机械故障诊断
- 格式:docx
- 大小:112.87 KB
- 文档页数:6
机械故障诊断1. 介绍机械故障诊断是指通过对机械设备进行检测和分析,确定故障原因并提供解决方案的过程。
在工业生产中,机械设备的故障会导致生产停滞和产量下降,因此及时准确地诊断和解决机械故障是非常重要的。
2. 机械故障的分类机械故障可以分为以下几类:2.1 机械部件故障机械部件故障是指机械设备的零部件出现故障,例如轴承损坏、齿轮磨损等。
这类故障通常可以通过检查零部件的状态和磨损程度来诊断。
2.2 电气故障电气故障是指机械设备的电路或电气元件出现故障,例如电机故障、电路短路等。
这类故障可以通过检查电气接线、测量电压和电流等方式来诊断。
2.3 液压故障液压故障是指机械设备的液压系统出现故障,例如液压泵故障、液压阀卡死等。
诊断液压故障通常需要对液压系统进行检查和测试。
2.4 传动故障传动故障是指机械设备的传动系统出现故障,例如皮带断裂、链条脱落等。
这类故障可以通过检查传动装置的状态和连接情况来诊断。
2.5 控制故障控制故障是指机械设备的控制系统出现故障,例如PLC故障、控制软件错误等。
诊断控制故障通常需要对控制系统进行检查和分析。
3. 机械故障诊断的方法机械故障诊断可以借助人工经验和现代技术手段来进行。
3.1 经验法经验法是指根据经验来判断机械故障的原因和解决方案。
经验丰富的技术人员可以通过观察和听觉来判断机械故障的类型和程度,从而采取相应的措施来解决。
3.2 检测仪器现代技术手段可以通过各种检测仪器来辅助机械故障的诊断。
例如震动仪可以检测机械设备的振动情况,红外热像仪可以检测机械设备的温度分布等。
这些检测仪器可以提供更精确的数据,从而帮助技术人员确定故障原因。
3.3 数据分析机械故障诊断还可以通过对机械设备的数据进行分析来实现。
例如使用数据采集系统收集机械设备的运行数据,然后通过数据分析软件对数据进行处理和分析,以确定潜在的故障原因。
4. 机械故障诊断的挑战和解决方案机械故障诊断面临许多挑战,例如故障难以发现、故障种类繁多等。
旋转机械故障诊断
旋转机械故障诊断主要是通过观察和分析机械运行过程中
的异常现象来判断故障原因。
以下是一些常见的旋转机械
故障诊断方法:
1. 震动分析:通过测量机械运行时的振动幅值和频率,分
析振动的特点和变化趋势,判断故障位置和类型。
常见的
故障类型包括不平衡、轴承损坏和轴承松动等。
2. 温度监测:通过测量机械的各个部件的温度,判断是否
存在过热的情况。
过高的温度可能是由于摩擦、润滑不良
或散热不良等原因引起的故障。
3. 声音分析:通过对机械工作过程中产生的声音进行分析,判断是否存在异响或噪音。
噪音可以是由于轴承损坏、齿
轮磨损或螺栓松动等引起的。
4. 润滑油分析:通过对机械润滑油的化学成分和物理性质
进行分析,判断是否存在金属粉末、水分或杂质等异常。
这些异常可能是由于零件磨损或润滑油质量不佳引起的故障。
5. 可视检查:通过对机械各个部件的外观进行检查,观察
是否存在磨损、裂纹或松动等现象。
这可以帮助诊断轴承、齿轮和联接件等部件的故障。
以上是常见的旋转机械故障诊断方法,诊断时可以结合多
种方法综合分析,准确判断和定位故障原因,以便及时进
行修复或更换有问题的部件。
机械故障诊断及典型案例解析一、导言机械故障是指机械设备在使用过程中出现的各种异常情况,影响设备正常运转。
机械故障诊断是通过观察、检测和分析机械设备的工作状态,找出故障原因并采取相应的修复措施。
