七年级上数学测试题
- 格式:doc
- 大小:218.00 KB
- 文档页数:4
七上第三章《代数式》单元测试班级:___________姓名:___________得分:___________ 一、选择题1.有下列各式:x−y3,−15a2b2,1y,1π,√x.其中单项式有()A. 1个B. 2个C. 3个D. 4个2.已知a,b为自然数,则多项式12x a−y b+2a+b的次数应当是()A. aB. bC. a+bD. a,b中较大的数3.某校七年级1班有学生a人,其中女生人数比男生人数的45多−(−2)人,则女生的人数为().A. 4a+159B. 4a−159C. 5a−159D. 5a+1594.若代数式x2+ax+9y−(bx2−x+9y+3)的值恒为定值,则−a+b的值为()A. 0B. −1C. −2D. 25.已知代数式x+2y+1的值是3,则代数式−2x−4y+2的值是()A. −2B. −4C. −6D. 不能确定6.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如多项式f(x)=ax3+bx+1,当x=1时,f(1)=6,那么f(−1)等于()A. 0B. −3C. −4D. −57.若(a+b)2017=−1,a−b=1,则a2017+b2017的值是()A. −1B. 0C. 1D. 28.边长为a的正方形,将边长减少b以后得到一个较小的正方形,所得较小正方形的面积比原来正方形的面积减少了().A. b2B. –b2+2abC. 2abD. a2–b29.有这样一道题,“当x=1213,y=−0.78时,求多项式7x3−6x3y+3x2y+3x3+6x3y−3x2y−10x3的值”.同学甲计算时用x=−1213,y=0.78代入,同学乙计算时用x=1213,y=0.78代入,结果两人的计算结果都正确,则原因是()A. 这个代数式的值只跟x,y的绝对值大小有关与符号无关B. 代数式化简结果只含有x,y的偶次项的原因C. 代数式化简结果x,y中其中一项系数为零,还有一项刚好与符号无关D. 代数式化简结果为零,与x,y的大小均无关系10.如图,若|a+1|=|b+1|,|1−c|=|1−d|,则a+b+c+d的值为()A. 0B. 2C. −2D. −1二、填空题11.一艘轮船沿江逆流航行的速度是28km/ℎ,江水的流速是2km/ℎ,则该轮船沿江顺流航行的速度是________.12.已知a2−2b−1=0,则多项式4b−2a2+5的值等于 ___ .13.一组按照规律排列的式子:x,x34,x59,x716,x925,⋯,其中第8个式子是_________.14.一个多项式与m2+m−2的和是m2−2m.这个多项式是______.15.一个两位数的个位数字为a,十位数字为b,这个两位数可表示为__.16.如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为________。
山东省青岛市2023-2024学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________..C .D ..地球的表面积约为51000000km,将51009000用科学记数法表示为(0.51×109B .5.1×109C 5.1×108D .已知132n x y +与4313x y 是同类项,则n 的值是()2B .3C 4D .如果()2320a b ++-=,那么代数式()a b +的值是()2023-B .2023C 1-D .如图是甲,乙两个家庭全年支出情况统计图,关于教育经费的支出,下列结论正确)A .甲比乙多B .乙比甲多C .甲和乙一样多6.我国元朝朱世杰所著的《算学启蒙》中记载:“良马日行二百四十里,驽马日行一百驽马先行一十二日,问良马几何追及之.跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x 天可以追上慢马,则可列方程为()A .()15012240x x +=B .()24012150x x +=C .()15012240x x-=D .()24012150x x-=7.某品牌服装,每件的标价是220元,按标价的七折销售时,仍可获利10%,则该品牌服装每件的进价为()A .200元B .160元C .140元D .180元8.按图示的方法搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒.现有2022根火柴棒,能搭这样的三角形个数为()A .1010个B .1011个C .1012个D .1013个二、填空题12.小红第1至6周每周零花钱收支情况如图所示,元.15.如图是一个“数值转换机结果为96,第2次输出的结果为16.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第个图形中共有2023个〇.三、解答题17.计算:(1)7531()()96436+-÷-;(2)22222(3)()443-+-⨯--÷-.(1)画直线AB ;(2)连接AC BD 、,相交于点(3)画射线AD BC 、,交于点19.(1)化简:2ab (2)化简并求值:20.解方程:(1)2335x x -=+;(2)212134x x -+=-.21.“十一”黄金周期间,某动物园在示比前一天多的人数,(1)求A、B两点之间的距离;(2)点C在A点的右侧,D在B点的左侧,AC为14个单位长度,求点C与点D之间的距离;(3)在(2)的条件下,动点P以3个单位/秒的速度从A点出发沿正方向运动.同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q到点C 的距离相等.。
七年级数学上册期末测试卷考试时间:120分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共24题,单选8题,填空8题,解答8题,满分100分,限时120分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握所学内容的具体情况!一、选择题(下列各题的备选答案中,只有一个是正确的;本大题共8个小题,每小题2分,共16分)1.(2分)在﹣1,0,72,﹣413这四个数中,绝对值最大的数是( )A .﹣1B .0C .72D .﹣4132.(2分)下列图形经过折叠可以围成一个棱柱的是( )A .B .C .D .3.(2分)下列计算正确的是( ) A .2a +3b =5ab B .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a4.(2分)为了了解某校学生的视力情况,在全校的1800名学生中随机抽取了450名学生,下列说法正确的是( ) A .此次调查是普查B .随机抽取的450名学生的视力情况是样本C .全校的1800名学生是总体D .全校的每一名学生是个体5.(2分)一枚六个面分别标有1﹣6个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中写有“?”一面上的点数是( )A .6B .2C .3D .16.(2分)如果从甲船看乙船,乙船在甲船的南偏东40°方向,那么从乙船看甲船,甲船在乙船的( ) A .北偏东50°B .北偏西50°C .北偏东40°D .北偏西40°7.(2分)某制衣店现购买蓝色、白色两种布料共50米,共花费690元.其中蓝色布料每米13元,白色布料每米15元,求两种布料各买多少米?设买蓝色布料x 米,则根据题意可列方程( ) A .15x +13(50﹣x )=690 B .15x ﹣13(50﹣x )=690 C .13x +15(50﹣x )=690D .13x ﹣15(50﹣x )=6908.(2分)如图所示在一个电子青蛙游戏程序中,电子青蛙只能在标有五个数字点的圆周上跳动.游戏规则:若电子青蛙停在奇数点上,则它下次沿顺时针方向跳两个点;若电子青蛙停在偶数点上,则它下次沿逆时针方向跳一个点.现在电子青蛙若从3这点开始跳,则经过2021次后它停的点对应的数为( )A .5B .3C .2D .1二、填空题(本大题共8个小题,每小题3分,共24分)9.(3分)据《经济日报》2020年12月2日报道:“1﹣10月份,中国进出口总额达25950000000000元,同比增长1.1%,连续5个月实现正增长”.将数据25950000000000用科学记数法表示为 .10.(3分)若关于x 的方程2x +a ﹣4=0的解是x =﹣1,则a 的值等于 .11.(3分)如图,C 为线段AB 上一点,D 为BC 的中点,且AB =36cm ,AC =4CD .则线段AC 的长为 cm .12.(3分)若代数式3x 2﹣x +4的值等于8,则代数式6x 2﹣2x 的值为 .13.