二元一次方程组和不等式组练习
- 格式:doc
- 大小:156.00 KB
- 文档页数:7
二元一次方程组和不等式应用题专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二元一次方程组和不等式应用题专题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二元一次方程组和不等式应用题专题的全部内容。
班级姓名二元一次方程组和不等式(二)1。
(2012•湖州)为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?2。
某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支5的进价是第一次进价的倍,购进数量比第一次少了30支.4(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?3。
为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a 、b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4。
最新初中数学方程与不等式之二元一次方程组难题汇编及解析(1)一、选择题1.若215(3)()x mx x x n +-=++,则m 的值为()A .-2B .2C .-5D .5【答案】A 【解析】 【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解. 【详解】解:∵()()()2215333x mx x x n x n x n +-=++=+++∴3315m n n =+⎧⎨=-⎩①②由②得,5n =-把5n =-代入①得,2m =- ∴m 的值为2-. 故选:A 【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.2.方程组的解为,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、4【答案】C 【解析】 【分析】把x=2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解. 【详解】 根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5 故被遮盖的两个数分别为5和1. 故选C. 【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键.3.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B . 【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.4.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( )A .1204016x y y x +=⎧⎨=⎩B .1204332x y y x +=⎧⎨=⎩C .12040210x y y x +=⎧⎨=⨯⎩D .以上都不对【答案】C 【解析】 【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组. 【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x =40y ; 制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x +y =120, 故可得方程组12040210x y y x +=⎧⎨=⨯⎩.故选:C . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.5.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩【答案】D 【解析】 【分析】根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组. 【详解】设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩,故选D . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.6.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x 文,乙原有钱y 文,可得方程组( )A .14822483x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .14822483y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .14822483x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .14822483y x x y ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A【解析】【分析】根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解.【详解】设甲原有x文钱,乙原有y文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.7.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =. 故选:B 【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.8.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x 个班,分配到的入场券有y 张,列出方程组为( )A .1051215x y x y +=⎧⎨-=⎩B .1051215x yx y -=⎧⎨+=⎩C .1051215x y x y =-⎧⎨+=⎩D .1051215x y x y -=⎧⎨=+⎩【答案】A 【解析】 【分析】假设初一班级共有x 个班,分配到的入场券有y 张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组. 【详解】设初一班级共有x 个班,分配到的入场券有y 张,则1051215x yx y +=⎧⎨-=⎩. 故选:A . 【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( )A .2018B .2019C .2020D .2021【答案】D 【解析】 【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可. 【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①②①+②得 5x +5y =5k-5, ∴x +y =k -1. ∵2020x y +=, ∴k -1=2020, ∴k=2021. 故选:D . 【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( )A .42a b =⎧⎨=⎩B .24a b =⎧⎨=⎩C .24a b =-⎧⎨=-⎩D .42a b =-⎧⎨=-⎩【答案】A 【解析】 【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可. 【详解】∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩,故选:A . 【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.11.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩【答案】B 【解析】 【分析】根据路程=时间乘以速度得到方程351.26060x y +=,再根据总时间是16分钟即可列出方程组. 【详解】∵她去学校共用了16分钟, ∴x+y=16,∵小颖家离学校1200米, ∴351.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.12.由方程组53x m y m-=⎧⎨+=⎩,可得到x 与y 的关系式是()A .2x y -=-B .2x y -=C .8x y -=D .8x y -=-【答案】C 【解析】 【分析】先解方程组求得5x m =+、3y m =-,再将其相减即可得解. 