本文将介绍机械故障诊断的一些基本方法和典型案例。
二、机械故障诊断方法1. 观察法:通过对机械设备的外部观察,发现异常现象,如磨损、变形、脱落等,从而判断故障原因。
2. 检测法:使用各种检测工具和设备,如红外测温仪、振动测试仪等,对机械设备进行各项参数检测,以发现故障。
3. 分析法:通过对机械设备故障的历史数据进行分析,找出故障的规律和原因。
4. 经验法:基于经验和专业知识,通过对机械设备的工作过程进行观察和分析,判断故障原因。
三、典型案例解析1. 轴承故障:机械设备在运行过程中出现明显的噪音和振动,经过观察和检测发现,轴承出现了磨损和松动,需要更换轴承。
2. 电机故障:电机无法启动或启动后运转不正常,经过检测发现电机绕组出现了短路,需要进行绕组修复或更换电机。
3. 传动故障:机械设备传动带断裂或松动,导致传动不稳定或失效,通过观察和分析发现传动带磨损严重,需要更换传动带。
4. 润滑故障:机械设备在运行过程中出现摩擦增大、温升过高等异常现象,经过检测发现润滑系统故障,需要清洗或更换润滑油。
5. 冷却故障:机械设备在运行过程中温度过高,经过检测发现冷却系统故障,需要清洗或更换冷却器。
6. 阀门故障:机械设备在运行过程中无法控制流量或压力,经过观察和分析发现阀门密封不良,需要进行密封件更换或维修。
7. 传感器故障:机械设备无法正常感知工作状态,经过检测发现传感器损坏,需要更换传感器。
8. 压力故障:机械设备在运行过程中出现压力异常,经过检测发现压力表故障,需要更换压力表或进行校准。
9. 过载故障:机械设备在运行过程中出现过载现象,经过观察和分析发现负荷过大,需要优化工艺或增加设备容量。
10. 控制系统故障:机械设备无法正常控制,经过检测发现控制器故障,需要更换控制器或进行维修。
机械故障诊断的原理及应用1. 引言机械故障诊断是指通过对机械设备或系统的状态进行监测和分析,从而判断是否存在故障并确定故障原因的过程。
随着工业自动化程度的提高和大型机械设备的广泛应用,机械故障诊断在工业领域中变得越来越重要。
本文将讨论机械故障诊断的原理和应用。
2. 机械故障诊断的原理机械故障诊断的原理基于故障特征的提取和分析。
下面是常用的机械故障诊断的原理:•振动信号分析:通过对机械设备振动信号的采集和分析,可以判断设备是否存在结构松动、轴承磨损等故障。
利用频域分析、波形分析等方法可以提取故障特征。
•声音信号分析:通过对机械设备产生的声音信号进行采集和分析,可以判断设备是否存在异响、噪声等故障。
利用频谱分析、波形分析等方法可以提取故障特征。
•温度信号分析:通过对机械设备温度信号的采集和分析,可以判断设备是否存在过热、冷却不良等故障。
利用温度变化曲线、温度分布等方法可以提取故障特征。
•电流信号分析:通过对机械设备电流信号的采集和分析,可以判断设备是否存在电机故障、电路故障等。
利用电流波形、频谱等方法可以提取故障特征。
3. 机械故障诊断的应用机械故障诊断在各个领域都有广泛的应用。
下面是几个常见的应用场景:•工业制造:在工业制造领域,机械设备的故障会导致生产线停工,产生巨大的经济损失。
通过机械故障诊断技术,可以实现对设备状态的实时监测,及时采取维修措施,以减少停工时间和降低维修成本。
•能源领域:在发电厂、风电场等能源领域,机械设备的故障会影响能源的供应稳定性和效率。
通过机械故障诊断技术,可以提前发现设备故障,并进行预防性维护,以提高能源产能和可靠性。
•交通运输:在交通运输领域,机械故障可能导致车辆或船只的故障和事故。
