细胞生物学(翟中和)细胞骨架
- 格式:doc
- 大小:49.00 KB
- 文档页数:3
第一章绪论1细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。
核心问题是将遗传与发育在细胞水平上结合起来。
2.“细胞学说”的基本内容1)认为细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成;2)每个细胞作为一个相对独立的单位,既有它“自己的”生命,又对与其它细胞共同组成的整体的生命有所助益;3)新的细胞可以通过老的细胞繁殖产生。
3.生物芯片技术:通过缩微技术,根据分子间特异性地相互作用的原理,将生命科学领域中不连续的分析过程集成于硅芯片或玻璃芯片表面的微型生物化学分析系统,以实现对细胞、蛋白质、基因及其它生物组分的准确、快速、大信息量的检测。
按照芯片上固化的生物材料的不同,可以将生物芯片划分为基因芯片、蛋白质芯片、细胞芯片和组织芯片。
目前,最成功的生物芯片形式是以基因序列为分析对象的“微阵列(microarray)”,也被称为基因芯片4. 主要内容:细胞结构与功能、细胞重要生命活动――细胞核、染色体以及基因表达的研究、生物膜与细胞器的研究、细胞骨架体系的研究、细胞增殖及其调控、细胞分化及其调控、细胞的衰老与凋亡、细胞的起源与进化、细胞工程第二章细胞基本知识概要1.对细胞的基本理解:A.细胞是生命活动的基本单位1)一切有机体都由细胞构成,细胞是构成有机体的基本单位2)细胞具有独立的、有序的自控代谢体系,3)细胞是代谢与功能的基本单位4)细胞是有机体生长与发育的基础5)细胞是遗传的基本单位,细胞具有遗传的全能性6)没有细胞就没有完整的生命B.细胞的基本共性1)所有的细胞表面均有由磷脂双分子层与镶嵌2)蛋白质构成的生物膜,即细胞膜。
3)所有的细胞都含有两种核酸:即DNA与RNA 4)作为遗传信息复制与转录的载体。
5)作为蛋白质合成的机器─核糖体,毫无例外地6)存在于一切细胞内。
第一章绪论生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有了细胞才有完整的生命活动。
细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。
核心问题是将遗传与发育在细胞水平上结合起来。
细胞生物学与分子生物学(包括分子遗传学与生物化学)相互渗透与交融是总的发展趋势。
“细胞学说”的基本内容认为细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成;每个细胞作为一个相对独立的单位,既有它“自己的”生命,又对与其它细胞共同组成的整体的生命有所助益;新的细胞可以通过老的细胞繁殖产生。
学习细胞生物学的注意点•抽象思维与动态观点•结构与功能统一的观点•同一性(unity)和多样性(diversity)的问题•细胞生物学的主要内容:基本概念与实验证据;细胞器的动态特征;化学能的产生与利用;细胞的活动及其调控等实验科学与实验技术——细胞真知源于实验室——Whatweknow细胞是生命活动的基本单位一切有机体都由细胞构成,细胞是构成有机体的基本单位细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位细胞是有机体生长与发育的基础细胞是遗传的基本单位,细胞具有遗传的全能性没有细胞就没有完整的生命细胞概念的一些新思考细胞是多层次非线性的复杂结构体系细胞具有高度复杂性和组织性细胞是物质(结构)、能量与信息过程精巧结合的综合体细胞完成各种化学反应;细胞需要和利用能量;细胞参与大量机械活动;细胞对刺激作出反应;细胞是高度有序的,具有自组装能力与自组织体系。