【详解】解:∵53x m y m -=⎧⎨+=⎩①②由①得,5x m =+ 由②得,3y m =-∴()()53538x y m m m m -=+--=+-+=. 故选:C 【点睛】本题考查了解含参数的二元一次方程组、以及代数求值的知识点,熟练掌握相关知识点是解决本题的关键.13.已知点()3,1P -关于y 轴的对称点(),1Q a b b +-,则b a 的值为( ) A .9 B .25C .32D .16【答案】B 【解析】 【分析】根据关于y 轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,即可求出a 、b ,从而求出b a 的值. 【详解】解:∵点P (3,1-)关于y 轴的对称点(),1Q a b b +-,∴311+=-⎧⎨-=-⎩a b b 解得:52a b ìï=-í=ïïïî ∴()2-5=25=b a 故选:B. 【点睛】此题考查的是求一个点关于y 轴的对称点,掌握关于y 轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,是解决此题的关键.14.二元一次方程3x+y =7的正整数解有( )组. A .0 B .1C .2D .无数【答案】C 【解析】 【分析】分别令x=1、2进行计算即可得 【详解】 解:方程3x+y=7, 变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1, 则方程的正整数解有二组 故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.15.|21|0a b -+=,则2019()b a -等于( ) A .1- B .1C .20195D .20195-【答案】A 【解析】 【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值. 【详解】12110a b -+=, 所以50,210,a b a b ++=⎧⎨-+=⎩①②由②,得21b a =+③,将③代入①,得2150a a +++=, 解得2a =-, 把2a =-代入③中, 得3b =-, 所以20192019()(1)1b a -=-=-.故选A. 【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.16.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩ D .466374910x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组. 【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ).A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A 【解析】 【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可. 【详解】解325x y m x y m -=+⎧⎨+=⎩,得212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩ ,解之得 m >2. 故选A. 【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( )A .4B .1-C .2D .1【答案】D 【解析】 【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值. 【详解】2315x y a x y +=-⎧⎨-=⎩①② ①2⨯+②得3363x y a +=+21x y a +=+∵3,x y +=∴1a =故答案为:D .【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.19.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.则被移动石头的重量为( )A .5克B .10克C .15克D .20克【答案】A【解析】【分析】【详解】解:设左天平的一袋石头重x 克,右天平的一袋石头重y 克,被移动的石头重z 克,由题意,得: 2010x y x z y z =+⎧⎨-=++⎩解得z=5答:被移动石头的重量为5克.故选A .【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.20.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=10【答案】A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.。
第八章 二元一次方程组1一、填空题(每题3分,共24分)3、 3与的差不大于x 与2的和的,用不等式表示为____________。
1、 如果a <b ,那么-2a_____-2b 。
3、5+=x y 中,若3-=x 则=y _______。
5、如果方程组⎩⎨⎧-=-=+1242a by x b y ax 的解是⎩⎨⎧-==11y x ,则=a ,=b 。
二、选择题:(每题3分,共21分)11、如果a >b ,那么下列不等式中不能成立的是( )。
A 、a -3>b -3B 、-3a >-3bC 、D 、-a <-b13、甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,列方程组 [ ]正确的个数为:A.1个B.2个C.3个D.4个 三、解方程组(每题6分,共24分)(3x -1)-3(4x +5) >x -4(x -7) ⎩⎨⎧=-=+113032Y X Y X四、用方程组解应用题(共31分)21、有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两 种债券各有多少?( 5分)27、一组同学在校门口拍一张合影。
已知冲一张底片需要0.6元,洗一张照片需要0.4元,每人都得到一张照片,每人平均分摊的钱不超过0.5元,那么参加合影的同学至少有几人?第九章 二元一次方程组2一、填空题(每题3分,共24分)4、 关于x 的方程2x +3(m -1)=x +1的解是正数,则m 的取值范围是_________。
6、 不等式2x -9<0的非负整数解是______________。
2、二元一次方程52=+x y 在正整数范围内的解是 。
4、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。
8、已知:10=+b a ,20=-b a ,则2b a -的值是 。
二、选择题:(每题3分,共21分)18、边长是整数,周长不大于12的等边三角形的个数是( )。
新初中数学方程与不等式之二元一次方程组真题汇编含答案一、选择题1.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD.【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可. 【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9,∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.2.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( )A .4243y x x y +=⎧⎨=⎩B .4243x y x y +=⎧⎨=⎩C .421134x yx y -=⎧⎪⎨=⎪⎩D .4234x y x y +=⎧⎨=⎩【答案】D 【解析】 【分析】按照题干关系分别列出二元一次方程,再组合行成二元一次方程组即可. 【详解】解:由甲、乙两数之和是42可得,42x y +=;由甲数的3倍等于乙数的4倍可得,34x y =,故由题意得方程组为:4234x y x y +=⎧⎨=⎩, 故选择D. 【点睛】本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.3.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( )A .6B .-6C .9D .-9【答案】B 【解析】 【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值. 【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得: 693ax x +=+,即(6)12a x +=,∵原方程无解, ∴60a +=, 解得6a =-. 