数列典型习题及解题方法
- 格式:doc
- 大小:995.38 KB
- 文档页数:12
数列求和公式的常见题型及解题方法1. 等差数列的求和公式等差数列是指数字之间的差等于一个常数的数列。
求等差数列的和常用的公式是:$$ S_n = \frac{n}{2}(a_1 + a_n) $$其中 $S_n$ 是数列的前 $n$ 项和,$a_1$ 是首项,$a_n$ 是末项。
2. 等比数列的求和公式等比数列是指数字之间的比等于一个常数的数列。
求等比数列的和常用的公式是:$$ S_n = \frac{a_1(1 - r^n)}{1 - r} $$其中$S_n$ 是数列的前$n$ 项和,$a_1$ 是首项,$r$ 是公比。
3. 平方数列的求和公式平方数列是指数列中的每一项都是前一项的平方。
求平方数列的和常用的公式是:$$ S_n = \frac{a_1^2(1 - r^{2n})}{1 - r^2} $$其中$S_n$ 是数列的前$n$ 项和,$a_1$ 是首项,$r$ 是公比。
4. 斐波那契数列的求和公式斐波那契数列是指数列中的每一项都是前两项之和。
求斐波那契数列的和常用的公式是:$$ S_n = F_{n+2} - 1 $$其中 $S_n$ 是数列的前 $n$ 项和,$F_n$ 是斐波那契数列的第$n$ 项。
5. 其他数列的求和方法除了常见的等差数列、等比数列、平方数列和斐波那契数列外,还有许多其他数列的求和方法。
对于这些数列,我们需要根据其特定的规律和性质来求和,例如算术-几何数列、调和数列、幂次数列等。
以上是数列求和公式的常见题型及解题方法的概述。
在解题过程中,我们应该根据题目给定的数列类型,选择相应的求和公式,并结合数列的特点进行求解。
等差数列典型例题类型一:直接利用等差数列的定义、公式求解例1.(1)求等差数列3,7,11,……的第11项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. 思路点拨:(1)根据所给数列的前2项求得首项和公差,写出该数列的通项公式,从而求出所求项;(2)题中要想判断一数是否为某一数列的其中一项,关键是要看是否存在一正整数n 值,使得n a 等于这一数.总结升华:1.根据所给数列的前2项求得首项1a 和公差d ,写出通项公式n a .2.要注意解题步骤的规范性与准确性.举一反三:【变式1】求等差数列8,5,2…的第21项【变式2】-20是不是等差数列0,72-,-7,……的项?如果是,是第几项?如果不是,说明理由.【变式3】求集合*{|7,,100}M m m n n N m ==∈<的元素的个数,并求这些元素的和 类型二:根据公式列方程(组)求解例2.已知等差数列{}n a 中,1533a =,45153a =,试问217是否为此数列的项?若是,说明是第几项?若不是,说明理由。
思路点拨:由于在条件中已知两项的值(两个等式),所以在求解方法上,可以考虑运用方程思想求解基本量首项1a 和公差d ,也可以利用性质求d ,再就是考虑运用等差数列的几何意义。
总结升华:1. 等差数列的关键是首项1a 与公差d ;五个基本量1a 、n 、d 、n a 、n S 中,已知三个基本量便可求出其余两个量;2.列方程(组)求等差数列的首项1a 和公差d ,再求出n a 、n S ,是数列中的基本方法. 举一反三:【变式1】等差数列-10,-6,-2,2,…前多少项的和是54?【变式2】等差数列{}n a 中, 4d =, 18n a =, 48n S =,求1a 的值.【变式3】已知等差数列{}n a ,354a =,734a =-,则15a = 。
类型三:等差数列的判断与证明例3.已知数列{}n a 的前n 项和为243n S n n =+,求证:数列{}n a 为等差数列. 思路点拨:由等差数列的定义,要判定{}n a 是不是等差数列,只要看1--n n a a (2n ≥)是不是一个与n 无关的常数。
(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
高中数学必须掌握的十种数列通项公式的解题方法和典型例题
在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。
求通项公式也是学习数列时的一个难点。
由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。
通项公式普通的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。
已知递推公式求通项常见方法:
①已知a1=a,a n+1=qa n+b,求a n时,利用待定系数法求解,其关键是确定待定系数λ,使a n+1+λ=q(a n+λ)进而得到λ。
②已知a1=a,a n=a n-1+f(n)(n≥2),求a n时,利用累加法求解,即