(3分)现将某校七年一班女生按照身高共分成三组,下表是这个班级女生的身高分组情况统计表,则在统计表中b 的值是 .第一组 第二组 第三组 每个小组女生的人数 9 8 a 每个小组女生人数占班级女生人数的百分比bc15%14.(3分)如图①,在一张长方形纸ABCD 中,E 点在AD 上,并且∠AEB =60°,分别以BE ,CE 为折痕进行折叠并压平,如图②,若图②中∠A ′ED ′=16°,则∠CED ′的度数为 °.15.(3分)一家商店将某种服装按照成本价提高35%后标价,又以8折优惠卖出,结果每件服装仍获利25元,求这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意可列方程为 . 16.(3分)观察下列式子:a 1=31×4=11−14;a 2=34×7=14−17;a 3=37×10=17−110;a 4=310×13=110−113;…,按此规律,计算a 1+a 2+a 3+…+a 2020= . 三、计算题(本大题共3个题,17、18题各10分,19题6分,共26分) 17.(10分)计算:(1)(﹣5)+(﹣7)﹣(﹣3)﹣(﹣20); (2)﹣22+(﹣4)÷2×12−|﹣3|.18.(10分)解方程: (1)﹣3x +7=27+2x ; (2)1−4y 5−3=−y+22.19.(6分)先化简,再求值:4xy ﹣(2x 2+5xy ﹣y 2)+2(x 2+3xy ),其中x =1,y =﹣2.四、画图题(本大题共6分)20.(6分)如图,已知四点A,B,C,D,请用直尺按要求完成作图.(1)作射线AD;(2)作直线BC;(3)连接BD,请在BD上确定点P,使AP+CP的值最小,并说明理由.五、解答题(本大题共2个题,21题6分,22题6分,共12分)21.(6分)我市某初中为了落实“阳光体育”工程,计划在七年级开设乒乓球、排球、篮球、足球四个体育活动项目供学生选择.为了了解七年级学生对这四个体育活动项目的选择情况,学校数学兴趣小组从七年级各班学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)学校在七年级各班共随机调查了名学生;(2)在扇形统计图中,“篮球”项目所对应的扇形圆心角的度数是;(3)请把条形统计图补充完整;(4)若该校七年级共有500名学生,请根据统计结果估计全校七年级选择“足球”项目的学生为多少名?22.(6分)如图,∠BOD =115°,∠COD =90°,OC 平分∠AOB ,求∠AOD 的度数.六、解答题(本大题共2个题,23题8分,24题8分,共16分)23.(8分)朝凌高铁作为京沈高铁铁路网的重要组成部分,预计2021年7月通车,届时锦州到北京高铁将会增加一条新路线,其运行的平均时速为350km /h .虽然锦州至北京段新路线长度比原路线长度增加120km ,但其运行时间将缩短了127h ,如果锦州至北京段原路线高铁行驶的平均时速为140km /h ,请计算锦州至北京段新路线的长度为多少千米?24.(8分)有两个形状、大小完全相同的直角三角板ABC 和CDE ,其中∠ACB =∠DCE =90°.将两个直角三角板ABC 和CDE 如图①放置,点A ,C ,E 在直线MN 上. (1)三角板CDE 位置不动,将三角板ABC 绕点C 顺时针旋转一周, ①在旋转过程中,若∠BCD =30°,则∠ACE = °;②在旋转过程中,∠BCD 与∠ACE 有怎样的数量关系?请依据图②说明理由. (2)在图①基础上,三角板ABC 和CDE 同时绕点C 顺时针旋转,若三角板ABC 的边AC 从CM 处开始绕点C 顺时针旋转,转速为10°/秒,同时三角板CDE 的边CE 从CN 处开始绕点C 顺时针旋转,转速为1°/秒,当AC 旋转一周再落到CM 上时,两三角板都停止转动.如果设旋转时间为t 秒,则在旋转过程中,当t = 秒时,有∠ACE =3∠BCD .。
2 勤学早七年级数学(上)第1章《有理数》周测(二)(测试范围:1.3有理数的加减法 解答参考时间90分钟 满分120分)一、选择题(每小题3分,共30分)1. 温度从-2°C 上升5°C 后是( C )A . 1°CB . -1°C C . 3°CD . 5°C2. —辆汽车从车站出发向东行驶20千米,然后向西行驶50千米,此时汽车的位置是( B )A .车站的东边70千米处B .车站的西边30千米处C .车站的西边70千米处D .车站的东边30千米处3. 将-6—(+3)—(-7)+(—2)中的减法改成加法,并写成省略加号的和的形式是( A )A .—6-3+7—2B .6—3—7—2C .6—3+7-2D .6+3—7-24.计算-3—|—6|的结果为( A )A .—9B .-3C .3D .95.数轴上点A 表示-4,点B 表示-2,则表示A ,B 两点间的距离的算式是( B )A .-4+2B .—2—(―4)C .2-(-4)D .2-46. 如图,数轴上-动点A 向左移动1个单位 长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( C )A .7B .3C .-3D -37.若|a |=5,b =—2,且a <b ,则a +b 的值是( B )A .7B .-7C .3D .-38.x <0,y >0时,则 x ,x +y ,x —y ,y 中最大的是( D )A .xB .x —yC .x +yD .y9.如图,数轴上标出若干个点,每相邻两个点的距离为1个单位长度,点E ,F ,M ,N 对应的数分别为a ,b ,c ,d ,且d —2a =8,那么数轴的原点是( B )A . E 点B .F 点C .M 点D .N 点10.若a ,b ,c 三个数在数轴上对应点的位置如图所示,下列几个判断;①a <c <b ;②-a <b ;③a +b >0;④c -a <0中,错误的个数是( D )A .1B .2C .3D .4二、填空题(每小题3分,共18分)11.一种机器零件,图纸标明是0.010.0140φ+-,合格品的最大直径与最小直径的差是 0.02 .12.某市某天上午的气温是3°C ,中午上升了5°C ,下午由于冷空气南下,到夜间又下降l 0°C ,则夜间这时的气温是 -2 °C .13.已知a 是-3的相反数与-12的绝对值的差是比-7大5的数,c 是比4小8的数,则a +b —c = -7.14. 若a ,b 互为相反数,m 的绝对值为3,则a b m a b m+-++的值是 -3或3 .15. 符号“f”表示一种运算,它对一些数的运算规律如下;(1)f(—1)=0,f(—2)=—1,f(—3)=—2,f(—4)=—3,…;(2)f(12)=2,f(13)=3,f(14)二4,f(15)=5,….利用以上规律计算f(12008)+f(—2018)= 1 .16. 计算:1—2+3—4+…+2017—2018+2019= 1010 .三、解答题(共8题,共72分)17.(8分)计算:⑴15-―(―0.8); (2)(+8.37)+(—2.37).解:(1)0.6;(2)6.18.(8分)用适当的方法计算:(1)-6+2—3—(-7);⑵11131 (1)1(2)(3)(1)24244 --+-----解:⑴0;(2)14 -.19.(8分)一辆出租车在东西方向的马路上行驶,从起点开始向东行驶记为正,司机记录他一天的行程如下:(单位:千米)—9,—8,9,-2,9,8,8,-8,29,-36,50,-24.(1)这一天出租车最后停在离起点多远地方?(2)若每100千米耗油11升,出租车这一天用了多少升油?解:(1)—9+(—8)+9+(—2)+9+8+8+(—8)+29+(—36)+50+(—24 )=26,∴这一天出租车最后停在出发地东26千米的地方;(2)[|—9|+|—8|+|9|+|—2|+|9|+|8|+|8|+|—8|+|29|+|—36|+|50|+|—24|]÷100×11=22(升),∴这一天出租车用油22升.20.(8分)小明在电脑中设置了一个有理数的运算程序:输人数a,加*键,再输入数b,就可以得到运算;a*b=(a-b)-|b-a|.(1) 求(-5)*3的值;(2) 求(3*4)*(—6)的值.解;⑴—16;(2)0.21.(8分)(1)若|a|=2,b=—3,c是最大的负整数,求a+b—c的值;(2)已知|a|=4,|b|=2,且|a+b|=|a|+|b|,求a—b的值.解:⑴—4;(2)±2.22.(10分)观察下列各式的特征:|7—6|=7—6;|6—7|=7—6;11111111||;||25255225-=--=-,根据规律,解决相关问题: (1)把下列各式写成去掉绝对值符号的形式(不要求写出计算结果);填空:①|3-4|= ; ②33||87-= ; (2)当a >b 时,|a —b |= ;当a <b 时,|a —b |= ;(3)有理数a 在数轴上的位置如图,则化简|a —2|+|a +2|的结果为 ;⑷计算:1111111|1|||||||2324320182017-+-+-++-K . 解;(1)①4-3;3378-; (2)a —b ;b —a ;(3)4; (4)20172018.23.(10分)若a ,b 是表示两个不同点A ,B 的有理数,且|a |=5,|b |=2,它们在数轴的位置如图所示.(1)试确定a ,b 的值;(2)求表示a ,b 两数的点的距离;(3)若点C 在数轴上,点C 到点A 的距离是点C 到点B 距离的3倍,则点C 表示的数为_____. 解:(l )a =—5,b =—2;(2)3; (3)11124--或.24.(12分)如下表,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)填空;a = ,b = ,c = ,第2018个格子中的数为 ;⑵计算:|c -a |+|a -c |+|a -b |+|b -a |+|c -b |+|b -c |;(3)从第1个格子开始,前m 个格子中所填整数之和能为109吗?若能,求m 的值;若不能,请说明理由. 解:⑴8,4,1,8;(2)原式=48;(3)由(1)知每3格一循环,数分别为1,8,-4,和为5,∵20×5+1+8=109,∴m =20×3+2=62.。