故选B. 【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.4.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m 为( ) A .8 B .232C .-232D .-192【答案】B 【解析】 【分析】把x 与y 的值代入方程计算即可求出m 的值. 【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2,解得:m=232,【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.已知二元一次方程1342x y-=的一组解是x ay b=⎧⎨=⎩,则63a b-+的值为()A.11 B.7 C.5 D.无法确定【答案】A【解析】【分析】把二元一次方程12x-3y=4的一组解先代入方程,得12a-3b=4,即a-6b=8,然后整体代入求出结果.【详解】∵x ay b=⎧⎨=⎩是二元一次方程12x-3y=4的一组解,∴12a-3b=4,即a-6b=8,∴a-6b+3=8+3=11.故选:A.【点睛】此题考查二元一次方程的解,解题的关键是运用整体代入的方法.6.下列4组数值,哪个是二元一次方程2x+3y=5的解?()A.35xy=⎧⎪⎨=⎪⎩B.11xy=⎧⎨=⎩C.23xy=⎧⎨=-⎩D.41xy=⎧⎨=⎩【答案】B【解析】【分析】二元一次方程2x+3y=5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【详解】A、把x=0,y=35代入方程,左边=0+95=95≠右边,所以不是方程的解;B、把x=1,y=1代入方程,左边=右边=5,所以是方程的解;C、把x=2,y=﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D、把x=4,y=1代入方程,左边=11≠右边,所以不是方程的解.【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.7.二元一次方程3x+y =7的正整数解有( )组. A .0 B .1C .2D .无数【答案】C 【解析】 【分析】分别令x=1、2进行计算即可得 【详解】 解:方程3x+y=7, 变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1, 则方程的正整数解有二组 故本题答案应为:C 【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.8.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩【答案】C 【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩. 故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.9.二元一次方程3420x y +=的正整数解有( )A .1组B .2组C .3组D .4组【答案】A 【解析】 【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得. 【详解】∵由3420x y += 可得,34y 203, 54x y x =-=-,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A . 【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.10.若2334a b x y +与634a bx y -的和是单项式,则a b +=( ) A .3- B .0C .3D .6【答案】C 【解析】 【分析】根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得a 、b 的值,即可求得a+b的值. 【详解】∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩,解得30a b =⎧⎨=⎩,∴a+b=3. 故选C. 【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.11.甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨。
二元一次方程1.你知道吗?中国在近几届亚运会金牌榜上一直位居榜首,下表是第十五届亚运会中某日的金牌榜.根据此表你能列出方程组求出中国获得的金牌数吗?请试之.2.根据条件,设出适当的未知数,并列出二元一次方程或方程组.(1)摩托车的速度是货车的倍,它们速度之和是150km/h;(2)某时装的价格是某皮装价格的1.4倍,5件皮装要比3件时装贵2800元.3.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?4.根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?5.甲、乙、丙三队要完成A、B两项工程.B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别是20天、24天、30天.为了共同完成这两项工程,先派甲队做A 工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程.问乙、丙二队合作了多少天?6.(2018•株洲)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?7.(2018•扬州)古运河是扬州的母亲河.为打造古运河风光带,现有一段长为180M的河道整治任务由A、B两工程队先后接力完成.A工程队每天整治12M,B工程队每天整治8M,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:根据甲、乙两名问学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示,y表示乙:x表示,y表示(2)求A、B两工程队分别整治河道多少M.8.(2018•烟台)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60M,下坡路每分钟走80M,上坡路每分钟走40M,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?9.(2018•威海)为了参加2018年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑工程进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600M,跑步的平均速度为每分钟200M,自行车路段和长跑路段共5千M,用时15分钟.求自行车路段和长跑路段的长度.10.(2018•台州)毕业在即,九年级某班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课教师每人一本作纪念,其中送给任课教师的留念册单价比给同学的单价多8元.请问这两种不同留念册的单价分别是多少?11.(2018•泉州)某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息.解决问題:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?12.(2018•娄底)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2018年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.13.(2018•临沂)去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?14.(2018•济南)某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?20(2018•长沙)某工程队承包了某标段全长1755M的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6M,经过5天施工,两组共掘进了45M.(1)求甲、乙两个班组平均每天各掘进多少M?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2M,乙组平均每天能比原来多掘进0.3M.按此旄工进度,能够比原来少用多少天完成任务?21.