a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)的方法。
③已知a1=a,a n=f(n)a n-1(n≥2),求a n时,利用累乘法求解。
非常实用的十大解题方法及典型例题
方法一数学归纳法
方法二 Sn 法
方法三累加法
方法四累乘法
方法五构造法一
方法六构造法二
方法七构造法三
方法八构造法四
方法九构造五
方法十构造六。
数列题型及解题方法归纳总结一、等差数列等差数列是指数列中的相邻项之差都相等的数列。
下面对等差数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等差数列的首项为a,公差为d,第n项的值为an,则有公式:an = a + (n-1)d2. 求前n项和设等差数列的首项为a,公差为d,前n项和为Sn,则有公式:Sn = (n/2)(2a + (n-1)d)3. 求公差已知等差数列的首项为a,第m项与第n项的和为s,则公差d的值可以通过以下公式计算得出:d = (sm - sn)/(m - n)4. 求项数已知等差数列的首项为a,公差为d,第n项的值为an,可以通过以下公式求解项数n:n = (an - a)/d + 15. 应用题解题思路在解等差数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
二、等比数列等比数列是指数列中的相邻项之比都相等的数列。
下面对等比数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等比数列的首项为a,公比为q,第n项的值为an,则有公式:an = a * q^(n-1)2. 求前n项和(当公比q不等于1时)设等比数列的首项为a,公比为q,前n项和为Sn,则有公式:Sn = a * (q^n - 1) / (q - 1)3. 求前n项和(当公比q等于1时)当公比q等于1时,等比数列的前n项和为n * a。
4. 求公比已知等比数列的首项为a,第m项与第n项的比为r,则公比q的值可以通过以下公式计算得出:q = (an / am)^(1/(n-m))5. 求项数已知等比数列的首项为a,公比为q,第n项的值为an,可以通过以下公式求解项数n:n = log(an/a) / log(q)6. 应用题解题思路在解等比数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
三、斐波那契数列斐波那契数列是指数列中第一、第二项为1,后续项为前两项之和的数列。
高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n项和法(知求)例1、已知数列的前n项和,求数列的前n项和变式:已知数列的前n项和,求数列的前n项和练习:1、若数列的前n项和,求该数列的通项公式.答案:2、若数列的前n项和,求该数列的通项公式。
答案:3、设数列的前n项和为,数列的前n项和为,满足,求数列的通项公式。
4。
为{}的前n项和,=3(-1),求(n∈N+)5、设数列满足,求数列的通项公式(作差法)2.形如型(累加法)(1)若f(n)为常数,即:,此时数列为等差数列,则=。
(2)若f(n)为n的函数时,用累加法。
例 1。
已知数列{a n}满足,证明例2.已知数列的首项为1,且写出数列的通项公式。
例3。
已知数列满足,,求此数列的通项公式.3.形如型(累乘法)(1)当f(n)为常数,即:(其中q是不为0的常数),此数列为等比且=. (2)当f(n)为n的函数时,用累乘法。
例1、在数列中 ,求数列的通项公式.答案:练习:1、在数列中,求。
答案:2、求数列的通项公式。
4。
形如型(取倒数法)例1。
已知数列中,,,求通项公式练习:1、若数列中,,,求通项公式。
答案:2、若数列中,,,求通项公式。
答案:5.形如,其中)型(构造新的等比数列)(1)若c=1时,数列{}为等差数列;(2)若d=0时,数列{}为等比数列;(3)若时,数列{}为线性递推数列,其通项可通过待定系数法构造辅助数列来求。
方法如下:设,利用待定系数法求出A例1.已知数列中,求通项。
练习:1、若数列中,,,求通项公式。
答案:2、若数列中,,,求通项公式。
答案:6。
形如型(构造新的等比数列)(1)若一次函数(k,b是常数,且),则后面待定系数法也用一次函数。
例题。
在数列中,,,求通项。
解:原递推式可化为比较系数可得:k=—6,b=9,上式即为所以是一个等比数列,首项,公比为.即:,故.练习:1、已知数列中,,,求通项公式(2)若(其中q是常数,且n0,1)①若p=1时,即:,累加即可②若时,即:,后面的待定系数法也用指数形式。
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