七年级上数学练习题一、有理数1. 计算下列各题:(1) (3) + 7(2) 5 (2)(3) (4) × (6)(4) 15 ÷ (5)2. 化简下列各题:(1) 3 2 + 5 4(2) (2) × (3) + 4 × (5)(3) (8) ÷ 2 5 ÷ (1)二、整式1. 计算下列各题:(1) 2x 3x + 4(2) 5a 3a + 2a(3) 4xy 2xy + 3xy2. 化简下列各题:(1) 3x^2 2x^2 + 4x^2(2) 5ab 3ab + 2ab(3) 7a^2b 4a^2b + a^2b三、一元一次方程1. 解下列方程:(1) 3x 7 = 11(2) 5 2x = 3x + 1(3) 4(x 3) = 2(x + 5)2. 解决实际问题:(1) 某数的3倍减去7等于13,求这个数。
(2) 甲、乙两数的和为20,甲数是乙数的2倍,求甲、乙两数。
四、几何图形初步1. 判断下列说法是否正确:(1) 对顶角相等。
(2) 平行线的性质是同旁内角互补。
(3) 钝角大于直角。
2. 画图并解答:(1) 画出一条直线和直线上的两个点,使这两个点与直线上的另一个点构成等腰三角形。
(2) 画出两条平行线,并在其中一条直线上找到一个点,使这个点到另一条直线的距离等于3cm。
五、数据初步认识1. 填空题:(1) 下列数据中,众数是______。
2, 3, 4, 4, 5, 4, 6, 4(2) 下列数据中,中位数是______。
7, 9, 5, 3, 6, 8, 102. 选择题:A. 平均数B. 中位数C. 众数D. 方差六、平面图形(1) 所有矩形的对角线都相等。
()(2) 两条平行线上的任意一对同位角都相等。
()(3) 等边三角形的三个角都是60度。
()2. 填空题:(1) 一个等腰三角形的底边长为8cm,腰长为5cm,则该三角形的周长为______cm。
鲁教版五四制七年级上册数学全册试卷(五套单元试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6B.8C.10D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14B.17C.22D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1B.2C.3D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC ,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1B.2C.3D.410.如图,△ABC 的三个顶点和它内部的点P 1,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成7个互不重叠的小三角形;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成()个互不重叠的小三角形.A .2nB .2n +1C .2n -1D .2(n +1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是____________.13.如图,E 点为△ABC 的边AC 的中点,∥AB ,若MB =6 cm ,=4 cm ,则AB=________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.1(AB 18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=2+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C :因为BF ⊥AC 于点F ,所以△ABC 中AC 边上的高是线段BF ,故选C.3.A :因为△ABC ≌△EDF ,所以AC =EF .所以AE =CF .因为AF =20,EC =8,所以AE =CF =6.故选A.4.D5.B :由已知条件AB ∥ED 可得,∠B =∠D ,由CD =BF 可得,BC =DF ,再补充条件AB =ED ,可得△ABC ≌△EDF ,故选B.6.C 7.C 8.B119.B :易得S △ABE =3×12=4,S △ABD =2×12=6,所以S △ADF -S △BEF =S △ABD -S △ABE =2.10.B :△ABC 的三个顶点和它内部的点P 1,把△ABC 分成的互不重叠的小三角形的个数=3+2×0;△ABC 的三个顶点和它内部的点P 1,P 2,把△ABC 分成的互不重叠的小三角形的个数=3+2×1;△ABC 的三个顶点和它内部的点P 1,P 2,P 3,把△ABC 分成的互不重叠的小三角形的个数=3+2×2,所以△ABC的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.60°12.ASA :由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两个三角形全等.13.10 cm :由∥AB ,点E 为AC 的中点,可得∠EAM =∠E ,AE =CE .又因为∠AEM =∠CEN ,所以△AEM ≌△CEN .所以AM ==4 cm.所以AB =AM +MB =4+6=10(cm).14.SSS15.1<c <7;3<m <17:由三角形的三边关系得第三边的取值范围为4-3<c <4+3,即1<c <7.同理,得四边形EFMN 对角线EM 的取值范围为4-3<EM <4+3,即1<EM <7.所以10-7<m <10+7,即3<m <17.16.5:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF .又因为AC =BF ,所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.17.90°:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65°:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在⎧∠AFC =∠AEC ,△CAF 和△CAE 中,⎨∠CAF =∠CAE ,⎩AC =AC ,1所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =2(AB +AD ),1所以AF =2(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF⎧CF =CE ,=BE .在△FDC 和△EBC 中,所⎨∠CFD =∠CEB ,所以△FDC ≌△EBC (SAS).⎩DF =BE ,以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <CD ,所以BD -BC <AD -AB .22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB⎧∠E =∠C ,=∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,⎨AE =AC ,所以⎩∠EAM =∠CAN ,△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第二章测试卷一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l 垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是() A.12:01B.10:51C.10:21D.15:105.