(2018•长春)在长为10m,宽为8m的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求小矩形花圃的长和宽.不等式(组)1.(2018•永州)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?2.(2018•温州)2018年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.6、(2018•铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?7、(2018•绍兴)筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.8、(2018•邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年级学生.请求出该合唱团中七年级学生的人数.9、(2018•清远)某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?10、(2018•宁波)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.11、(2018•内江)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?12、(2018•绵阳)王伟准备用一段长30M的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为aM,由于受地势限制,第二条边长只能是第一条边长的2倍多2M.(1)请用a表示第三条边长;(2)问第一条边长可以为7M吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.数量的.请你通过计算,求出义洁中学从荣威公司购买18、(2018•桂林)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?19、(2018•毕节地区)小明到一家批发兼零售的文具店给九年级学生购买考试用2B铅笔,请根据下列情景解决问题.(1)这个学校九年级学生总数在什么范围内?(2)若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?。
新初中数学方程与不等式之二元一次方程组真题汇编及答案解析(1) 一、选择题1.关于x、y的方程组222x ymx y m+=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m的个数有()A.4个B.3个C.2个D.无数个【答案】A【解析】【分析】先解二元一次方程组x、y,然后利用解为整数解题即可【详解】解方程组222x ymx y m+=⎧⎨+=+⎩得到242m xmym ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m可以为0、1、3、4,所以满足条件的m的整数有4个,选A【点睛】本题主要考查二元一次方程组的解,解出x、y再利用解为整数求解是本题关键2.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x文,乙原有钱y文,可得方程组()A.14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.14822483y xx y⎧+=⎪⎪⎨⎪+=⎪⎩C.14822483x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.14822483y xx y⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A【解析】【分析】根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解.设甲原有x文钱,乙原有y文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.3.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x个班,分配到的入场券有y张,列出方程组为()A.1051215x yx y+=⎧⎨-=⎩B.1051215x yx y-=⎧⎨+=⎩C.1051215x yx y=-⎧⎨+=⎩D.1051215x yx y-=⎧⎨=+⎩【答案】A【解析】【分析】假设初一班级共有x个班,分配到的入场券有y张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组.【详解】设初一班级共有x个班,分配到的入场券有y张,则1051215x yx y+=⎧⎨-=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.4.下列4组数值,哪个是二元一次方程2x+3y=5的解?()A.35xy=⎧⎪⎨=⎪⎩B.11xy=⎧⎨=⎩C.23xy=⎧⎨=-⎩D.41xy=⎧⎨=⎩【答案】B 【解析】二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解. 【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C 、把x =2,y =﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D 、把x =4,y =1代入方程,左边=11≠右边,所以不是方程的解. 故选B . 【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.5.下列方程组中,是二元一次方程组的是( )A .2113x y x⎧+=⎪⎨⎪=⎩ B .3526x y y z -=⎧⎨-=⎩C .1521x yxy ⎧+=⎪⎨⎪=⎩D .2224xy x ⎧=⎪⎨⎪-=⎩【答案】D 【解析】 【分析】根据二元一次方程组的定义进行判断即可. 【详解】解:A 、该方程组中未知数的最高次数是2,属于二元二次方程组,故本选项错误; B 、该方程组中含有3个未知数,属于三元一次方程组,故本选项错误; C 、该方程组中未知数的最高次数是2,属于二元二次方程组,故本选项错误; D 、该方程组符合二元一次方程组的定义,故本选项正确; 故选D . 【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.6.若关于x ,y 的方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2,则k 是( )A .-3B .-2C .-1D .1【答案】A 【解析】 【分析】根据“x 的值比y 的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y 的值,进而得出x 的值,把x ,y 的值代入方程组中第二方程中求出k 的值即可. 【详解】∵x 的值比y 的相反数大2, ∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10, 解得,y=2, ∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3. 故选A. 【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.7.已知2,1.x y =⎧⎨=⎩是方程25+=x ay 的解,则a 的值为( ) A .1 B .2C .3D .4【答案】A 【解析】 将21x y =⎧⎨=⎩代入方程2x+ay=5,得:4+a=5, 解得:a=1, 故选:A.8.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( ) A .30200100x y x y+=⎧⎨=⎩B .30100200x y x y+=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩ D .302100200x y x y+=⎧⎨⨯=⎩【答案】C 【解析】 【分析】根据题意可以列出相应的二元一次方程组,本题得以解决. 【详解】 由题意可得,{x y 302200x 100y+=⨯=,故答案为C 【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.9.若关于x , y 的方程组2{ x y m x my n -=+=的解是2{ 1x y ==,则m n -为( )A .1B .3C .5D .2【答案】D 【解析】解:根据方程组解的定义,把21x y =⎧⎨=⎩代入方程,得:412m m n -=⎧⎨+=⎩,解得:35m n =⎧⎨=⎩.