数列求和题型及解题方法
数列求和是数学中的一个重要概念,其题型和解题方法有很多种。
以下是一些常见的数列求和题型及其解题方法:
1. 等差数列求和
等差数列是一种常见的数列,其相邻两项的差是常数。
等差数列的求和公式为:S = n/2 (a1 + an),其中n是项数,a1是首项,an是尾项。
例如:1+2+3+...+n=n(n+1)/2
2. 等比数列求和
等比数列是一种常见的数列,其相邻两项的比是常数。
等比数列的求和公式为:S = a1 (1 - q^n) / (1 - q),其中a1是首项,q是公比,n是项数。
例如:1+2+4+...+2^(n-1)=2^n-1
3. 错位相减法
对于一些等差数列和等比数列的混合数列,可以使用错位相减法来求和。
具体做法是将原数列的每一项都乘以一个适当的常数,使得新数列成为等差数列或等比数列,然后使用相应的求和公式进行计算。
例如:100+101+102+...+999=99/2=44550
4. 分组求和法
对于一些项数较多、难以直接求和的数列,可以将它们分成若干组,每组有有限项,然后分别求每组的和,最后将各组的和相加即可。
例如:(1+2+3)+(4+5+6)+(7+8+9)=9+18+27=54
5. 倒序相加法
对于一些奇偶项相间的数列,可以将正序和倒序分别求和,再将两个和相加,即可得到原数列的和。
例如:(1+2+3+4)+(3+2+1)=8+6=14
以上是一些常见的数列求和题型及其解题方法,掌握这些方法对于解决数列求和问题非常有帮助。
数列11、 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
2、 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
3、 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
4、 已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
5、 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
6、 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项 公式。
数列2 1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a3、已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项4、已知在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a5、 已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。
6、已知数列{}n a 中,11=a,22=a ,n n n a a a 313212+=++,求na7、已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .8、已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a9、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。
数列大题题型及解题方法数列大题是中学数学中常见的题型之一,主要考察学生对数列概念的理解和运用能力。
数列大题可以分为等差数列和等比数列两种类型。
下面将介绍这两种数列大题的解题方法。
一、等差数列的解题方法:1. 求数列的通项公式:首先,要判断数列是等差数列,可以通过观察数列中的差值是否相等来判断。
如果差值相等,则数列是等差数列。
然后,可以通过观察数列中的前几项来确定数列的首项a和公差d。
有了首项和公差,就可以得到数列的通项公式:an = a + (n-1)d。
2. 求数列的前n项和:数列的前n项和可以通过求和公式来计算。
等差数列的求和公式为Sn = n/2 * (a + an),其中Sn表示前n项和,a表示首项,an 表示第n项。
3. 解题实例:例如,有一个等差数列的前5项分别为1、4、7、10、13,要求求出数列的通项公式和前10项的和。
首先,根据观察,可以确定首项a为1,公差d为3。
其次,根据数列的通项公式an = a + (n-1)d,可以得到数列的通项公式为an = 1 + (n-1)3。
最后,代入n=10,可以计算出前10项的和Sn = 10/2 * (1 + 1 + 9*3) = 100。
二、等比数列的解题方法:1. 求数列的通项公式:判断数列是否是等比数列,可以通过观察数列中的相邻项之间的比值是否相等来判断。
如果比值相等,则数列是等比数列。