细胞能进行自我调控;繁殖和传留后代;细胞的基本共性所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。
所有的细胞都含有两种核酸:即DNA与RNA作为遗传信息复制与转录的载体。
细胞生物学-(翟中和-第三版)课后练习题及答案LT4)所有细胞的增殖都是一分为二的分裂方式3、为什么说病毒不是细胞?蛋白质感染子是病毒吗?1) 病毒是由一个核酸分子(DNA或RNA)芯和蛋白质外壳构成的,是非细胞形态的生命体,是最小、最简单的有机体。
仅由一个有感染性的RNA构成的病毒,称为类病毒;仅由感染性的蛋白质构成的病毒称为朊病毒。
病毒具备了复制与遗传生命活动的最基本的特征,但不具备细胞的形态结构,是不完全的生命体;病毒的主要生命活动必须在细胞内才能表现,在宿主细胞内复制增殖;病毒自身没有独立的代谢与能量转化系统,必须利用宿主细胞结构、原料、能量与酶系统进行增殖,是彻底的寄生物。
因此病毒不是细胞,只是具有部分生命特征的感染物。
2) 蛋白质感染子是病毒的类似物,虽不含核酸,其增殖是由于正常分子的构象发生转变造成的,这种构象异常的蛋白质分子成了致病因子,这不同于传统概念上的病毒的复制方式和传染途径,所以蛋白质感染子是病毒的类似物。
4、为什么说支原体可能是最小最简单的细胞存在形式?1)支原体能在培养基上生长2)具有典型的细胞膜3)一个环状双螺旋DNA是遗传信息量的载体4)mRNA与核糖体结合为多聚核糖体,指导合成蛋白质5)以一分为二的方式分裂繁殖6)体积仅有细菌的十分之一,能寄生在细胞内繁殖5要点原核细胞真核细胞细胞核无膜包围,称为拟核有双层膜包围染色体形状数目组成DNA序列环状DNA分子一个基因连锁群DNA裸露或结合少量蛋白质无或很少重复序列核中的为线性DNA分子; 线粒体和叶绿体中的为环状DNA分子两个或多个基因连锁群核DNA同组蛋白结合,线粒体和叶绿体中的DNA裸露有重复序列基因表达RNA和蛋白质在同一区间合成RNA在核中合成和加工; 蛋白质在细胞质中合成细胞分裂二分或出芽有丝分裂或减数分裂内膜无独立的内膜有, 分化成细胞器细胞骨架无普遍存在呼吸作用和光合作用酶的分部质膜线粒体和叶绿体(植物)核糖体70S(50S+30S)80S(60S+40S)第三章:细胞生物学研究方法1. 透射电镜与普通光学显微镜的成像原理有何异同?透射电镜与光学显微镜的成像原理基本一样,不同的是:1) 透射电镜用电子束作光源,用电磁场作透镜,2) 光学显微镜用可见光或紫外光作光源,以光学玻璃为透镜。
翟中和细胞生物学考研题库
细胞生物学是一门研究细胞结构与功能,以及细胞在生物体中作用的科学。
作为一门基础学科,它在生物医学领域具有极其重要的地位。
以下是翟中和细胞生物学考研题库的一些典型题目,供同学们复习使用。
一、选择题
1. 细胞膜的基本骨架是:
A. 脂质双层
B. 蛋白质层
C. 糖蛋白层
D. 糖脂层
2. 细胞周期中,细胞体积增大的阶段是:
A. G1期
B. S期
C. G2期
D. M期
3. 细胞凋亡是由以下哪种基因控制的:
A. 原癌基因
B. 抑癌基因
C. 细胞周期基因
D. 凋亡基因
二、填空题
1. 细胞膜的流动性主要取决于膜中的_________。
2. 细胞分裂过程中,染色体的复制发生在细胞周期的_________。
3. 细胞分化的实质是_________的选择性表达。
三、简答题
1. 描述细胞膜的组成和功能。
2. 解释细胞周期的概念及其各个阶段的特点。
3. 阐述细胞凋亡与细胞坏死的区别。
四、论述题
1. 论述细胞信号转导的基本原理及其在生物体中的重要性。
2. 讨论细胞骨架在细胞运动、分裂和形态维持中的作用。
3. 分析细胞周期调控失常可能导致的疾病及其机制。
结束语:
细胞生物学是一门不断发展的学科,它不仅涉及到基础的生物学理论,还与许多疾病的发生、发展密切相关。
希望通过本题库的复习,同学