那么|m -n |=2.故选D .点睛:此题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法.10.二元一次方程3x+y =7的正整数解有( )组. A .0 B .1 C .2 D .无数 【答案】C 【解析】 【分析】分别令x=1、2进行计算即可得 【详解】解:方程3x+y=7, 变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1, 则方程的正整数解有二组 故本题答案应为:C 【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( )A .-1B .0C .1D .2【答案】A 【解析】 【分析】观察方程组,利用第一个方程减去第二个方程即可求解. 【详解】2728x y x y ①②+=⎧⎨+=⎩, ①-②得, x-y=-1. 故选A.【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.已知关于x ,y 的方程组34{3x y ax y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x +y=4-a 的解;②当a=-2时,x 、y 的值互为相反数;③若x≤1,则1≤y≤4;④5{1x y ==-是方程组的解,其中正确的是( )A .①②B .③④C .①②③D .①②③④【答案】C 【解析】 【分析】 【详解】 解:解方程组34{3x y a x y a +=--=,得12{1x ay a=+=-,∵-3≤a ≤1,∴-5≤x ≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a 两边相等,结论正确; ②当a=-2时,x=1+2a=-3,y=1-a=3,x ,y 的值互为相反数,结论正确; ③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1, ∴-3≤a ≤0∴1≤1-a ≤4∴1≤y ≤4结论正确, ④5{1x y ==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C . 【点睛】本题考查二元一次方程组的解;解一元一次不等式组.13.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C 【解析】 【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程. 【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道, 依题意得:()532072x y x y ----=,化简得:6292x y -=. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.14.用加减消元法解方程组2333211x y x y +=⎧⎨-=⎩,下列变形正确的是( )A .4639611x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .4669633x y x y +=⎧⎨-=⎩D .6936411x y x y +=⎧⎨-=⎩【答案】C 【解析】 【分析】运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y 的系数变成互为相反数. 【详解】解:233{3211x y x y +=-= ①×2得,4x+6y=6③, ②×3得,9x-6y=33④,组成方程组得:466{9633x y x y +=-=.故选C . 【点睛】本题考查二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.15.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为( )A .B .C .D .【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.16.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.7385y xy x=-⎧⎨=+⎩B.7385y xy x=+⎧⎨-=⎩C.7385y xy x=+⎧⎨+=⎩D.7385y xy x=+⎧⎨=+⎩【答案】A【解析】【分析】根据关键语句“若每组7人,余3人”可得方程7y+3=x;“若每组8人,则缺5人.”可得方程8y-5=x,联立两个方程可得方程组.【详解】设运动员人数为x人,组数为y组,由题意得:73 85y xy x=-⎧⎨=+⎩.故选A.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.17.利用两块相同的长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两木块的位置,按图②方式放置测量的数据如图,则桌子的高度是()A .73cmB .74cmC .75cmD .76cm【答案】C 【解析】 【分析】设长方体木块的长是xcm ,宽是ycm ,由题意得5x y -=,再代入求出桌子的高度即可. 【详解】设长方体木块的长是xcm ,宽是ycm ,由题意得8070x y y x -+=-+可得5x y -=则桌子的高度是8080575x y cm -+=-= 故答案为:C . 【点睛】本题考查了二元一次方程的实际应用,掌握解二元一次方程的方法是解题的关键.18.图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②所示.则被移动石头的重量为( )A .5克B .10克C .15克D .20克【答案】A 【解析】 【分析】 【详解】解:设左天平的一袋石头重x 克,右天平的一袋石头重y 克,被移动的石头重z 克,由题意,得:2010x y x z y z =+⎧⎨-=++⎩解得z=5答:被移动石头的重量为5克. 故选A . 【点睛】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.19.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩【答案】B 【解析】 【分析】根据路程=时间乘以速度得到方程351.26060x y +=,再根据总时间是16分钟即可列出方程组. 【详解】∵她去学校共用了16分钟, ∴x+y=16,∵小颖家离学校1200米, ∴351.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.20.如图,在长方形ABCD 中,放入六个形状、大小相同的小长方形(即空白的长方形),若16AB cm =,4EF cm =,则一个小长方形的面积为( )A .216cmB .22lcmC .224cmD .32 2cm【答案】B【解析】【分析】 设长方形的长和宽为未数,根据图示可得两个量关系:①小长方形的1个长3+个宽16cm =,②小长方形的1个长1-个宽4cm =,进而可得到关于x 、y 的两个方程,可求得解,从而可得到小长方形的面积.【详解】设小长方形的长为x ,宽为y ,如图可知,3164x y x y +=⎧-=⎨⎩, 解得:{73x y ==.所以小长方形的面积()23721.cm =⨯=故选B .【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.。
二元一次方程(组)和不等式(组)的应用1、端午节是我国传统的节日,人们素有吃粽子的习俗。
某商场在端午节来临之际,用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同,已知A种粽子的单价是B种粽子的单价的1.2倍。
(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共260 0个,已知A、B 两种粽子的进价不变,求A种粽子最多能购进多少个?2、某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:老板:如果你在多买一个,就可以打八五折,花费比现在还省17元。
