思考:考查同学们运用古典概型的概率计算公式时应注意验证所构造的基本事件是否满足古典概型的第二个条件.对于同时抛掷的问题,我们要将骰子编号,因为这样就能反映出所有的情况,不至于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的.**例5:从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.思路分析:题意分析:本题考查的是不放回抽样的古典概型概率的运用解题思路:首先注意到该题中取出的过程是有顺序的.同时明白一次试验指的是“不放回的,连续的取两次”.先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利用概率公式求解.解答过程:解法1:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A表示“取出的两件中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因而P(A)=42=63解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的方法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)=23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但无论选择哪一种方式,观察的角度必须一致,否则会导致错误.***例6:从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后放回,连续取两次,求取出的两件产品中恰有一件次品的概率.思路分析:题意分析:本题考查放回抽样的概率问题.解题思路:首先注意到该题中取出的过程是有顺序的.同时明白一次试验指的是“有放回的,连续的取两次”.解答过程:每次取出一个后放回,连续取两次,其一切可能的结果组成的基本事件有9个,即(a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1)其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A表示“取出的两件中,恰好有一件次品”这一事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)=4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同一个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.小结:(1)古典概型概率的计算公式是非常重要的一个公式,要深刻体会古典概型的概念及其概率公式的运用,为我们学好概率奠定基础.(2)体会求解不放回和有放回概率的题型.知识点三:随机数产生的方法及随机模拟试验的步骤**例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析:题意分析:本题考查的是近似计算非古典概型的概率.解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数.我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数:812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考:(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题.(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间.(3)随机函数(RANDBETWEEN)(a,b)产生从整数a到整数b的取整数值的随机数.小结:能够简单的体会模拟试验求解非古典概型概率的方法和步骤.高考对这部分内容不作更多的要求,了解即可.5=25%.20 【同步练习题】1.(2014惠州调研)一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为( )A.12;B.13;C.14;D.25答案:A[把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P=816=12.]2.(2013江西高考)集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是( )A.23B.12C.13D.16答案:C[从A,B中各任取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C.]3.(2014宿州质检)一颗质地均匀的正方体骰子,其六个面上的点数分别为1、2、3、4、5、6,将这一颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为( )A.112B.118C.136D.7108答案:A[基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.]4.(2013安徽高考)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.910答案:D[五人录用三人共有10种不同方式,分别为:{丙,丁,戊},{乙,丁,戊},{乙,丙,戊},{乙,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,乙,戊},{甲,乙,丁},{甲,乙,丙}.其中含甲或乙的情况有9种,故选D.]5.(理)(2014安徽示范高中联考)在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离大于3的概率为( )A.47B.37C.27D.314答案:B[从8个顶点中任取两点有C28=28种取法,其线段长分别为1,2,3,5,10,13,14.①其中12条棱长度都小于等于3;②其中4条,棱长为1,2的面对角线长度为5。
高中数学必修三古典概型的几种解题技巧
1、排列组合问题
古典概型中的排列组合问题是指从 n 个不同元素中取 r 个元素,考虑元素之间的排列或不考虑排列,求其组合数或排列数。
1.1 组合数
设有 n 个不同元素,则从中取出 r 个元素的组合数为 C(n,r)。
其计算公式为:
C(n,r)=n!/(r!×(n-r)!)
例如,从 5 个不同字母中取出 3 个,不考虑排列方式,其组合数为:
C(5,3)=5!/(3!×2!)=10
1.2 排列数
2、二项式定理
二项式定理是代数中的重要定理,它可以将一个二项式的幂展开为多项式。
二项式定理可以推广到实数、复数或矩阵等范畴中,但本文中仅考虑其在古典概型中的应用。
2.1 二项式定理的基本形式
(a+b)^n=C(n,0)×a^n+C(n,1)×a^(n-1)b+⋯+C(n,k)×a^(n-k)b^k+⋯+C(n,n)×b^n
其中,a、b 是任意实数,n 是任意非负整数,C(n,k) 为组合数。
二项式定理可以用于求和式,其中最常见的是求幂和式,例如:
1+2+3+⋯+n=?
分析该式,可将其改写为:
再利用二项式定理,展开为多项式:
(1+1)^2-(1^2)=2^2-(2^2)+3^2-(3^2)+⋯+n^2-(n-1)^2
整理后得到:
当从 n 个元素中取出 r 个元素,并排列时,元素可重复,其排列数为 n^r。
4^3=64
4、贝努利试验和二项分布
贝努利试验是实验条件非常简单的一类随机试验,其特点是只有两个可能的结果,例
如正反面、违法合法等。
二项分布是指对 n 次独立的贝努利试验中,成功次数的统计分布。
4.1 贝努利试验
在贝努利试验中,设试验只有两个可能的结果,其中一个记作成功,发生的概率为 p,另一个记作失败,发生的概率为 q=1-p。
则进行 n 次独立的贝努利试验,设成功的次数为 X,则 X 的可能取值为 0 到 n,
其分布律为:
P(X=k)=C(n,k)×p^k×(1-p)^(n-k),k=0,1,2,⋯,n
其中 P(X=k) 表示成功 k 次的概率,C(n,k) 表示从所有试验中取出 k 次成功的组
合数。
4.2 二项分布
贝努利试验的二项分布是二项式日常生活中应用很广泛的一种概率分布。
将二项式定
理应用于贝努利试验中,得到二项分布的概率分布式:
例如,假设某个商品在一批次的生产中,有 5% 的次品率。
对于 500 个商品的生产
批次,预计有 3 个次品,概率为:
P(3)=C(500,3)×0.05^3×(1-0.05)^(500-3)≈0.174
因此,可以预计有 3 个次品的概率约为 17.4%。