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处7.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()8.如图,已知:AB-AC=2 cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14 cm,则AC的长是()A.6B.7C.8D.99.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED 的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE =DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为∠α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC=6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC=________.18.小威在计算时发现:11×11=121,111×111=12 321,1 111×1 111=1 234 321,…,他从中发现了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求法、作法,只保留作图痕迹).21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,CE⊥AB于点E,AE=CE.试说明:(1)△AEF≌△CEB;(2)∠ABF=2∠FBD.23.操作与探究.(1)如图,分别画出①中“”和“”关于直线l的对称图形(画出示意图即可);(2)如图,②中小冬和小亮上衣上印的字母分别是什么?(3)把字母“”和“”写在薄纸上,观察纸的背面,写出你看到的字母背影;(4)小明站在三个学生的身后,这三个学生正向前方某人用手势示意一个三位数,从小明站的地方看(如图③所示),这个三位数是235.请你判断出他们示意的真实三位数是多少?24.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,是否存在△ADE是等腰三角形的情形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.答案一、1.A 2.A 3.C 4.B 5.A 6.C 7.A 8.A9.B :因为△DEF 是由△DEA 沿直线DE 翻折变换而来,所以AD =FD .因为D是AB 边的中点,所以AD =BD .所以BD =FD .所以∠B =∠BFD .因为∠B =65°,所以∠BDF =180°-∠B -∠BFD =180°-65°-65°=50°.故选B.10.A :因为BF ∥AC ,所以∠C =∠CBF .因为BC 平分∠ABF ,所以∠ABC =∠CBF .所以∠C =∠ABC .所以AB =AC .因为AD 是△ABC 的角平分线,所以⎧∠C =∠DBF ,BD =CD ,AD ⊥BC .故②③正确.在△CDE 与△BDF 中,⎨CD =BD ,⎩∠CDE =∠BDF ,所以△CDE ≌△BDF .所以DE =DF ,CE =BF .故①正确;因为AE =2BF ,所以AC =3BF .故④正确.故选A.二、11.E ,H ,I ,M12.213.1:如图,该球最后将落入1号球袋.14.2∠α15.6:因为AB =AC ,AD ⊥BC ,所以△ABC 关于直线AD 对称.所以S △BEF1=S △CEF .因为△ABC 的面积为12,所以图中阴影部分的面积=2S △ABC =6.16.6:过点D 作DE ⊥AC 于点E ,因为AD 平分∠BAC ,所以DE =BD =2.11所以S △ADC =2AC ·DE =2×6×2=6.17.108°18.12 345 678 987 654 321三、19.解:(1)如图,利用图中格点,可以直接确定出△ABC 中各顶点的对称点的位置,从而得到△ABC 关于直线MN 的对称图形,即为△A ′B ′C ′.111(2)S △ABC =4×6-2×4×1-2×3×6-2×2×4=9.20.解:如图.点C 1,C 2即为所求作的点.21.解:同意.理由如下:如图,连接OE ,OF .由题意知,BE =OE ,CF =OF ,∠OBC =∠OCB =30°,所以∠BOE =∠OBC =30°,∠COF =∠OCB =30°,∠BOC =120°.所以∠EOF =60°,∠OEF =60°,∠OFE =60°.所以△OEF 是等边三角形.所以OE =OF =EF =BE =CF .所以E ,F 是BC 的三等分点.22.解:(1)因为AD⊥BC,CE⊥AB,所以∠AEF=∠CEB=90°,∠AFE+∠EAF=90°,∠CFD+∠ECB=90°.又因为∠AFE=∠CFD,所以∠EAF=∠ECB.在△AEF和△CEB中,∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA).(2)由△AEF≌△CEB,得EF=EB,所以∠EBF=∠EFB.在△ABC中,AB=AC,AD⊥BC,所以BD=CD.所以FB=FC.所以∠FBD=∠FCD.因为∠EFB=180°-∠BFC=∠FBD+∠FCD=2∠FBD,所以∠EBF=2∠FBD,即∠ABF=2∠FBD.23.解:(1)图略.(2)“”和“”.(3)“”和“”.(4)他们示意的真实三位数是235.24.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为DC=2,AB=2,所以DC=AB.因为AB=AC,∠B=40°,所以∠C=∠B=40°.因为∠ADB=180°-∠ADC=∠DAC+∠C,∠DEC=180°-∠AED=∠DAC+∠ADE,且∠C=40°,∠ADE=40°,所以∠ADB=∠DEC.在△ABD与△DCE中,∠ADB=∠DEC,∠B=∠C,AB=DC,所以△ABD≌△DCE(AAS).(3)存在,∠BDA=110°或∠BDA=80°.第三章测试卷一、选择题(每题3分,共30分)1.下列各组数中,能够作为直角三角形的三边长的一组是() A.1,2,3B.2,3,4C.4,5,6D.3,4,52.在Rt△ABC中,∠C=90°,若角A,B,C所对的三边分别为a,b,c,且a =7,b=24,则c的长为()A.26B.18C.25D.213.如图,阴影部分是一个正方形,此正方形的面积是()A.16B.8C.4D.24.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个5.若△ABC的三边长分别为a,b,c,且满足(a-b)(a2+b2-c2)=0,则△ABC 是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.如图,直线l上有三个正方形a,b,c,若a,b的面积分别为5和13,则c 的面积为()A.4B.8C.12D.187.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上的D′处.若AB=3,AD=4,则ED的长为()3 A. 2B.3C.14D.38.如图,在△ABC中,AD是BC边上的中线,AC=17,BC=16,AD=15,则△ABC的面积为()A.128B.136C.120D.2409.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205cm D.210 cm10.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分的长度a(罐壁的厚度和小圆孔的大小忽略不计)的范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13二、填空题(每题3分,共24分)11.在Rt△ABC中,a,b为直角边,c为斜边,若a2+b2=16,则c=________.12.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADB=________.13.如图,一架长为4 m的梯子,一端放在离墙脚2.4 m处,另一端靠墙,则梯子顶端离墙脚的距离是________.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m处,过了10 s,飞机距离这个男孩头顶5 000 m,则飞机平均每小时飞行__________.15.