通过机械故障诊断技术,可以对交通工具进行故障监测,提高交通运输的安全性和可靠性。
•医疗设备:在医疗设备中,机械故障可能对患者健康造成严重影响。
通过机械故障诊断技术,可以对医疗设备进行定期监测,确保其正常运行,提高医疗服务的准确性和可靠性。
机械故障诊断技术简介
机械故障诊断技术是指利用先进的计算机技术、传感器技术和诊断算法,对机械设备进行精准的故障诊断。
其特点是以机械故障为核心,融合多种信息技术手段结合高效算法,快速准确地判定机械设备的故障原因。
机械故障诊断技术的应用范围广泛,可以用于汽车、电子设备、机床、船舶、飞机等领域。
机械故障诊断技术主要包括以下几个方面:
1.传感器技术:通过安装各种传感器,采集机械设备的运行数据,如转速、电压、电流、温度、压力等信息。
2.信号处理技术:对传感器采集到的信号进行处理,如滤波、降噪、增益等,以提高信号的质量和准确性。
3.特征提取技术:将信号转化为特征向量,通过数学模型来判定不同特征间的关系,并分析出某些特征与机械故障之间的关联。
4.数据挖掘技术:应用数据挖掘算法,从机械设备的历史数据中找出规律和趋势,以预测机械故障的发生。
5.诊断算法:根据机械设备的特征向量和历史数据,采用不同的诊断算法,如神经网络、支持向量机、朴素贝叶斯等,来实现故障的诊断。
在实际应用时,机械故障诊断技术需要根据具体的应用场景进行调整和优化,以达到更好的诊断效果。
机械工程中的故障诊断与排除技术机械工程是一门涉及机械设备设计、制造和维修的学科,而故障诊断与排除技术是机械工程中至关重要的一环。
本文将深入探讨机械工程中的故障诊断与排除技术,包括常见的故障原因、诊断方法和排除步骤。
一、故障原因在机械工程中,故障原因各不相同,但可以归结为以下几种常见情况:1. 人为因素:操作不当、维修不当、过载使用等。
2. 零部件磨损:长期使用导致零部件摩擦、磨损,进而引发故障。
3. 材料质量问题:使用劣质材料或零部件制造缺陷,影响机械工作正常。
4. 环境因素:机械设备长时间在恶劣环境中运行,比如高温、潮湿等。
二、故障诊断对于机械设备出现故障时,准确的诊断是解决问题的第一步。
以下是常见的故障诊断方法:1. 观察法:通过仔细观察机械设备的工作状况,寻找异常现象,如异常声音、振动等。
2. 测试仪器:利用各种测量仪器检测机械设备中的参数,如温度、电压、电流等,以确定是否存在异常。
3. 经验法:依靠经验丰富的技术人员,通过类似故障的前例,判断可能的故障原因。
4. 数据分析:通过对机械设备传感器、控制器等收集的数据进行分析,发现异常情况。
三、故障排除一旦故障原因被准确定位,接下来就是执行故障排除步骤。
以下是常见的故障排除步骤:1. 停机与断电:确保机械设备处于安全状态,避免意外伤害。
2. 检查组装:检查机械设备的零部件是否正确组装,存在松动或错误安装的情况。
3. 检查系统:逐一检查机械系统中的各个部分,寻找问题所在,如传动系统、液压系统等。
4. 更换部件:根据故障原因,更换受损或失效的零部件,确保机械设备的正常运行。
5. 重新调试:在更换部件后,需要对机械设备进行重新调试,以确保问题已经得到解决。
四、预防措施除了故障诊断与排除技术,预防措施在机械工程中同样重要。
以下是一些常见的预防措施:1. 定期维护:定期对机械设备进行保养和检修,及时发现并解决问题。
2. 使用说明书:严格按照设备的使用说明书操作,避免人为操作不当导致故障。
机械故障诊断的方法
机械故障诊断的方法可以分为以下几种:
1. 观察法:通过观察机械设备的运转过程中是否存在异常现象来判断故障原因。
例如,机械噪音变大、部件振动、热量异常等。
2. 测试法:通过使用仪器设备对机械设备进行测试,测量关键参数,比如温度、压力、电流、电压等,从而找出故障的原因。
3. 比对法:将已知正常的机械设备与出故障的设备进行比对,找出两者之间的差异并分析可能的故障原因。
4. 故障代码法:一些机械设备会记录故障代码,通过查阅故障代码手册,可以迅速定位到故障原因。
5. 试验法:通过对机械设备进行一系列试验,例如拉力试验、冲击试验、振动试验等,来模拟实际使用过程中可能发生的故障情况。
6. 经验法:依靠工程师或技术人员的丰富经验和专业知识,根据故障的症状和手头的情况进行判断和诊断。
以上方法可以单独或者组合使用,根据具体的机械设备故障情况选择合适的方法
进行诊断。
机械故障诊断概述1. 引言机械故障诊断是指通过分析和判断机械设备出现故障的原因和位置,以便进行修复和维护的过程。
随着工业自动化程度的提高,机械设备的复杂性也在增加,因此机械故障的诊断变得越来越重要。
本文将概述机械故障诊断的基本概念和流程,并介绍常用的机械故障诊断方法。
2. 机械故障诊断流程机械故障诊断通常包括以下几个步骤:2.1 数据采集在机械设备出现故障时,需要采集相关的数据,包括振动、温度、噪声等。
这些数据可以通过传感器或监测设备来获取。
2.2 数据预处理获取到的原始数据通常包含噪声和无用信息。
在进行故障诊断之前,需要对数据进行预处理,包括滤波、降噪等操作,以提高后续分析的准确性。
2.3 特征提取特征提取是机械故障诊断的关键步骤之一。
通过对预处理后的数据进行特征提取,可以提取到与故障相关的特征量,例如频率、振幅、峰值等。
2.4 故障诊断模型构建在故障诊断模型构建阶段,可以使用机器学习或统计方法来构建故障诊断模型。
常用的方法包括支持向量机、神经网络、决策树等。
2.5 故障诊断与分析根据构建好的故障诊断模型,对特征提取后的数据进行故障诊断与分析。
通过与已知故障模式进行比对,可以确定机械设备的故障原因和位置。
2.6 故障修复与维护诊断出机械设备的故障原因后,需要进行相应的修复和维护工作。
这包括更换损坏的部件、调整参数、进行润滑等。
3. 常用的机械故障诊断方法3.1 振动分析法振动分析是一种常用的机械故障诊断方法。
通过分析机械设备的振动信号,可以判断出设备是否存在故障,并定位故障的位置。
常用的振动分析方法包括时域分析、频域分析和时频域分析。
3.2 声音分析法声音分析法是通过分析机械设备的声音信号来进行故障诊断的方法。
通过分析声音信号的频谱和时域特征,可以判断机械设备是否存在故障。
3.3 热像分析法热像分析法是一种通过红外热像仪来进行故障诊断的方法。
通过观察机械设备表面的温度分布情况,可以判断设备是否存在异常或故障。
机械故障诊断故障诊断是机械维修中的关键任务之一。
在现代机械设备运行过程中,故障难免会出现,而快速准确地诊断和解决故障会极大地提高设备的可靠性和运行效率。
本文将介绍机械故障诊断的一般步骤以及常见的故障诊断方法,帮助读者了解并掌握机械故障诊断的基本知识。
一、故障诊断的一般步骤1. 收集信息:故障诊断的第一步是收集与故障相关的信息。
这包括机械设备的运行状态、异常表现、故障发生的时间等。
同时,还需询问设备操作人员,以了解故障发生前的操作情况。
2. 分析症状:在收集到足够的信息后,需要对故障的症状进行分析。
症状分析是故障诊断的核心内容,通过分析症状可以初步判断故障的种类和可能的原因,为后续的故障排除提供指导。