小明:那就多买一个吧,谢谢!(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?3、在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的总量比A型粽子的2倍少20千克,购进两种粽子公用了2560元,求两种型号粽子各多少千克?4、刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用了140元又买了一些,两次一共购买了40 kg,这种大米的原价是多少?5、随着中国传统几日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折销售,乙品牌粽子打七五折销售,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需要660元,打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元。
(1)打折前甲乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?6、某商场购进甲乙两种商品,甲种商品公用了2000元,乙种商品公用了2400元。
新初中数学方程与不等式之二元一次方程组真题汇编及答案解析(2)一、选择题1.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x +=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩ 【答案】B【解析】【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可.【详解】根据图示可得,2753x y x y +=⎧⎨=⎩故选B .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.2.二元一次方程3420x y +=的正整数解有( )A .1组B .2组C .3组D .4组【答案】A【解析】【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得.【详解】 ∵由3420x y += 可得,34y 203, 54x y x =-=- ,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A .【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.3.若(x+y﹣1)2+|x﹣y+5|=0,则x=()A.﹣2 B.2 C.1 D.﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x即可.【详解】解:∵(x+y﹣1)2+|x﹣y+5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23xy=-⎧⎨=⎩,故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.4.已知x、y满足方程组2827x yx y+=⎧⎨+=⎩,则x+y的值是()A.3 B.5 C.7 D.9【答案】B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.5.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m为( )A.8 B.232C.-232D.-192【答案】B【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2,解得:m=232,故选:B.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.二元一次方程2x+y=5的正整数解有()A.一组B.2组C.3组D.无数组【答案】B【解析】【分析】由于要求二元一次方程的正整数解,可分别把x=1、2、3分别代入方程,求出对应的值,从而确定二元一次方程的正整数解.【详解】解:当x=1,则2+y=5,解得y=3,当x=2,则4+y=5,解得y=1,当x=3,则6+y=5,解得y=-1,所以原二元一次方程的正整数解为,.故选B.【点睛】本题考查了解二元一次方程:二元一次方程有无数组解;常常要确定二元一次方程的特殊解.7.已知关于x的方程x-2m=7和x-5=3m是同解方程,则m值为()A.1 B.-1 C.2 D.-2【答案】C【解析】【分析】根据同解方程,可得方程组,根据解方程组,可得答案.【详解】解:由题意,得2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =,由②得:3+5x m =,∴7+23+5m m =,解得:2m =,故选C.【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.8.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( )A .1204010x y y x +=⎧⎨=⎩B .1201040x y y x +=⎧⎨=⎩C .1204020x y y x +=⎧⎨=⎩D .1202040x y y x +=⎧⎨=⎩【答案】C【解析】【分析】 首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可.【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底,∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =,∴可列方程组为:1204020x y y x +=⎧⎨=⎩, 故选:C.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( ) A .2018B .2019C .2020D .2021【答案】D【解析】【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①② ①+②得 5x +5y =5k-5,∴x +y =k -1.∵2020x y +=,∴k -1=2020,∴k=2021.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.二元一次方程3x+y =7的正整数解有( )组.A .0B .1C .2D .无数 【答案】C【解析】【分析】分别令x=1、2进行计算即可得【详解】解:方程3x+y=7,变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1,则方程的正整数解有二组故本题答案应为:C【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( ) A .-1B .0C .1D .2【答案】A【解析】观察方程组,利用第一个方程减去第二个方程即可求解.【详解】2728x y x y ①②+=⎧⎨+=⎩, ①-②得,x-y=-1.故选A.【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C【解析】【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程.【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道,依题意得:()532072x y x y ----=,化简得:6292x y -=.故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.13.已知关于x,y 的二元一次方程组323223x y m x y m +=-⎧⎨+=⎩的解适合方程25x y -=,则m 的值为( )A .1B .2C .3D .4 【答案】C【解析】【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m.【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2,∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=, ∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3,故选C.【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.14.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗.A .6B .8C .10D .12【答案】B【解析】【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解.