已知a,b,c是△ABC的三边长,且满足关系(c2-a2-b2)2+|a-b|=0,则△ABC 的形状为____________.16.在△ABC中,AB=13 cm,AC=20 cm,BC边上的高为12 cm,则△ABC的面积为________.17.如图,在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为________.18.如图,在Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=5,BC=12,则AD的长为________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,在△ABC中,AD⊥BC于D,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.20.如图,在△ADC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB.若AB=20,求△ABD的面积.21.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l 上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.22.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC 的形状.23.如图,在△ABC中,AB:BC:CA=3:4:5,且周长为36 cm,点P从点A 开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C 以2 cm/s的速度移动,如果同时出发,过3 s时,△BPQ的面积为多少?24.如图,圆柱形玻璃容器高19 cm,底面周长为60 cm,在外侧距下底1.5 cm 的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5 cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.25.如图,甲是一个直角三角形ABC,它的两条直角边长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.(1)由图乙、图丙,可知①是以________为边长的正方形,②是以________为边长的正方形,③的四条边长都是________,且每个角都是直角,所以③是以________为边长的正方形;(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;(3)图乙中①②面积之和为________;(4)图乙中①②的面积之和与图丙中③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?答案一、1.D 2.C 3.B 4.C 5.D 6.B 7.A 8.C9.A 10.A 二、11.412.90°13.3.2 m 14.1 080 km 15.等腰直角三角形16916.126 cm 2或66 cm 217.150 cm 18.24三、19.解:(1)因为AD ⊥BC ,所以△ABD 和△ACD 均为直角三角形.所以AB 2=AD 2+BD 2,AC 2=AD 2+CD 2.又因为AD =12,BD =16,CD =5,所以AB =20,AC =13.所以△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,因为AB 2+AC 2=202+132=569,BC 2=212=441,所以AB 2+AC 2≠BC 2.所以△ABC 不是直角三角形.20.解:在△ADC 中,因为AD =15,AC =12,DC =9,所以AC 2+DC 2=122+92=152=AD 2.所以△ADC 是直角三角形,且∠C =90°.在Rt △ABC 中,AC 2+1BC 2=AB 2,所以BC =16.所以BD =BC -DC =16-9=7.所以S △ABD =2×7×12=42.21.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形.因为BC+CD =34 cm ,所以CD =(34-x )cm.因为∠ABC =90°,AB =6 cm ,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x )2-576,所以36+x 2=(34-x )2-576.解得x =8.所以当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形.22.解:因为a 2+b 2+c 2+50=6a +8b +10c ,所以a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0.所以a =3,b =4,c =5.因为32+42=52,即a 2+b 2=c 2,所以根据勾股定理的逆定理可判定△ABC 是直角三角形.:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断.23.解:设AB 为3x cm ,则BC 为4x cm ,AC 为5x cm.因为△ABC 的周长为36 cm ,所以AB +BC +AC =36 cm ,即3x +4x +5x =36.解得x =3.所以AB =9 cm ,BC =12 cm ,AC =15 cm.因为AB 2+BC 2=AC 2,所以△ABC 是直角三角形,且∠B =90°.过3 s 时,BP =9-3×1=6(cm),BQ =2×3=6(cm),11所以S △BPQ =2BP ·BQ =2×6×6=18(cm 2).故过3 s 时,△BPQ 的面积为18 cm 2.24.解:如图,将圆柱侧面展开成长方形MNQP ,过点B 作BC ⊥MN 于点C ,连接AB ,则线段AB 的长度即为所求的最短距离.在Rt △ACB 中,AC =MN -AN -CM =16 cm ,BC 的长等于底面周长的一半,即BC =30 cm.由勾股定理得,AB 2=AC 2+BC 2=162+302=1 156=342,所以AB =34 cm.故蜘蛛沿容器侧面爬行的最短距离为34 cm.25.解:(1)a ;b ;c ;c (2)a 2;b 2;c 2(3)a 2+b 2(4)图乙中①②的面积之和与图丙中③的面积相等.由大正方形的边长为a +b ,得大正方形的面积为(a +b )2,图乙中把大正方形分成了四部分,分别是边长为a 的正方形,边长为b 的正方形,还有两个长为a ,宽为b 的长方形.根12据面积相等得(a +b )2=a 2+b 2+2ab .由图丙可得(a +b )2=c 2+4×ab .所以a +2b 2=c 2.能得到关于直角三角形三边长的关系:两直角边的平方和等于斜边的平方.第四章测试卷一、选择题(每题3分,共30分)1.9的算术平方根是()A.±3B.3 C.-3 D.3222.下列4个数:9,7,π,(3)0,其中无理数是()A.922B.7C.πD.(3)03.下列各式中正确的是()A.497=±14412B.-3273-8=-2C.-9=-33D.(-8)2=44.已知a+2+|b-1|=0,那么(a+b)2 018的值为()A.1B.-1C.32 018D.-32 0185.若平行四边形的一边长为2,面积为45,则此边上的高介于() A.3与4之间B.4与5之间C.5与6之间D.6与7之间6.设边长为a的正方形的面积为2.下列关于a的四种结论:①a是2的算术平方根;②a是无理数;③a可以用数轴上的一个点来表示;④0<a<1.其中正确的是()A.①②C.①②③B.①③D.②③④7.实数a,b在数轴上对应点的位置如图所示,则化简a2-|a+b|的结果为() A.2a+b B.-2a+b C.b D.2a-b8.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4C.33B.43D.29.一个正方体木块的体积是343 cm3,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是()74949147A.2cm2B.4cm2C.8cm2D.2cm210.如图,数轴上A,B两点表示的实数分别为1和3,若点A关于点B的对称点为点C,则点C所表示的实数为()A.23-1B.1+3C.2+3D.22+1二、填空题(每题3分,共24分)11.6的相反数是________;绝对值等于2的数是________.12.一个数的平方根与这个数的立方根相等,那么这个数是________.313.