们能够更深入地理解细胞生物学的基本概念和原理,为进一步的学习和研究打下坚实的基础。
祝同学们考研顺利!。
Cell biology细胞生物学第七章真核细胞内膜系统、蛋白质分选与膜泡运输细胞内被膜区分类:细胞质基质、细胞内膜系统、有膜包被的细胞器第一节细胞质基质的含义和功能一、细胞质基质的含义(1)含义:在真核细胞的细胞质中,除去可分辨的细胞器以外的胶状物质主要含有:(1)与代谢有关的许多酶(2)与维持细胞形态和物质运输有关的细胞质骨架结构细胞质基质是一个高度有序的体系,细胞质骨架纤维贯穿在粘稠的蛋白质胶体中,多数的蛋白质直接或间接地与骨架结合,或与生物膜结合,从而完成特定的功能。
细胞质基质主要是由微管、微丝和中间丝等相互联系形成的结构体系,蛋白质和其他分子以凝聚或暂时的凝聚状态存在,与周围溶液的分子处于动态平衡。
差速离心获得的胞质溶胶的组分和细胞质基质溶液成分很大不同。
胞质溶胶中的多数蛋白质可能通过弱键结合在基质的骨架纤维上。
二、细胞质基质的功能(1)蛋白质分选和转运N端有信号序列的蛋白质合成之后转移到内质网上,通过膜泡运输的方式再转运到高尔基体。
其他蛋白质的合成都在细胞质基质完成,并根据自身信号转运到线粒体、叶绿体、细胞核中,也有些蛋白驻留在细胞质基质中。
(2)锚定细胞质骨架(3)蛋白的修饰、选择性降解1 蛋白质的修饰辅基、辅酶与蛋白的结合磷酸化和去磷酸化糖基化N端甲基化(防止水解)酰基化2 控制蛋白质寿命N端第一个氨基酸残基决定寿命细胞质基质能够识别N端不稳定的氨基酸信号将其降解,依赖于泛素降解途径3 降解变性和错误折叠的蛋白质4 修复变性和错误折叠的蛋白热休克蛋白的作用第二节细胞内膜系统及其功能细胞内膜系统是指在结构、功能乃至发生上相互关联、由膜包被的细胞器或细胞结构。
研究方法:电镜技术免疫标记和放射自显影离心技术和遗传突变体分析一、内质网的形态结构和功能内质网是由封闭的管状或扁平囊状膜系统及其包被的腔形成的互相沟通的三维网络结构。
(一)内质网的两种基本类型糙面内质网和光面内质网。
糙面内质网:扁囊状整齐附着有大量核糖体功能:合成分泌性蛋白和膜蛋白光面内质网:分支管状,小功能:脂质合成,出芽位点部分细胞合成固醇类激素糙面内质网有20多种和光面内质网不同的蛋白,说明有特殊装置隔开两种内质网的组分。
细胞生物学教案. 第一章绪论第一节细胞生物学研究内容与现状一、细胞生物学是现代生命科学的重要基础学科1.细胞学(Cytology):是研究细胞的结构、功能和生活史的科学2.细胞生物学(Cell Biology):运用近代物理学和化学的技术成就以及分子生物学的概念与方法,从显微水平、亚显微水平和分子水平三个层次上,研究细胞的结构、功能及各种生命活动规律。
二、细胞生物学的主要研究内容1. 细胞核、染色体及基因表达基因表达与调控是目前细胞生物学、遗传学和发育生物学在细胞和分子水平相结合的最活跃领域。
2.生物膜与细胞器的研究膜及细胞器的结构与功能问题(“膜学”)。
3. 细胞骨架体系的研究胞质骨架、核骨架的装配调节问题和对细胞行使多种功能的重要.性。
4. 细胞增殖及调控控制生物生长和发育的机理是研究癌变发生和逆转的重要途径(“再教育细胞”)。
5. 细胞分化及调控一个受精卵如何发育为完整个体的问题。
(细胞全能性)6 .细胞衰老、凋亡及寿命问题。
7. 细胞的起源与进化。
8. 细胞工程改造利用细胞的技术。
生物技术是信息社会的四大技术之一,而细胞工程又是生物技术的一大领域。
目前已利用该技术取得了重大成就(培育新品种,单克隆抗体等),所谓21世纪是生物学时代,将主要体现在细胞工程方面。
三、当前细胞生物学研究的总趋势与重点领域1. 染色体DNA与蛋白质相互作用关系;2. 细胞增殖、分化、凋亡的相互关系及其调控;3 .细胞信号转导的研究;4 .细胞结构体系的装配。