然后,可以通过观察数列中的前几项来确定数列的首项a和公比r。
有了首项和公比,就可以得到数列的通项公式:an = a * r^(n-1)。
2. 求数列的前n项和:等比数列的前n项和可以通过求和公式来计算。
等比数列的求和公式为Sn = a * (1 - r^n) / (1 - r),其中Sn表示前n项和,a 表示首项,r表示公比。
3. 解题实例:例如,有一个等比数列的前5项分别为1、2、4、8、16,要求求出数列的通项公式和前10项的和。
首先,根据观察,可以确定首项a为1,公比r为2。
1 高中数学数列基本题型及解法 这部分内容需要掌握的题型主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
一、知识整合 1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, 进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力. 3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
二、方法技巧 1.判断和证明数列是等差(等比)数列常有三种方法: (1)定义法:对于n≥2的任意自然数,验证11(/)nnnnaaaa为同一常数。 (2)通项公式法: ①若 = +(n-1)d= +(n-k)d ,则na为等差数列; ②若 ,则na为等比数列。 (3)中项公式法:验证中项公式成立。 2. 在等差数列na中,有关nS的最值问题——常用邻项变号法求解:
(1)当1a>0,d<0时,满足100mmaa的项数m使得mS取最大值. (2)当1a<0,d>0时,满足100mmaa的项数m使得取最小值。 在解含绝对值的数列最值问题时,注意转化思想的应用。 3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、注意事项 2
1.证明数列na是等差或等比数列常用定义,即通过证明11nnnnaaaa 或11nnnnaaaa而得。 2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意ns与na之间关系的转化。如:
na=1100nnSSS 21nn, na=nkkkaaa211)(.
4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路. 5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.
四、例题解析 例1.已知数列{an}是公差d≠0的等差数列,其前n项和为Sn.
(2)过点Q1(1,a1),Q2(2,a2)作直线12,设l1与l2的夹角为θ, 证明:(1)因为等差数列{an}的公差d≠0,所以
Kp1pk是常数(k=2,3,„,n). (2)直线l2的方程为y-a1=d(x-1),直线l2的斜率为d.
例2.已知数列na中,nS是其前n项和,并且1142(1,2,),1nnSana, ⑴设数列),2,1(21naabnnn,求证:数列nb是等比数列;
⑵设数列),2,1(,2nacnnn,求证:数列nc是等差数列; ⑶求数列na的通项公式及前n项和。 分析:由于{bn}和{cn}中的项都和{an}中的项有关,{an}中又有S1n=4an+2,可由S2n-S1n作切入点 3
探索解题的途径. 解:(1)由S1n=4a2n,S2n=4a1n+2,两式相减,得S2n-S1n=4(a1n-an),即a2n=4a1n-4an.(根据bn的构造,如何把该式表示成b1n与bn的关系是证明的关键,注意加强恒等变形能力的训练) a2n-2a1n=2(a1n-2an),又bn=a1n-2an,所以b1n=2bn ① 已知S2=4a1+2,a1=1,a1+a2=4a1+2,解得a2=5,b1=a2-2a1=3 ② 由①和②得,数列{bn}是首项为3,公比为2的等比数列,故bn=3·21n.
当n≥2时,Sn=4a1n+2=21n(3n-4)+2;当n=1时,S1=a1=1也适合上式. 综上可知,所求的求和公式为Sn=21n(3n-4)+2. 说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前n项和。解决本题的关键在于由条件241nnaS得出递推公式。 2.解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用.
例3.设数列{an}的前项的和Sn=31(an-1) (nN+),(1)求a1;a2; (2)求证数列{an}为等比数列。 解: (Ⅰ)由)1(3111aS,得)1(3111aa ∴1a21 又)1(3122aS,即)1(31221aaa,得
412a.