估算比较大小:(1)-10________-3.2;(2)130________5.314.若2x+7=3,(4x+3y)3=-8,则x+y=________.15.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.16.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.17.若x,y为实数,且|x-2|+y+3=0,则(x+y)2 017的值为________.18.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72第一次第二次第三次进行如下操作:72――→[72]=8――→[8]=2――→[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行________次操作后变为1;只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(19题16分,20题12分,24、25题每题10分,其余每题6分,共66分)19.计算:(1)(-1)2 018+16-(3)-(-2)+(-2)--82;(4)2+|3-32|-(-5)2.20.求下列各式中未知数的值:(1)|a -2|=5;(2)4x 2=25;(3)(x -0.7)3=0.0272294;(2)132+0.5-8;43|a|-|a+b|+(c-a)2 21.已知a,b,c在数轴上对应点的位置如图所示,化简:+|b-c|.322.若实数a,b互为相反数,c,d互为倒数,求2(a+b)+8c d的值.23.已知a,b,c是△ABC的三边长,化简:(a+b+c)2-(b+c-a)2+(c-b-a)2.24.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;33(2)若1-2x与3x-5互为相反数,求1-x的值.25.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失后经过的时间近似地满足如下的关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失后经过的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?答案一、1.B 2.C3.D :A 中正确.4.A 5.B6.C:∵a 2=2,a >0,∴a =2≈1.414,即a >1,故④错误.37.C 8.B :64的立方根是4,4的立方根是 4.9.D 10.A二、11.-6;±212.013.(1)>(2)>14.-115.1-6或1+6:数轴上到某个点距离为a (a >0)的点有两个,易忽略左边的点而漏解.注意运用数形结合思想,利用数轴帮助分析.16.7:∵2<5<3,∴3<5+1<4.∵x <5+1<y ,且x ,y 为两个连续整数,∴x =3,y =4.∴x +y =3+4=7.17.-1:∵|x -2|+y +3=0,∴|x -2|=0,y +3=0,∴x =2,y =-3.∴(x +y )2 017=[2+(-3)]2 017=(-1)2 017=-1.18.3;255三、19.解:(1)(-1)2 018+16-(2)937=1+4-42=2.3497273=;B 中--144128=2;C 中-9无算术平方根;只有D1132+0.5-8=42+0.5-2=-1.3(3)-(-2)2+(-2)2--82=-4+2-(-4)=2.(4)2+|3-32|-(-5)2=2+(32-3)-5=2+32-3-5=32-6.20.解:(1)由|a -2|=5,得a -2=5或a -2=- 5.当a -2=5时,a =5+2;当a -2=-5时,a =-5+2.255(2)因为4x 2=25,所以x 2=4.所以x =±2.(3)因为(x -0.7)3=0.027,所以x -0.7=0.3.所以x =1.21.解:由数轴可知b <a <0<c ,所以a +b <0,c -a >0,b -c <0.所以原式=-a -[-(a +b )]+(c -a )+[-(b -c )]=-a +a +b +c -a -b +c =-a +2c .322.解:由已知得a +b =0,cd =1,所以原式=0+8=2.23.解:因为a ,b ,c 是△ABC 的三边长,所以a +b +c >0,b +c -a >0,c -b -a <0.所以原式=a +b +c -(b +c -a )+(a +b -c )=3a +b -c .24.解:(1)因为2+(-2)=0,而且23=8,(-2)3=-8,有8+(-8)=0,所以结论成立.所以“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)由(1)验证的结果知,1-2x +3x -5=0,所以x =4,所以1-x =1-2=-1.25.解:(1)当t =16时,d =7×16-12=7×2=14(厘米).答:冰川消失16年后苔藓的直径为14厘米.(2)当d =35时,t -12=5,即t -12=25,解得t =37.答:如果测得一些苔藓的直径是35厘米,冰川约是在37年前消失的.第五章测试卷一、选择题(每题3分,共30分)1.点P(4,3)所在的象限是()A.第一象限B.第二象限 C.第三象限 D.第四象限2.根据下列表述,能确定位置的是()A.红星电影院2排C.北偏东30°B.北京市四环路D.东经118°,北纬40°3.如图,在直角坐标系中,卡片盖住的点的坐标可能是() A.(2,3)B.(-2,1)C.(-2,-2.5)D.(3,-2)4.点P(-2,3)关于x轴对称的点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)5.已知点A(-1,-4),B(-1,3),则()A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,2)7.如图,将长为3的长方形ABCD放在平面直角坐标系中,AD∥x轴,若点D 的坐标为(6,3),则点A的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)8.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()A.15B.7.5C.6D.39.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度,……以此类推,第n步的走法是:当n能被3整除时,向上走1个单位长度;当n被3除,余数为1时,向右走1个单位长度;当n被3除,余数为2时,向右走2个单位长度,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)二、填空题(每题3分,共24分)11.写出平面直角坐标系中第三象限内一个点的坐标:________.12.在直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是________.13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.14.第二象限内的点P(x,y)满足|x|=9,y2=4,则点P的坐标是__________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.如图,点A,B的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为________.17.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B′处,则点B′的坐标为________.18.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A 3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(19题6分,20题8分,21,23题每题9分,22题10分,其余每题12分,共66分)19.如图,如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50 m 记作50,图中点A记作(30°,50);北偏西45°的方向记作-45°,从O点出发沿着该方向的反方向走20 m记作-20,图中点B记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).20.春天到了,七(1)班组织同学到人民公园春游,张明、李华对着景区示意图(如图)描述牡丹园的位置(图中小正方形的边长为100 m).张明:“牡丹园的坐标是(300,300).”李华:“牡丹园在中心广场东北方向约420m处.”实际上,他们所说的位置都是正确的.根据所学的知识解答下列问题:(1)请指出张明同学是如何在景区示意图上建立平面直角坐标系的,并在图中画出所建立的平面直角坐标系;(2)李华同学是用什么来描述牡丹园的位置的?请用张明同学所用的方法,描述出公园内其他地方的位置.。