第二节细胞生物学发展简史一细胞生物学研究简史1.细胞学创立时期 19世纪以及更前的时期(1665—1875),是以形态描述为主的生物科学时期;2. 细胞学经典时期 20世纪前半世纪(1875—1900),主要是实验细胞学时期;3. 实验细胞学时期(1900—1953);4. 分子细胞学时期(1953至今)。
总过程概括为:细胞发现→细胞学说建立→细胞学形成→细胞生物学的发展(1665)(1838—1839)(1892)(1965)R.Hooke Schleiden、Schwann Hertiwig DeRobertis二、细胞的发现(discovery of cell)以及细胞学说的建立及其意义(The cell theory)1.1838年,德国植物学家施莱登(J.Schleiden)关于植物细胞的工作,发表了《植物发生论》一文(Beitrage zur Phytogenesis).2.1839年,德国动物学家施旺(T.Shwann)关于动物细胞的工作,发表了《关于动植物的结构和生长一致性的显微研究》一文,论证了所有动物体也是由细胞组成的,并作为一种系统地科学理论提出了细胞学说。
细胞生物学考研复习笔记------------翟中和第一章绪论第二章细胞基本知识概要第三章细胞生物学研究方法第四章细胞质膜与细胞表面第五章物质的跨膜运输与信号传递第六章细胞质基质与细胞内膜系统第七章细胞的能量转换──线粒体和叶绿体第八章细胞核(nucleus)与染色体(chromosome)第九章核糖体(ribosome)第十章细胞骨架(Cytoskeleton)第十一章细胞增殖及其调控第十二章细胞分化与基因表达调控第十三章细胞衰老与凋亡第一章绪论细胞生物学研究的内容和现状细胞生物学是现代生命科学的重要基础学科细胞生物学的主要研究内容当前细胞生物学研究的总趋势与重点领域细胞重大生命活动的相互关系细胞学与细胞生物学发展简史细胞的发现细胞学说的建立其意义细胞学的经典时期实验细胞学与细胞学的分支及其发展细胞生物学学科的形成与发展细胞生物学的主要学术组织、学术刊物与教科书细胞生物学生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有了细胞才有完整的生命活动。
细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。
核心问题是将遗传与发育在细胞水平上结合起来。
主要内容细胞结构与功能、细胞重要生命活动:细胞核、染色体以及基因表达的研究生物膜与细胞器的研究细胞骨架体系的研究细胞增殖及其调控细胞分化及其调控细胞的衰老与凋亡细胞的起源与进化细胞工程总趋势细胞生物学与分子生物学(包括分子遗传学与生物化学) 相互渗透与交融是总的发展趋势。
重点领域✧染色体DNA与蛋白质相互作用关系—主要是非组蛋白对基因组的作用✧细胞增殖、分化、凋亡的相互关系及其调控✧细胞信号转导的研究✧细胞结构体系的组装美国科学情报研究所(ISI)1997年SCI(Science Citation Index)收录及引用论文检索,全世界自然科学研究中论文发表最集中的三个领域分别是:细胞信号转导(signal transduction);细胞凋亡(cell apoptosis);基因组与后基因组学研究(genome and post-genomic analysis)。
第一章绪论1.1复习笔记一、细胞生物学研究的内容与现状1.现代生命科学中的一门重要的基础前沿学科细胞生物学是指一门研究和揭示细胞基本生命活动规律的学科,它从显微、亚显微与分子水平上研究细胞结构与功能,细胞增殖、分化、代谢、运动、衰老、死亡,以及细胞信号转导,细胞基因表达与调控,细胞起源与进化等重大生命过程。