3. 实施测试:针对初步分析得出的故障原因,需要进行相应的测试以确认诊断结果。
测试方法根据具体故障类型的不同而异,可以包括物理测量、电气测试、压力测试等。
4. 确定故障原因:通过分析测试结果和进一步的排查,确定导致故障的根本原因。
这可以通过比对设备技术资料、借助专业知识和经验等方式进行。
5. 故障排除:在确定故障原因后,需要采取相应的修复措施进行故障排除。
排除方法也因故障类型的不同而异,可以包括更换损坏部件、修复电路故障、调整设备参数等。
6. 验证修复效果:完成故障排除后,需要对设备进行测试,以验证修复效果是否满足要求。
如果测试表明修复无效,需要重新进行故障诊断,找出并解决其他可能存在的故障。
二、常见的故障诊断方法1. 维修手册查询法:维修手册是设备制造商提供的关于设备故障诊断和维修的指南。
通过查询维修手册,可以了解设备常见故障的症状、原因和排除方法,从而指导实际故障排查和修复工作。
2. 经验法:基于经验的故障诊断方法广泛应用于机械领域。
经验法是基于对类似故障案例的总结和分析,通过对症下药,快速找到故障发生的原因和解决方案。
3. 传感器技术和仪器设备:传感器技术和仪器设备在故障诊断中起着重要的作用。
通过使用温度传感器、振动传感器、压力传感器等实时监测设备运行状态的传感器,可以及时发现异常情况,从而进行故障诊断。
机械设备的故障诊断与验收标准为了确保机械设备的正常运行和生产效率,本文档提供了一套全面的故障诊断与验收标准。
这些标准将帮助维护团队及时发现并解决问题,确保设备的可靠性和持续性。
一、故障诊断标准1.1 故障分类- 功能性故障:影响设备基本功能的故障。
- 安全性故障:可能导致设备或人员伤害的故障。
- 性能故障:影响设备性能或生产效率的故障。
- 可靠性故障:导致设备频繁停机的故障。
1.2 故障诊断流程1. 收集信息:了解设备故障的现象和发生条件。
2. 初步判断:根据故障现象,判断可能的原因。
3. 详细检查:对可能的原因进行详细检查和验证。
4. 定位故障:确定故障的具体部位和原因。
5. 解决方案:提出并实施解决问题的方案。
6. 验证效果:验证故障解决的效果,确保设备正常运行。
二、设备验收标准为确保设备达到预期的性能和质量,设备验收应遵循以下标准:2.1 设备性能验收1. 设备应满足设计文件中规定的技术性能指标。
2. 设备应能够连续稳定运行,无明显性能下降。
3. 设备应满足生产效率和产品质量的要求。
2.2 设备安全验收1. 设备应符合国家和行业的安全标准和规定。
2. 设备应具备必要的安全防护措施,如防护罩、警示标志等。
3. 设备操作界面应清晰易懂,操作程序应符合安全要求。
2.3 设备可靠性验收1. 设备应具备良好的耐久性,无频繁故障发生。
2. 设备零配件应具备良好的互换性,易于更换和维修。
3. 设备应具备良好的适应性,能够在不同环境下稳定运行。
2.4 设备维护与验收1. 设备维护应按照制造商提供的维护手册进行,确保设备正常运行。
2. 设备验收应包括设备性能、安全性和可靠性的全面检查。
3. 设备验收应由专业的验收团队进行,确保验收的客观性和准确性。
通过遵循上述故障诊断与验收标准,可以确保机械设备的正常运行和生产效率。
维护团队应定期进行故障诊断和设备验收,及时发现并解决问题,确保设备的可靠性和持续性。
机械故障诊断
Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