山东省青岛市城阳区2023-2024学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________ A.B.C.D.二、填空题11.中国历史上刘徽首先给出了正负数的定义,“今两算得失相反,要令正负以名之”.意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们.如果收入+元,那么支出2000元记作元.5000元记作500012.如图,将此长方形绕虚线旋转一周,得到的几何体的侧面积是2cm.(结果保留π)13.把直径为6cm,长为16cm的圆钢锻造成半径为4cm的圆钢,则锻造后圆钢的长是三、解答题24.A B ,两地相距46千米,甲骑自行车从A 地前往B 地,速度为每小时15千米,1小时后,乙骑摩托车也沿相同的路线从A 地前往B 地,速度为每小时40千米.(1)乙出发多长时间后能追上甲?(2)若乙到达B 地后立即返回,返回途中与甲相遇的地点距A 地多少千米?25.如图是由边长相同的灰、白方块拼成的图形.(1)第n 个图形灰色方块共有__________个,白色方块共有__________个;(2)第100个图形白色方块共有__________个;(3)第()1n -个图形()1n >白色方块的总数与第()1n +个图形灰色方块总数相比,哪种颜色的总数多,多多少个?(用含n 的式子表示)(4)是否存在某个图形,灰色和白色方块的总和为2025个?如果存在,求出是第几个图形,如果不存在,请说明理由.26.如图,120AOB ∠=︒,射线OC 从OA 开始绕点O 逆时针旋转,速度为每分钟旋转20︒;同时,射线OD 从OB 开始绕点O 逆时针旋转,速度为每分钟旋转5︒;设运动时间为()()s 018t t <≤,解答下列问题:(1)当t 为何值时,AOD ∠为平角?(2)当t 为何值时,OC 平分AOB ∠?(3)在运动过程中,是否存在某一时刻t ,使OB 将DOC ∠分成的两个角的度数之比为1:2?若存在,求出t 的值;若不存在,请说明理由.(4)在运动过程中,是否存在某一时刻t ,使O D O C ⊥?若存在,求出t 的值;若不存在,请说明理由.。
初一上学期必会的40道经典数学题1. 学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?2. 小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数3. 某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。
该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套(2轴承配3机轴)?4. 某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净? 56、某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台?5. 民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。
一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走16米,那么甲出发几秒与乙相遇?6. 小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)7. 某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家鉴定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元,试根据形式的`路程的多少讨论用哪个公司的车比较合算?8. 某校校长在国庆节带领该校市级“三好学生”外出旅游,甲旅行社说“如果校长买一张票,则其余学生可享受半价优惠”,乙旅行社说“包括校长在内全部按票价的6折优惠”(即按票的60%收费)。
七年级上册数学试卷题【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边分别是8cm和10cm,那么第三边的长度可能是多少?A. 5cmB. 12cmC. 18cmD. 20cm3. 下列哪个图形是平行四边形?A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 两个质数相乘的结果一定是合数。
()2. 一个三角形的内角和一定是180度。
()3. 两条平行线之间的距离是相等的。
()4. 一个数的立方根只有一个。
()5. 0是最小的自然数。
()三、填空题(每题1分,共5分)1. 1的立方是______。
2. 9的平方根是______。
3. 两条平行线的特征是______。
4. 一个三角形的三个内角和是______度。
5. 最大的两位数是______。
四、简答题(每题2分,共10分)1. 解释什么是质数和合数。
2. 简述三角形的基本性质。
3. 解释什么是平行四边形。
4. 简述分数的基本性质。
5. 解释什么是立方根。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
2. 一个等腰三角形的底边长是8cm,腰长是5cm,求这个三角形的周长。
3. 一个数的平方是36,求这个数的立方。
4. 一个数的立方是64,求这个数的平方根。
5. 一个分数的分子和分母同时乘以2,这个分数的值会发生什么变化?六、分析题(每题5分,共10分)1. 举例说明什么是质数和合数,并解释它们之间的关系。
2. 解释三角形的内角和定理,并用一个具体的例子进行说明。
七、实践操作题(每题5分,共10分)1. 画出一个等边三角形,并标出它的三个内角的度数。
浙教版七年级数学上册《第一章有理数》单元测试卷-带答案班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.如果温度上升2℃记做+2℃,那么温度下降3℃记做( )A. +2℃B. —2℃C. +3℃D. -3℃2.如图,数轴上被墨水遮盖的数可能为( )A. 1B. —1.5C. -3D. -4.23. 在数轴上,若点 M表示的有理数m 满足|m|>1,且m<0,则点M在数轴上的位置表示正确的是 ( )4.下列式子正确的是( )A. |-2|=-2B. |a|=aC. --|-2|<0D. -3<-45.数轴上表示-4与1的两点间的距离是( )A. 3B. -5C. 3D. 56.对于任何有理数a,下列一定为负数的是( )A. -(-3+a)B. -aC. -|a+1|D. -|a|-17.下列说法中不正确的是( )A. 最小的正整数是 1B. 最大的负整数是-1C. 有理数分为正数和负数D. 绝对值最小的有理数是08. 一个数a在数轴上对应的点是A,当点 A 在数轴上向左平移了 3个单位长度后到点 B,点A 与点 B 表示的数恰好互为相反数,则数a是( )A. -3B. -1.5C. 1.5D. 39.-|a|=-3.2,则a是( )A. 3.2B. -3.2C. ±3.2D. 以上都不对10.下列各式中,正确的是( )A. --|-2|>0B.−47>−57C. |-3|=-|3|D. |-6|<0二、填空题(本大题有 6 小题,每小题4分,共24分)11. -(-2)的相反数是,绝对值是 .12. 已知−14,−23,13,54四个有理数在数轴上所对应的点分别为A,B,C,D,则这四个13. 数轴上一个点到表示一1的点的距离是 4,那么这个点表示的数是 .14. 在数轴上表示数m的点到原点的距离为2,则m+1= .15.(1)所有不大于4 且大于-3的整数有;(2)不小于—4 的非正整数有;(3)若|a|+|b|=4,且a=-1,则b= .16. 已知数a与数b 互为相反数,且在数轴上表示数a,b的点A,B之间的距离为2020个单位长度,若a<b,则a= ,b= .三、解答题(本大题有8小题,共66分)17.(6分)在数轴上表示下列各数,并将它们按从小到大的顺序用“<”号连接.0,4,−|−4|,−32,−(−1).18.(6分)(1)完成表中空白部分;(2)他们的最高身高和最矮身高相差多少?(3)他们班级学生的平均身高是多少? 6名学生中有几名学生的身高超过班级平均身高?19. (6分)把下列各数填入相应的括号内:1,−34,0,0.89,−9,−1.98,415,+102,−70.负整数:{ };正分数:{ };负有理数:{ }.20.