【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得: 11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗故选B .【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.15.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是()A.3201036x yx y-=⎧⎨+=⎩B.3201036x yx y+=⎧⎨+=⎩C.3201036y xx y-=⎧⎨+=⎩D.3102036x yx y+=⎧⎨+=⎩【答案】B【解析】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选:B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.16.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A .B .C .D .【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm 【答案】A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm , 则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm .故选:A .【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.18.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩.∵x >y >0,∴21220m m m +>-⎧⎨->⎩ , 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.19.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( ) A .4 B .1- C .2 D .1【答案】D【解析】【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值.【详解】2315x y a x y +=-⎧⎨-=⎩①②①2⨯+②得3363x y a +=+21x y a +=+∵3,x y +=∴1a =故答案为:D .【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.20.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( ) A .-2B .2C .-1D .1 【答案】D【解析】【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可.【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②, ∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-,将其代入②可得:25x m -+=,∴3x m =+∵3x y +=,∴323m m ++-=,∴1m =,故选:D.【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.。
专题三方程与不等式Part 1二元一次方程组一.选填1.(数学老师要求写出一个以32x y 为解的二元一次方程组,下面方程组中符合条件的方程组是()A .11433y x y x B .1y x 23y -x 3C .112-1y x y x D .y -8y -x 4x 2y x 32.用代入法解方程组②①12232y -7x y x 有以下步骤:(1):由①,得2y=7x 3③(2):由③代入①,得7x-7x 3=3(3):整理得3=3(4):∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是()A.第(1)步B.第(2)步C .第(3)步D.第(4)步3.用代入法解方程组)()(25y -x 212y 4x 3使得代入后化简比较容易的变形是()A .由(1),得3y 4-2x B .由(1),得4x3-2y C .由(2),得25y x D .由(2),得y=2x-54.已知a,b 满足方程组4232m b a m b a ,则a-b 的值为.5.已知31x y 是方程2x -ay =3的一个解,那么a 的值为.6.若二元一次方程组k y x ky x 95,的解是二元一次方程2x+3y=8,的一个解,则k 的值为.7.已知方程组1327635963y 72y x x 的解满足x−y =m−1,则m 的值为()A .−1B .−2C .1D .2二.解方程组(1)2321324x y x y (2)765432y x y x (2)x-y=12x+3y=7(4)3x 57425y x y(5)16323y x y x (6)1732623y x y x(7)1213343144y y x x (8)1323241y y x x (9)4-y 2-x 5532y 3x )((10)5c 2b 3-a 23c -b 2a 1c -b a Part 2一元一次不等式一.不等式的性质与解不等式(共2小题)1.用“<”或“>”填空:若a <b ,则﹣2a +1﹣2b +1.2.x 取哪些整数值时,不等式5x ﹣17<8(x ﹣1)与x ﹣5都成立?二.不等式含参问题(共8小题)3.如果一元一次不等式组的解集为x >3,则a 的取值范围是.4.若不等式组的解集为x <5,则m 的取值范围为()A .m <4B .m ≤4C .m ≥4D .m >45.若关于x 的不等式mx +1>0的解集是x <,则关于x 的不等式(m ﹣1)x >﹣1﹣m 的解集是()A .xB .xC .xD .x6.若不等式(m ﹣2)x >1的解集是,则m 的取值范围是.7.不等式组无解,则a 的取值范围是.8.如果不等式组无解,那么m 的取值范围是()A .m >8B .m ≥8C .m <8D .m ≤89.关于x ,y 的二元一次方程组的解为x +y ≥﹣3,则a 的取值范围是.10.若不等式组的整数解共有三个,则a 的取值范围是()A .5≤a <6B .5<a ≤6C .5<a <6D .5≤a ≤6三.定义新运算(共2小题)11.定义新运算:对于任意实数a ,b 都有a ⊗b =a (a ﹣b )+1,如:3⊗2=3(3﹣2)+1=4.那么不等式2⊗x ≥3的非负整数解是.12.阅读下面材料:小明在数学课外小组活动时遇到这样一个问题:如果一个不等式(含有不等号的式子)中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式.求绝对值不等式|x |>3的解集(满足不等式的所有解).小明同学的思路如下:先根据绝对值的定义,求出|x |恰好是3时x 的值,并在数轴上表示为点A ,B ,如图所示.观察数轴发现,以点A ,B 为分界点把数轴分为三部分:点A 左边的点表示的数的绝对值大于3;点A ,B 之间的点表示的数的绝对值小于3;点B 右边的点表示的数的绝对值大于3.因此,小明得出结论,绝对值不等式|x|>3的解集为:x<﹣3或x>3.参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式的解集.①|x|>1的解集是;②|x|<2.5的解集是.(2)求绝对值不等式|x﹣3|+5>9的解集.(3)直接写出不等式x2>4的解集是.四.不等式应用题(共4小题)13.甲乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案,在甲商场累计购物超过200元后,超出200元的部分按85%收费,在乙商场累计购物超过100元后,超出100元的部分按照90%收费.(1)设一顾客累计购物花费了x(x>200)元,若在甲商场购物,则实际花费元,若在乙商场购物,则实际花费元.(均用含x的式子表示);(2)在(1)的情况下,请根据两家商场的优惠活动方案,讨论顾客到哪家商场购物花费少?说明理由;(3)若小刚妈妈准备用160元去购物,你建议小刚妈妈去商场花费少(直接写出“甲”或“乙”)两周的销售情况销售时段销售数量销售收入A种型号B种型号第一周3台4台1550元第二周4台8台2600元(进价、售价均保持不变,利销=销售收入﹣进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若专卖店准备用不多于3560元的金额再采购这两种型号的电风扇共20台,且采购A型电风扇的数量不少于8台.求专卖店有哪几种采购方案?(3)在(2)的条件下.如果采购的电风扇都能销售完,请直接写出哪种采购方案专卖店所获利润最大?最大利润是多少?15.列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.。