(Ⅱ)当n>1时,),1(31)1(3111nnnnnaaSSa
得,211nnaa所以na是首项21,公比为21的等比数列. 例4、设a1=1,a2=35,an+2=35an+1-32an (n=1,2,---),令bn=an+1-an (n=1,2---)求数列{bn}的通项公式,(2)求数列{nan}的前n项的和Sn。 解:(I)因121nnnaab1115222()3333nnnnnnaaaaab
故{bn}是公比为32的等比数列,且故,32121aab ),2,1()32(nbnn (II)由得nnnnaab)32(1 4
)()()(121111aaaaaaaannnnn
])32(1[232)32()32()32(21nnn
注意到,11a可得),2,1(3231nannn 记数列}32{11nnn的前n项和为Tn,则 1222222212(),2()()333333nnnnTnTn
2112222221()()()3[1()](),3333333nnnnnTnn两式相减得
1112122(3)29[1()]3()93333(3)223(12)2(1)1823nnnnnnnnnnnTnnSaananTnn
故
从而 例5.在直角坐标平面上有一点列),(,),(),,(222111nnnyxPyxPyxP,对一切正整数n,点nP位于函数4133xy的图象上,且nP的横坐标构成以25为首项,1为公差的等差数列nx。 ⑴求点nP的坐标; ⑵设抛物线列,,,,,321ncccc中的每一条的对称轴都垂直于x轴,第n条抛物线nc的顶点为nP,
且过点)1,0(2nDn,记与抛物线nc相切于nD的直线的斜率为nk,求:nnkkkkkk13221111。 ⑶设1,4|,1,,2|nyyyTnNnxxxSnn,等差数列na的任一项TSan,其中1a是TS中的最大数,12526510a,求na的通项公式。
解:(1)23)1()1(25nnxn 1353533,(,3)4424nnnyxnPnn
(2)nc的对称轴垂直于x轴,且顶点为nP.设nc的方程为:,4512)232(2nnxay 把)1,0(2nDn代入上式,得1a,nc的方程为:1)32(22nxnxy。 32|0'nykxn,)321121(21)32)(12(111nnnnkknn
nnkkkkkk13221111)]321121()9171()7151[(21nn
=641101)32151(21nn (3)}1,),32(|{nNnnxxS, }1,),512(|{nNnnyyT}1,,3)16(2|{nNnnyy ,STTT中最大数171a. 5
设}{na公差为d,则)125,265(91710da,由此得 ).(247,24),(12,129248**NnnadNmmdTadnn又
说明:本例为数列与解析几何的综合题,难度较大(1)、(2)两问运用几何知识算出nk,解决(3)的关
键在于算出ST及求数列na的公差。 例6.数列na中,2,841aa且满足nnnaaa122 *Nn ⑴求数列na的通项公式; ⑵设||||||21nnaaaS,求nS;
⑶设nb=)12(1nan)(),(*21*NnbbbTNnnn,是否存在最大的整数m,使得对任
意*Nn,均有nT32m成立?若存在,求出m的值;若不存在,请说明理由。 解:(1)由题意,nnnnaaaa112,}{na为等差数列,设公差为d, 由题意得2382dd,nnan210)1(28. (2)若50210nn则,||||||,521nnaaaSn时
21281029,2n
naaannn
6n时,nnaaaaaaS76521
4092)(2555nnSSSSSnn
故nS 409922nnnn 65nn
(3))111(21)1(21)12(1nnnnanbnn
nT)]111()111()4131()3121()211[(21
nnnn.
)1(2n
n
若32mTn对任意*Nn成立,即161mnn对任意*Nn成立, )(1*Nnnn的最小值是21,,2116mm的最大整数值是7。
即存在最大整数,7m使对任意*Nn,均有.32mTn 说明:本例复习数列通项,数列求和以及有关数列与不等式的综合问题。.