2.细胞生物学的主要研究内容(1)生物膜与细胞器(2)细胞信号转导(3)细胞骨架体系(4)细胞核、染色体及基因表达(5)细胞增殖及其调控(6)细胞分化及干细胞生物学(7)细胞死亡(8)细胞衰老(9)细胞工程(10)细胞的起源与进化二、细胞学与细胞生物学发展简史1.生物科学3 个阶段(1)形态描述阶段:该阶段为19 世纪以及更早时期。
(2)实验生物学阶段:该阶段为20 世纪的前半个世纪。
(3)精细定性与定量的现代生物学阶段:该阶段为20 世纪50 年代以来。
2.细胞的发现英国学者胡克(Robert Hooke)于1665 年用自制的显微镜(放大倍数为40~140 倍),观察了软木(栎树皮)的薄片,第一次描述了植物细胞的构造。
荷兰学者列文虎克(Antony van Leeuwenhoek)用更好的显微镜,观察了许多动植物的活细胞与原生动物,并于1674 年在观察鱼的红细胞时描述了细胞核的结构。
意大利的M.Malpighi 与英国的N.Grew 注意到了植物细胞中细胞壁与细胞质的区别。
3.细胞学说的建立及其意义(1)细胞学说的建立①第一阶段1838~1839 年,德国植物学家施莱登和德国动物学家施旺提出“细胞学说”,其基本内容为:a.细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成;b.每个细胞作为一个相对独立的单位,既有它“自己的”生命,又对与其他细胞共同组成的整体的生命有所助益;c.新的细胞可以通过已存在的细胞繁殖产生。
②第二阶段1858 年,德国医生和病理学家魏尔肖提出“细胞只能来自细胞”、“有机体的一切病理表现都是基于细胞的损伤”等观点。
第一章1. 根据细胞生物学研究的内容与你所掌握的生命科学知识,客观、恰当地评价细胞生物学在生命科学中所处的地位,以及它与其他学科的关系。
答细胞生物学是一门从细胞的显微结构、超微结构和分子结构的各级水平研究细胞的结构与功能的关系,从而探究细胞生长、发育、分化、繁殖、遗传、变异、代谢、衰亡及进化等各种生命现象规律的科学。
生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有了细胞才有完整的生命,一切生命现象的奥秘都要从细胞中寻找答案。
许多高等学校在生命科学的教学中,将细胞生物学确定为基础课程。
细胞生物学、分子生物学、神经生物学和生态学并列为生命科学的四大基础学科。
细胞生物学与其他学科之间的交叉渗透日益明显。
2.通过学习细胞学发展简史,你如何认识细胞学说的重要性?答 1838—1839年,德国植物学家施莱登和德国动物学家施旺提出一切动植物都由细胞发育而来,并由细胞和细胞产物所构成;每一个细胞作为相对独立的单位,但也与其他细胞相互影响。
1858年Virchow对细胞学说做了重要的补充,强调细胞只能来自细胞。
细胞学说的提出对于生物科学的发展具有重大意义。
细胞学说、进化论、孟德尔遗传学称为现代生物学的三大基石,而细胞学说又是后二者的基石。
对细胞结构的了解是生物科学和医学分支进一步发展所不可缺少的。
3. 试简明扼要地分析细胞生物学学科形成的客观条件,以及它今后发展的主要趋势。
答(1)细胞生物学学科形成的客观条件细胞的发现(1665—1674)1665年,胡克发表了《显微图谱》(《Micrographia》)一书,描述了用自制的显微镜(30倍)观察栎树软木塞切片时发现其中有许多小室,状如蜂窝,称为“cellar”。
1674年,荷兰布商列文虎克自制了高倍显微镜(300倍左右),观察到血细胞、池塘水滴中的原生动物、人类和其他哺乳动物的镜子。
细胞学说的建立(1838—1858)1838—1839年,德国植物学家施莱登和德国动物学家施旺两人共同提出细胞学说,1858年Virchow对细胞学说进行了的补充。
细胞生物学(翟中和第四版)•细胞生物学概述•细胞的基本结构与功能•细胞的代谢与调控•细胞的生长、分裂与增殖•细胞的分化、衰老与凋亡•细胞工程与应用细胞生物学概述01细胞生物学的定义与研究对象定义细胞生物学是研究细胞结构、功能、生长、分裂、分化、凋亡以及细胞间相互作用的科学。