工件位置检测方法
02010220 苏冠明工件位置的测定分为接触性和非接触性的测量方法两种。
老师所要求的是非接触式的检测位置。
非接触式传感器电感式传感器中的电涡流式传感器,磁电式传感器中的磁阻式传感器、霍尔式传感器、感应同步器,光电式传感器,特殊传感器中的微波传感器均为非接触式传感器。
各个非接触式传感器具体为
一电涡流式传感器
根据法拉第电磁感应定律,块状金属导体置于变化的磁场中,在磁场中作切割磁力运动时,导体内将产生呈漩涡状的感应电流,此现象叫电涡流效应。
根据电涡流效应制成的传感器称为电涡流式传感器。
电涡流式传感器最大的特点是能对位移、厚度、表而温度、速度、应力及材料损伤等进行非接触式连续测量,另外还具有体积小、灵敏度高和频率响应宽等特点,应用极其广泛。
如图所示为电涡流式转速传感器工作原理图。
在软磁材料制成的输入轴上加工一键槽,在距输入表面4I处设置电涡流传感器,输入轴与被测旋转轴相连。
当被测旋转轴转动时,输出轴的距离发生(吨tAd)的变化。
由于电涡流效应,这种变化将导致振荡回路的品质因数变化,使传感器线圈电感随AJ的变化也发生变化,它将直接影响振荡器的电压幅值和振荡频率。
出此,随着输入轴的旋转,从振荡器输出的信号中包含有与转数成正比的脉冲频率信号。
该信号由检波器检出电压幅值的变化量,然后经整形电路输出脉冲频率信号,该信号经电路处理便可得到被测转速。
这种转速传感器可实现非接触式测量,抗污染能力很强,可安装在旋转轴
附近长期对被测转速进行监视。
最高测量转速可达600 000r/min。
二霍尔式传感器
霍尔式传感器也是一种磁电式传感器,它是利用霍尔元件基于霍尔效府原理而将被测量转换成电动势输出的一种传感器。
由于霍尔元件在静止状态下具有感受磁场的独特能力,并且具有结构简单、休积小、噪声小、频率范围宽(从直流到微波)、动态范围大(输出电势变化范围可达1000:1)以及寿命长等特点,因此获得了广泛应用。
金属或半导体薄片置于磁场中,当有电流流过时,在垂直于电流和磁场的方向上将产生电动势,这种物理现象称为霍尔效应。
公式
跟据公式,霍尔元件可用于三种测量方法,其中非接触式的为: (1)保持霍尔元件感受的磁感强度不变,利用Uh与I成止比的关系,可用于直接测量电流和能转换为电流的物理量,如电压等。
(2)当霍尔元件的控制电流和磁感比强度均发生变化时,利用uH与IB成正比的关系,可构成乘法器和功率计等,进行乘法运算或功率测量。
下面以霍尔单相交流功率计为例进行说明。
通过测量电路测出霍尔元件输出的平均霍尔电压uh,即可求出负载ZL 的有功功率P。
三感应同步器
感应同步器由两个平面印刷电路绕组构成,类似于变压器的初、次级绕组,故又称平面变压器。
感应同步器通过位移引起两个绕组间的互感量变化来进行位移测量。
按照测量位移对象的不同,感应同步器可分为直线型感应同步
器和圆盘型感应同步器两大类,前者用于测量直线位移,后者用于测量角位移。
由于此类传感器成本低,受环境温度影响小,测量精度高,且为非接触式测量,所以在位移检测中得到广泛应用。
直线型感应同步器的结构及定尺和滑尺的绕组示意图如图所示。
它出定尺和滑尺两部分组成,长尺为定尺,短尺为滑尺。
感应同步器的定尺被安装在固定部件亡(如机床的台座),而滑尺则与运动部件或被定位装置(如机床刀架)一起沿定尺移动。
其制造工艺是先在基板(玻璃或金属)上涂上一层绝缘粘合材料,将铜箔粘牢,用制造印刷线路板的腐蚀方法制成节距为T(一般为2mm)的方齿形线圈。
直线型感应同步器的定尺绕组是连续的。