□x +5y =13 ①4x -□y =-2 ② 三、填空:28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________;30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______; 32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题: 47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解; 48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;50、要使下列三个方程组成的方程组有解,求常数a 的值。
2x +3y =6-6a ,3x +7y =6-15a ,4x +4y =9a +951、当a 、b 满足什么条件时,方程(2b 2-18)x =3与方程组⎩⎨⎧-=-=-5231b y x y ax 都无解; 53、m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解: (1)是正数;(2)是正整数?并求它的所有正整数解。
54、试求方程组⎩⎨⎧-=---=-6|2||5|7|2|y x y x 的解。
六、列方程(组)解应用题55、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?56、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?57、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?58、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的31,求这两个水桶的容量。
59、甲、乙两人在A 地,丙在B 地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A 、B 两地之间的距离。
60、有两个比50大的两位数,它们的差是10,大数的10倍与小数的5倍的和的201是11的倍数,且也是一个两位数,求原来的这两个两位数。
二.填空题1.当a 时,4a+2010/6表示正数。
2.如果点A(x-2008,-2009)在第三象限,那么x的取值范围是3.如果一个三角形的第三条边长分别为15、17、x,则x得取值范围是4.不等式3x-2≥4(x-1)的所有非负整数解得和等于5.若式子4x-3/2的值不大于3x+5的值,则x的6.若不等式组1<x≤2 有解,则m得取值范围是x>m7.若不等式组 2x-a<1,的解集为-2<x<3,那么(a-2)(b+2)的 x-2b>3值等于x+2>08.不等式组 x-4≥0 的解集是x-6≤09.不等式组. x>a , 的解集为x>3,则a的取值范围是3x+2<4x-110.关于x的不等式2x-a≤-3的解集如图所示,则a的值是11.已知|2x-24|+(3x-y-m)²=0中,0<y<1,则m的取值范围是12小聪与小明玩跷跷板,大家都不用力时,跷跷板左低、右高,小聪的身体重量为p(kg),书包的重量为2kg,小明的身体重q(kg),怎样表示p、q之间的关系呢13.一种药说明书上写着:“每日用量60―120mg分3-4次服用”一次服用这种要的剂量a的范围是14.小红家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费3元;若每户每月用水超过5立方米,则超出部分每立方米收费5元,设小红家每月的用水量是x吨,则可列出不等式15.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题-1分,在这次竞赛中,小明获得优秀奖(90或90分以上),则小明至少答对道题。
16.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的生产就超过原来20天的产量,则原来每天最多能生产辆汽车。
17.一位老师说,他班学生的一半在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还生不足6名学生在操场上踢足球,则这个班的学生共有多少人18.定义一种新运算:aΔb=a·b-a+b+1,如果3Δ4=3×4-3+4+1,试比较大小:(-3)Δ4 4Δ(-3).(填“<”,”=”,”>”)三、解答题(1)解不等式x-3/2>x+6/5(2)解不等式3(x+2)-1>8-2(x-1),并把它的解集在数轴上表示出来.(3)解不等式组 5x-2>3(x+1), 并求其正数解。
1/2·x-1≤7-3/2·x(4)求不等式组的整数解 x-1/2 +1≥x 的整数解。
x+2>0(5)解不等式组 x+3/2≥x+1, 并求出该不等式组的整数解的和.1-3(x-1)<8-x(6)如果方程组3x+y=2k+3,的解为x、y,k≤9时,求x-y的取值范围.x+3y=5。
四、综合运用题(1)已知不等式5x-2<6x+1的最小正正数解是方程3x-3ax/2=6的解,求a的值。
(2)k为何值时,等式|-24+3a|+(3a-k/2-b) ²=0中的b是负数?(3)根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A-B>0,则A>B;若A-B=0,则A=B;若A-B<0,则A<B,这种比较大小地方法称为“作差比较法”,试比较2x²-2x+2009与x²-2x+2008的大小。
(4)是否存在这样的正数a,使方程组3x+4=a,的解是一对非负数。
4x+3y=5五、应用题1.在一次爆破中,用一条0.5米长的导火索来引爆炸药,导火索的燃烧速度为0.5厘米/秒,引爆员点着导火索后,至少以每秒多少米的速度才能跑到600米以外(包括600米)的安全区域?2某车间生产机器零件,若每天预定计划多做一件,8天所做零件的总数超过100件;若每天比预定计划少做一件,那么8天说做零件的总数不到90件,问预定计划每天做多少件?(件数是正整数)3.哇哈哈矿泉水每瓶售价1.2元,现甲乙两家商场给出优惠政策:甲商场全场九折,乙商场20瓶以上的部分8折。
若你是消费者,选哪家商场比较合适?4.有一群猴子,一天结伴去摘桃子。
分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个。
你能求出有几只猴子,几个桃子吗?5.小记者团有48人要在招待所住宿,招待所一楼没住客的客房比二楼少5间,如果全部住在一楼,每间住5人,则住不满;每间住4人,则不够住。
如果全部住在二楼,每间住4人,则住不满;每间住3人,则不够住。
招待所一楼和二楼各有几间尚未住客的客房?答案:三、28、a =3,b =1;29、⎩⎨⎧==20b a ⎩⎨⎧==11b a ⎩⎨⎧==02b a 30、21; 31、3,-4 32、1; 33、20;34、a 为大于或等于3的奇数;35、4:3,7:9 36、0; 四、37、⎩⎨⎧==204162n m ; 38、⎪⎩⎪⎨⎧==22a y a x ; 39、⎩⎨⎧-==13y x ; 40、⎩⎨⎧==11y x ; 41、⎩⎨⎧==11y x ; 42、⎪⎩⎪⎨⎧==225y x ; 43、⎪⎩⎪⎨⎧===168z y x ; 44、⎪⎩⎪⎨⎧===397z y x ; 45、⎪⎩⎪⎨⎧-=-==212z y x ; 46、⎪⎩⎪⎨⎧===202112z y x ;五、47、⎩⎨⎧-=-=+2941358y x y x ,⎪⎪⎩⎪⎪⎨⎧==231792107y x ; 48、a =-1 49、11x 2-30x +19; 50、31=a ;51、23=a ,b =±3 52、a =6, b =11, c =-6; 53、(1)m 是大于-4的整数,(2)m =-3,-2,0,⎩⎨⎧==48y x ,⎩⎨⎧==24y x ,⎩⎨⎧==12y x ;54、⎩⎨⎧=-=91y x 或⎩⎨⎧==95y x ;六、55、A 、B 距离为450千米,原计划行驶9.5小时;56、设女生x 人,男生y 人,⎪⎪⎩⎪⎪⎨⎧=⨯-++=-++682)4(2340423y x y x ⎩⎨⎧==)(32)(21人人y x 57、设甲速x 米/秒,乙速y 米/秒 ⎩⎨⎧==-y x y x 641055 ⎩⎨⎧==)/(4)/(6秒米秒米y x58、甲的容量为63升,乙水桶的容量为84升;59、A、B两地之间的距离为52875米;60、所求的两位数为52和62。