研究对象包括原核细胞、真核细胞、病毒等所有生物细胞以及细胞的各种组分和细胞器。
细胞生物学的发展历史与现状发展历史从17世纪列文虎克发现细胞到20世纪电子显微镜的发明,细胞生物学逐渐从形态学到生理学、生物化学等多学科交叉融合。
现状随着基因组学、蛋白质组学、代谢组学等组学技术的发展,细胞生物学研究已经进入后基因组时代,更加关注细胞在分子水平上的调控机制和细胞间的相互作用。
揭示生命现象的本质促进医学发展推动生物技术发展探索生物进化机制细胞生物学的研究意义与价值细胞是生物体的基本结构和功能单位,通过研究细胞可以揭示生命现象的本质和规律。
细胞培养、细胞工程、基因编辑等生物技术的发展都离不开细胞生物学的基础研究。
细胞生物学的研究对于理解疾病的发生发展机制、寻找新的治疗方法和药物具有重要作用。
通过研究不同物种细胞的结构和功能差异,可以探索生物进化的机制和规律。
细胞的基本结构与功能0203细胞膜的功能作为细胞的边界,维持细胞内外环境的相对稳定;控制物质进出细胞;进行细胞间的信息交流。
01细胞膜的主要成分脂质、蛋白质和糖类。
02细胞膜的结构磷脂双分子层构成基本支架,蛋白质分子以不同方式镶嵌其中。
水、无机盐、脂质、糖类、氨基酸、核苷酸等。
细胞质的主要成分细胞质的结构细胞质的功能包括基质和细胞器,基质呈胶质状态,细胞器分布于其中。
为细胞新陈代谢提供场所和物质;参与细胞内物质的运输;与细胞分裂、分化等生命活动密切相关。
030201细胞核的主要成分DNA、蛋白质和少量RNA。
细胞核的结构核膜、核仁、染色质和核基质。
细胞核的功能遗传信息库,控制细胞的遗传和代谢活动;细胞代谢和遗传的控制中心。
细胞生物学重点1第九章:线粒体重点1.掌握线粒体的化学组成及结构内外膜、DNA、核糖体、膜间隙、F1颗粒、基质、嵴蛋白质占线粒体干重的65~70%,脂类线粒体的脂类只占干重的20~30%含丰富的心磷脂和较少的胆固醇是线粒体在组成上与细胞其他膜结构的明显差别。
2.掌握线粒体的功能,熟悉ATP形成机制3.熟悉线粒体的增殖4.了解线粒体的基因组学特征5.了解线粒体的起源第十五章细胞增殖和细胞周期需要掌握的内容:1.有丝分裂及减数分裂的特点及二者的比较2.细胞周期及细胞周期室的概念3.细胞周期各时相的特点4.细胞周期的调控( cyclins-CDKs-CKIs系统)及研究方法5.细胞增殖的概念6.联会复合体的概念及特点7.细胞周期检验点第六章细胞膜及其表面重点:1 掌握细胞膜的化学组成2 掌握细胞膜的特点3 熟悉细胞膜的分子结构模型4 了解细胞膜表面结构第五章细胞连接和细胞外基质QUESTION:简述细胞外基质的生物学作用1.真核细胞的细胞核(E)A. 是细胞遗传物质的储存场所B. 是最大的细胞器C. 是转录的场所D. 是DNA复制的场所E. 以上都是哺乳类动物中没有细胞核的细胞是(红细胞)、成熟的植物筛管无细胞核细胞核的结构包括哪几部分?核膜(核孔、核纤层)、染色质、核仁、核基质2.核定位信号(B)A. 可引导蛋白质出核B. 对其连接的蛋白质无特殊要求C. 完成转运后被切除D. 与线粒体基因有关E. 与染色体的组装有关3.以下哪些组件与蛋白入核有关(ABE)A. Ran-GTPB. ImportinC. ExportinD. NESE. NLS4.关于蛋白质入核运输机制错误的是(B)A. 需要ATP供能的主动运输过程B. 与膜性细胞器之间的运输相同C. 由核膜孔道控制D. 运输过程不切除核定位信号E. 运输时保持完全折叠的天然构象5.简述核孔复合体的结构和功能.6.蛋白质入核运输的机制与膜性细胞器之间的运输有何不同?7.举例说明转录因子核输入的调控。
1
第十章 细胞骨架
第一节 微丝与细胞运动
1. 微丝的基本结构单位?