滑尺上分布着两个励磁绕组,分别称为正弦绕组和余弦绕组。
当正弦绕组与定尺绕组相位相同时,余弦绕组与定尺绕组错开1/4节距。
滑尺和定尺相对平行安装,其间保持一定向隙。
在滑尺的正弦绕组中,施加频率为f(一般为2一l0k比)的交变电流时,定尺绕组感应出频率为f的感应电势。
感应电势的大小与滑尺和定尺的相对位置有关。
当两绕组同向对齐时,滑尺绕组磁通全部交链于定尺绕组,所以其感应电势为正向最大。
移动1/4节距后,两绕组磁通不变链,即交链磁通量为零;再移动1/4节距后,两绕组反向时,感应电势负向最大。
依此类推,每移动一节距,其感应电势随位置按余弦规律周期性的重复变化一次。
同样,在滑尺的余弦绕组中,施加频率为f的交变电流时,定尺绕组上也感应出频率为f的感应电势。
其感应电势随位置按正弦规律变化,如图所示。
根据感应同步器的工作原理知道,感应同步器的输出信号是—个能反映
定尺和滑尺相对位移的交变电动势,因而对输出信号的处理,可归结为对交变电动势的检测和处理。
四光电式传感器和五微波传感器
根据老师要求,我选择霍尔原件进行位置测量:
在传感器设计时,可以采用如图1所示的方式,此时,霍尔元件与永久磁铁作成一体,当传感器与被测物体间的距离L发生变化时,传感器与被测物体间的磁阻发生变化,引起永久磁铁与被测物体间的磁场分布也随之发生变化,此时,霍尔检铡物体图1 位移传感器结构图元件处的磁场也必然发生变化,霍尔元件即有电压信号输出. -霍尔元件采用UGN 3501 T集成霍尔元件,主要考虑到如下因素.a.可以保证很高的空间分辨率.其敏感面积为0.1 mm×0.1 mm,相当于检测磁场中的一个点,对提高检测位移的精度十分有利.b.灵敏度可达7 V/T;而单片霍尔元件中灵敏度较好的HZ-I仅有240 mV/T (对应于20mA 控制电流),从而可以减少为放大信号所为4.44mm×4.52mmX
2.0mm.采用塑胶封装,且体积较小,便于在传感器中安装,可以把传感器的体积做得很小.d.属于三端子器件,引线合理,便于焊接.
实验表明:霍尔元件与永久磁铁间的距离对该传感器的灵敏度、线性度与量程都有很大影响,若霍尔元件与磁铁距离很近,则该处的磁场强度很大,霍尔元件很容易饱和,传感器的线性度差,量程小一若霍尔元件与永久磁铁距离太远,则磁场很弱,霍尔元件感应不到磁场,灵敏度降低.因此必须在传感器设计中要确定最佳的 值.
由上述分析可知,该传感器适用于被测物体是铁磁构件(能够改变磁力线分布的物体)间的位移的测量.图2给出了当材料磁化到饱和与非饱和状态的测
量曲线,由于磁场分布受材料特性影响很大,当材料磁化到饱和状态时,测量曲线较为平直;当材料未磁化到饱和状态时,测量曲线波动较大;在饱和磁化区与未饱和磁化区之间,测量曲线呈上升趋势,所以为保证测量精度,被测物体局部应该磁化到饱和状态.
图3给出了传感器输出曲线,实验研究与理论计算表明,该传感器在0~3 mm 范围内有较好的线性度,灵敏度可以达到0.01 mm .
采用上述设计的传感器可以实现非接触的位移测量,若成对布置传感器,如图4所示,可实现钢管、钢棒、钢丝绳等细长导磁构件直径的非接触的动态连续测量,由图4可知,被测物体的直径
D=321s s s --与其他方法相比,采用该方法测量的显着优点是不受被测构件表面油泥等非导磁污物的影响,传感器的抗干扰性能好与抗冲击能力强,结构简单.结果表明:考虑到偏心等其他干扰因素的影响,采用传感器设计的钢丝绳直径检测仅对钢丝绳的动态测量精度可以达到0.3 mm .。