操作系统调度算法实验报告
- 格式:docx
- 大小:37.28 KB
- 文档页数:3
实验报告课程名称操作系统实验名称进程调度算法设计与实现姓名学号专业班级实验日期成绩指导教师(①实验目的②实验设备和环境③实验内容与步骤④实验结果与分析⑤总结,问题及建议)一、内容:设计一个简单的进程调度算法,模拟OS中的进程调度过程二、要求:①进程数不少于5个;②进程调度算法任选;最好选用动态优先数法,每运行一个时间片优先数减3③用C++(或C)语言编程;④程序运行时显示进程调度过程。
三、步骤:①设计PCB及其数据结构:进程标识数:ID进程优先数:PRIORITY(优先数越大,优先级越高)进程已占用时间片:CPUTIME进程尚需时间片:ALLTIME(一旦运行完毕,ALLTIME为0)进程队列指针:NEXT,用来将PCB排成队列进程状态:STATE(一般为就绪,不用)②设计进程就绪队列及数据结构;③设计进程调度算法,并画出程序流程图;④设计输入数据和输出格式;结构格式:当前正运行的进程:0当前就绪队列:2,1,3,4⑤编程上机,验证结果。
四、分析假设调度前,系统中有5个进程,其初始状态如下:①以时间片为单位调度运行;②每次总是从ALLTIME中不为0,且PRIORITY最大的进程调度运行一个时间片;③上述进程运行后其优先数减3,再修改其CPUTIME和ALLTIME,重复②,③④直到所有进程的ALLTIME均变为0。
五、代码#include〈iostream〉#include〈string〉#include<queue〉using namespace std;typedef struct pcb {string pName;//进程名int priorityNumber;//优先数float serviceTime;//服务时间float estimatedRunningtime;//估计运行时间char state;//状态bool operator〈(const struct pcb &a)const {return priorityNumber > a。
计算机操作系统进程调度实验报告实验报告:计算机操作系统进程调度1.实验背景与目的计算机操作系统是一种负责管理和协调计算机硬件和软件资源的系统。
进程调度作为操作系统的重要功能之一,主要负责决定哪些进程可以运行、何时运行以及运行多长时间等问题。
本实验旨在通过实践学习进程调度的原理和实现细节,加深对操作系统的理解。
2.实验原理与步骤(1)实验原理:进程调度的目标是充分利用计算机资源,提高系统的吞吐率和响应时间。
常用的调度算法有先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)等。
在本实验中,我们将实现时间片轮转调度算法,并对比不同算法的性能差异。
(2)实验步骤:1)设计进程数据结构:创建进程控制块(PCB)结构体,包含进程的标识符、到达时间、服务时间、剩余时间、等待时间等信息。
2)生成进程:根据指定的进程个数和服务时间范围,生成随机的进程并初始化进程控制块。
3)时间片轮转调度算法:根据时间片大小,按照轮转调度的方式进行进程调度。
4)性能评估:通过记录进程的等待时间和周转时间,比较不同调度算法的性能差异。
3.实验结果与分析通过实验我们生成了10个进程,并使用时间片大小为2进行轮转调度。
下表列出了各个进程的信息及调度结果。
进程到达时间服务时间剩余时间等待时间周转时间P108068P214004P3291310P4350115P542032P6570147P763063P8761714P981071P1093104从实验结果可以看出,时间片轮转调度算法相对公平地分配了CPU给各个进程,减少了等待时间和周转时间。
但是,对于长时间服务的进程,可能出现饥饿问题,即一些耗时较长的进程无法得到充分的CPU时间。
与时间片轮转算法相比,先来先服务(FCFS)算法对于短作业具有更好的响应时间,但可能导致长作业等待时间过长。
最短作业优先(SJF)算法能够最大化短作业的优先级,提高整体性能。
4.实验总结与体会本次实验通过实践了解了进程调度的原理与实现细节,加深了对操作系统的理解。
操作系统实验报告进程调度操作系统实验报告:进程调度引言在计算机科学领域中,操作系统是一个重要的概念,它负责管理和协调计算机系统中的各种资源,包括处理器、内存、输入/输出设备等。
其中,进程调度是操作系统中一个非常重要的组成部分,它负责决定哪个进程在何时获得处理器的使用权,以及如何有效地利用处理器资源。
实验目的本次实验的目的是通过对进程调度算法的实验,深入理解不同的进程调度算法对系统性能的影响,并掌握进程调度算法的实现方法。
实验环境本次实验使用了一台配备了Linux操作系统的计算机作为实验平台。
在该计算机上,我们使用了C语言编写了一些简单的进程调度算法,并通过模拟不同的进程调度场景进行了实验。
实验内容1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种简单的进程调度算法,它按照进程到达的顺序进行调度。
在本次实验中,我们编写了一个简单的FCFS调度算法,并通过模拟多个进程同时到达的情况,观察其对系统性能的影响。
2. 短作业优先调度算法(SJF)短作业优先调度算法是一种根据进程执行时间长度进行调度的算法。
在本次实验中,我们编写了一个简单的SJF调度算法,并通过模拟不同长度的进程,观察其对系统性能的影响。
3. 时间片轮转调度算法(RR)时间片轮转调度算法是一种按照时间片大小进行调度的算法。
在本次实验中,我们编写了一个简单的RR调度算法,并通过模拟不同时间片大小的情况,观察其对系统性能的影响。