球形肌动蛋白(G-actin)
2. 球形肌动蛋白(G-actin)单体
为ATP酶,但不属于马达蛋白。
3. 纤维状肌动蛋白(F-actin)
整根微丝上,每个球形肌动蛋白单体的裂缝都朝向微丝的同一端,使微丝在结构上具极性。
具裂缝一端为负极,另一端为正极。
4. 在细胞内,微丝的成核反应需要成核蛋白Arp2/3 (actin related protein, 肌动蛋白相关蛋白)
复合物参与。
5.影响微丝组装的特异性药物
细胞松弛素(cytochalasin)可切断微丝纤维,并结合在微丝末端,抑制肌动蛋白组装到微
丝纤维上,特异性地抑制微丝功能。
鬼笔环肽(phalloidin)与微丝表面亲和性高,对微丝的解聚有抑制作用,使微丝纤维稳定
而抑制其功能。
6. 微丝的功能
形成应力纤维;形成微绒毛;细胞的变形运动;胞质分裂环;顶体反应 ;肌肉收缩(参与
形成肌原纤维);其他功能:如细胞器运动、质膜的流动性、胞质环流均与微丝的活动有关。
7. 马达蛋白:将化学能转换为机械能的蛋白。
细胞内参与物质运输的马达蛋白有3类。
肌球蛋白:沿微丝运动
驱动蛋白:沿微管运动
动力蛋白:沿微管运动
8. 肌纤维的结构
骨骼肌细胞(又称肌纤维),由数百条肌原纤维组成;每根肌原纤维由收缩单元——肌节线
性重复排列而成。肌节中含有细肌丝和粗肌丝。细肌丝的主要成分是肌动蛋白、原肌球蛋白和肌
钙蛋白。粗肌丝主要由若干II型肌球蛋白通过尾部结构域相互作用组装而成,头部突出并可与
细肌丝的肌动蛋白亚基结合,构成粗、细肌丝之间的横桥。
9. 肌肉收缩的滑动模型
肌细胞上的动作电位引起肌质网Ca2+电位门通道开启,肌浆中Ca2+浓度升高,肌钙蛋白与
Ca2+结合,引发原肌球蛋白构象改变,暴露出肌动蛋白与肌球蛋白的结合位点。肌球蛋白通过结
合与水解ATP、不断发生周期性的构象改变、引起粗肌丝和细肌丝的相对滑动。
10. 由神经冲动引发的肌肉收缩基本过程如下:
(1)动作电位的产生
来自脊髓神经元的神经冲动经轴突传到神经-肌肉接点——运动终板,使肌细胞膜去极化,
并经T小管传至肌质网。
(2)Ca 2+的释放
肌质网去极化后释放Ca 2+至肌浆中,Ca 2+浓度升高,达到收缩期的Ca 2+阈浓度(约为
10-6mol/L)。
(3)原肌球蛋白位移
2
Ca 2+与Tn-C结合,引起肌钙蛋白构象变化,Tn-C与Tn-I、Tn-T结合力增强,导致Tn-I与
肌动蛋白结合力削弱。使肌动蛋白与Tn-I脱离;同时,Tn-T使原肌球蛋白移位到肌动蛋白双螺
旋沟的深处,暴露出肌动蛋白与肌球蛋白头部的结合位点,解除了肌动蛋白与肌球蛋白结合的障
碍。
(4)细肌丝与粗肌丝之间的相对滑动
在初始状态,组成粗肌丝的头部(马达结构域)没有结合ATP时,头部与细肌丝结合,并
成僵直状态。
1)ATP结合到肌球蛋白头部导致与肌动蛋白纤维的结合力下降,肌球蛋白头部与肌动蛋白
分开。
2) ATP水解为ADP+Pi,但水解产物仍与肌球蛋白结合,获能的肌球蛋白头部构象发生变
化,向细肌丝的正极端抬升。
3)在Ca 2+ 存在的条件下,肌球蛋白头部与靠近细肌丝正极端的1个肌动蛋白亚基结合。
4)Pi释放,肌球蛋白颈部结构域发生构象变化,导致肌球蛋白头部与细肌丝的角度发生变
化,拉动细肌丝相对于粗肌丝的滑动。
5)ADP释放,肌球蛋白头部结构域与细肌丝又回到僵直状态。
如果细胞质中仍有高浓度的Ca 2+,肌球蛋白将继续下一个周期,沿细肌丝滑动。
(5)到达肌细胞的神经冲动一旦停止,肌质网通过钙泵将Ca 2+回收,使细胞质中Ca 2+降低,
收缩周期停止。
第二节 微管及其功能
1. 微管的结构组成与极性