(8分)邮递员骑车从邮局出发,先向南骑行3km到达A 村,继续向南骑行5km到达B村,然后向北骑行14km到达 C村,最后回到邮局.(1)以邮局为原点,以向南方向为正方向,用0.5cm表示 1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?21.(8分)同学们都知道,|2−(−3)|表示 2 与−3之差的绝对值,实际上它的几何意义也可理解为2 与−3两数在数轴上所对应的两点之间的距离.试探索:(1)求|2−(−3)|;(2)|5+3|表示的几何意义是什么?(3)|x−1|=5,,则x的值是多少?22.(10分)如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点 A 表示−4,点 G 表示 8.(1)点B 表示的有理数是,表示原点的是点;(2)图中的数轴上另有点M到点A、点G的距离之和为13,求这样的点 M表示的有理数;(3)若相邻两点之间的距离不变,将原点取在点 D,则点 C表示的有理数是,此时点 B 与点表示的有理数互为相反数.23.(10分)有5袋小麦,以每袋25 千克为基准,超过的千克数记做正数,不足的千克袋号一二三四五每袋超出或不足的千—0.2 0.1 一0.3 一0.1 0.2克数(1)第一袋大米的实际质量是多少千克?(2)把表中各数用“<”连接;(3)把各袋的袋号按袋中大米的质量从小到大排列,这一排列与(2)题中各数排列的顺序是否一致?24.(12分)把几个数用大括号括起来,相邻几个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016-x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金几何.(1)集合{2016} 黄金集合,集合{-1,2017} 黄金集合.(两空均填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素? 如果存在,请直接写出答案,否则说明理由.(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素? 说明你的理由.参考答案1.D2. C3. D4.C 5 D 6 . D 7 . C 8 . C 9 . C10. B 11. -2 2 12. BACD A13. -5或314. 3或-115. (1)—2,—1,0,1,2,3,4 (2)-4,-3,-2,-1,0(3)±3 16. -1010 1010 17. 解:-|-4|=-4,-(-1)=1.在数轴上表示如图所示:<0<−(−1)<4所以−|−4|<−3218. 解:(1)第一行:164 163 168;第二行:+2 +7(2)172—163=9( cm).(3)班级平均身高:165cm;共有4名学生超过班级平均身高.} 负有理数19. 解:自然数:{1,0,+102};负整数:{—9,—70};正分数:{0.89,45,−9,−1.98,−70}.{−3420. (1)略 (2)9km (3)28km21. 解:(1)原式=|5|=5.(2)5与—3两数在数轴上所对应的两点之间的距离.(3)x=6或-4.22. (1)—2 C (2)—4.5或8.5 (3)—2 F23.(1)24.8千克 (2)—0.3<—0.2<—0.1<0.1<0.2(3)第三的质量<第一的质量<第四的质量<第二的质量<第五的质量与(2)中一致24. 解:(1)不是是(2)存在,最小元素是—2000.(3)该集合共有 24 个元素.理由如下:①若1008是该黄金集合中的一个元素,则它所对应的元素也为 1008.②若1008不是该黄金集合中的元素,因为在黄金集合中,如果一个元素为a,那么另一个元素为2016—a,故黄金集合中的元素一定有偶数个,且黄金集合中每一对对应元素的和为 2016.因为2016×11=22176,2016×12= 24192,2016×13=26208,,又该黄金集合中所有元素之和为 M,且24190 <M< 24200,,若1008是该黄金集合中的元素,则 22176+ 1008=23184<24190,24192+ 1008=25200>24200,故1008不是该黄金集合中的元素,所以该黄金集合中元素的个数为 12×2=24.。
七年级上数学测试题
班级_______ 姓名____________ 学号_______ 评价________
一、填空(共20分,每空1分)
1、在215,0,-(-1.5),-│-5│,2,411,24中,整数是 .
2、A地海拔高度是-30米,B地海拔高度是10米,C地海拔高度是-10米,则
地势最高的与地势最低的相差__________米.
3、在数轴上距原点3个单位长度的点表示的数是___________.
4、已知P是数轴上的一点4,把P点向左移动3个单位后再向右移1个单位长度,
那么P点表示的数是______________.
5、311的相反数是_______,它的倒数是_______,它的绝对值是______.
6、既不是正数也不是负数的数是_________,其相反数是________.
7、最大的负整数是 _________,最小的正整数是_________ .
8、在274中的底数是__________,指数是_____________.
9、12003+20041=______________。
10、有一次小明在做24点游戏时抽到的四张牌分别是3、4、1、7,他苦思不得
其解,相信聪明的你一定能帮他解除困难,请你写出一个成功的算式:
___________________________=24.
11、计算:10-9+8-7+6-···+2-1= .
12、观察下列数据,按某种规律在横线上填上适当的数:
1,43,95,167,259, ,…
13、一列数71,72,73 … 723,其中个位数是3的有 个.
14、右上图是一数值转换机,若输入的x为-5,则输出的结果为__________.
15、如果712x,则x__________.(注:-2与x之间是乘法运算)
输 出
×(-3)
输入x
-2
二、选择题(共20分)
1、在211,2.1,2,0 ,2中,负数的个数有( )
A.2个 B.3个 C.4个 D.5个
2、一个数加上12等于5,则这个数是( )
A.17 B.7 C.17 D.7
3、下列算式正确的是( )
A. (-14)-5=-9 B. 0-(-3)=3
C. (-3)-(-3)=-6 D. |5-3|=-(5-3)
4、比较4.2, 5.0, 2 ,3的大小,下列正确的( )。
A.3 >4.2 > 2> 5.0 B.2 > 3>4.2> 5.0
C.2 > 5.0 > 4.2> 3 D. 3> 2>4.2> 5.0
5、乘积为1的两个数叫做互为负倒数,则2的负倒数是( )
A.2 B.21 C.21 D.2
6、已知字母a、b表示有理数,如果a+b=0,则下列说法正确的是( )
A . a、b中一定有一个是负数 B. a、b都为0
C. a与b不可能相等 D. a与b的绝对值相等
7、一个数的平方为16,则这个数是( )
A.4或4 B.4 C.4 D.8或8
8、绝对值大于2且小于5的所有整数的和是 ( )
A. 7 B. -7 C. 0 D. 5
9、一个数的绝对值是3,则这个数可以是( )
A.3 B.3 C.3或者3 D.31
10、34等于( )
A.12 B. 12 C.64 D.64
三、计算(写过程,共40分)
1、26+14+16+8 2、5.5+2.35.2-4.8
3、8)02.0()25(
4、 12765952136
5、 12131
6、21+2321 7、81)4(2833
8、10022232
四、(本题6分)某地探空气球的气象观测资料表明,高度每增加1千米,气温大
约降低6℃。若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多
少千米?
五、找规律:下列数中的第2003项是多少?2004项呢?第n个呢?
1,-2,3,-4,5,-6··· ···(本题6分)
六、(本题8分)下表记录的是流花河今年某一周内的水位变化情况,上周末(星
期六)的水位已达到警戒水位33米。(正号表示水位比前一天上升,负号表示水位
比前一天下降)
⑴本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上
还是之下?
⑵与上周末相比,本周末河流的水位是上升了还是下降了?
⑶以警戒水位作为零点,用折线统计图表示本周的水位情况。
水位变化(米) 解:
日 一 二 三 四 五 六 星期
星期 日 一 二 三 四 五 六
水位变化
(米)
+0.2 +0.8 -0.4 +0.2 +0.3 -0.5 -0.2
0
0.2
0.4
0.6
0.8
1