αβ—微管蛋白二聚体是微管的基本结构单位。
α-和β-微管蛋白都有GTP结合位点,属于G蛋白的范畴。
微管具有极性。
2. 作用于微管的特异性药物和温度对微管组装的影响
秋水仙素(colchicine)结合的微管蛋白可加合到微管上,但阻止其他微管蛋白单体继续添加,
不影响去组装,从而破坏微管和纺锤体结构,长春花碱具有类似的功能。
紫杉醇(taxol)与微管蛋白结合后,阻止微管去组装,促进微管装配, 并使已形成的微管稳定。
但这种稳定性会破坏微管的正常功能。
通常,低温(20度以下)促进去组装使微管解聚,恢复常温后(20度以上)微管蛋白亚基
重新组装成微管。
因此,低温处理和秋水仙素溶液处理可使染色体加倍。
3. 微管组织中心
微管组织中心(microtubule organizing center,MTOCs)是具有起始微管的组装和延伸的细
胞结构,如中心体、基体均具有微管组织中心的功能。
4. γ微管蛋白
源于中心体的微管并不直接起源于中心粒,而是在中心粒外周物质(PCM)。在中心粒外周
物质中具有γ微管蛋白,这种蛋白的含量很低,可聚合成环状复合体,像模板一样参与微管蛋白
的核化,帮助α和β微管蛋白聚合为微管纤维。
微管蛋白以环状的γ球蛋白复合体为模板核化、先组装出(-)极,然后开始生长,因此中
心体周围的微管(-)极指向中心体,(+)级远离中心体。
5.
微管是细胞内生物大分子复合物和细胞器运输的导轨。
3
胞质中沿微管运输物质的分子发动机(马达蛋白)分为两大类:驱动蛋白(kinesin)和胞质动
力蛋白(cytoplasmic dynein, CyDn)
两者均需ATP提供能量。
6. 驱动蛋白(kinesins)
(1)传统的驱动蛋白
通常所说的驱动蛋白即指1985年鱿鱼神经元中轴突发现的驱动蛋白,称为传统的驱动蛋白。
传统的驱动蛋白通过结合和水解ATP,导致颈部发生构象改变,使两个头部交替与微管结
合,从而沿微管(—)极端向(+)极端“行走”,将“尾部”结合的“货物”(运输泡或细胞器)
转运到其它地方。
驱动蛋白沿微管运动的模型有2种:“步行”模型和“尺蠖”爬行模型。
现有证据大多支持“步行”模型。
(2) 驱动蛋白家族
自传统的驱动蛋白之后,又陆续发现许多驱动蛋白类似蛋白(KLP, kinesin-like protein)和
驱动蛋白相关蛋白(KRB, kinesin-related protein),构成了驱动蛋白超家族和亚家族。
驱动蛋白家族成员(kinesin family member, KIF)大多介导“货物”从微管(—)极端向(+)
极端的运输,也有家族成员介导“货物”从微管(+)极端向(—)极端的运输,还有的家族成
员具有调节微管动态装配的能力(如驱动蛋白13家族成员,在有丝分裂后期促进动粒微管+端微
管蛋白解聚)。
7. 胞质动力蛋白
动力蛋白的作用主要有以下几个方面:
在细胞分裂中推动染色体的分离、驱动鞭毛的运动、向着微管(-)极运输膜泡。
8. 微管的功能
(1)维持细胞形态,对细胞结构具有组织作用
(2)参与细胞内物质运输
(3)形成纺锤体和参与染色体运动
驱动蛋白13家族成员参与有丝分裂后期动粒微管+端解聚,胞质动力蛋白牵引染色体向动粒
微管 - 端运动。
驱动蛋白5家族成员使极微管重叠区向+端滑动,使纺锤体两极间距离延长。
(4)参与纤毛与鞭毛的运动
纤毛和鞭毛的运动是依靠动力蛋白(dynein)水解ATP,使相邻的二联微管相互滑动。
第三节 中间丝/纤维
1. 与微管和微丝不同,中间纤维是最稳定的细胞骨架成分,它主要起支撑作用。
2. 中间丝蛋白并不是所有真核细胞都必须的结构组分。
3. 植物基因组中未发现编码中间丝蛋白的基因。