实验结果通过实验,我们发现不同的进程调度算法对系统性能有着不同的影响。
在FCFS 算法下,长作业会导致短作业等待时间过长;在SJF算法下,长作业会导致短作业饥饿现象;而RR算法则能够较好地平衡不同进程的执行。
因此,在实际应用中,需要根据具体情况选择合适的进程调度算法。
结论本次实验通过对进程调度算法的实验,深入理解了不同的进程调度算法对系统性能的影响,并掌握了进程调度算法的实现方法。
同时,也加深了对操作系统的理解,为今后的学习和研究打下了良好的基础。
操作系统实验报告进程调度操作系统实验报告:进程调度引言操作系统是计算机系统中最核心的软件之一,它负责管理和调度计算机的资源,提供良好的用户体验。
在操作系统中,进程调度是其中一个重要的功能,它决定了进程的执行顺序和时间片分配,对于提高计算机系统的效率和响应能力至关重要。
本篇实验报告将重点介绍进程调度的相关概念、算法和实验结果。
一、进程调度的概念进程调度是操作系统中的一个重要组成部分,它负责决定哪个进程可以使用CPU,并为其分配执行时间。
进程调度的目标是提高系统的吞吐量、响应时间和公平性。
在多道程序设计环境下,进程调度需要考虑多个进程之间的竞争和协作,以实现资源的合理利用。
二、进程调度算法1. 先来先服务调度(FCFS)先来先服务调度算法是最简单的进程调度算法之一,它按照进程到达的顺序进行调度,即先到达的进程先执行。
这种算法的优点是公平性高,缺点是无法适应长作业和短作业混合的情况,容易产生"饥饿"现象。
2. 最短作业优先调度(SJF)最短作业优先调度算法是根据进程的执行时间来进行调度的,即执行时间最短的进程先执行。
这种算法的优点是能够最大程度地减少平均等待时间,缺点是无法适应实时系统和长作业的情况。
3. 时间片轮转调度(RR)时间片轮转调度算法是一种抢占式调度算法,它将CPU的执行时间划分为固定大小的时间片,并按照轮转的方式分配给各个进程。
当一个进程的时间片用完后,它将被挂起,等待下一次调度。
这种算法的优点是能够保证每个进程都能够获得一定的执行时间,缺点是无法适应长作业和短作业混合的情况。
4. 优先级调度(Priority Scheduling)优先级调度算法是根据进程的优先级来进行调度的,优先级高的进程先执行。
这种算法的优点是能够根据进程的重要性和紧急程度进行灵活调度,缺点是可能会导致低优先级的进程长时间等待。
三、实验结果与分析在实验中,我们使用了不同的进程调度算法,并对其进行了性能测试。
操作系统实验之处理机调度实验报告一、实验目的处理机调度是操作系统中的核心功能之一,本次实验的主要目的是通过模拟不同的处理机调度算法,深入理解操作系统对处理机资源的分配和管理策略,比较不同调度算法的性能差异,并观察它们在不同负载情况下的表现。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 Python 38。
实验中使用了 Python 的相关库,如`numpy`、`matplotlib`等,用于数据生成、计算和图形绘制。
三、实验原理1、先来先服务(FCFS)调度算法先来先服务算法按照作业到达的先后顺序进行调度。
先到达的作业先被服务,直到完成或阻塞,然后再处理下一个到达的作业。
2、短作业优先(SJF)调度算法短作业优先算法选择预计运行时间最短的作业先执行。
这种算法可以有效地减少作业的平均等待时间,但可能导致长作业长时间等待。
3、时间片轮转(RR)调度算法时间片轮转算法将处理机的时间分成固定长度的时间片,每个作业轮流获得一个时间片的处理时间。
当时间片用完后,如果作业还未完成,则将其放入就绪队列的末尾等待下一轮调度。
4、优先级调度算法优先级调度算法为每个作业分配一个优先级,优先级高的作业先被执行。
优先级可以根据作业的性质、紧急程度等因素来确定。
四、实验内容与步骤1、数据生成首先,生成一组模拟的作业,包括作业的到达时间、预计运行时间和优先级等信息。
为了使实验结果更具代表性,生成了不同规模和特征的作业集合。
2、算法实现分别实现了先来先服务、短作业优先、时间片轮转和优先级调度这四种算法。
在实现过程中,严格按照算法的定义和规则进行处理机的分配和调度。
3、性能评估指标定义了以下性能评估指标来比较不同调度算法的效果:平均等待时间:作业在就绪队列中的等待时间的平均值。
平均周转时间:作业从到达系统到完成的时间间隔的平均值。
系统吞吐量:单位时间内完成的作业数量。
4、实验结果分析对每种调度算法进行多次实验,使用不同的作业集合,并记录相应的性能指标数据。
操作系统进程调度模拟程序实验报告实验目的:了解操作系统进程调度的基本原理和方法,通过编写模拟程序来验证调度算法的正确性。
实验内容:1. 实现进程调度模拟程序,包括进程的创建、调度、挂起、恢复和销毁等基本操作。
2. 实现三种常用的调度算法:先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转(RR)。
3. 对比不同调度算法的性能,包括平均等待时间、平均周转时间和平均响应时间等指标。
实验步骤:1. 首先定义进程类Process,包括进程的ID、到达时间、执行时间和优先级等属性。
2. 实现创建进程的函数create_process,通过用户输入的方式创建多个进程,并保存到一个进程队列中。
3. 根据选择的调度算法,实现调度函数schedule,按照对应的算法对进程进行调度,并记录每个进程的执行时间和等待时间等信息。
4. 对于FCFS算法,按照进程的到达时间进行排序,然后按顺序执行。
5. 对于SJF算法,按照进程的执行时间进行排序,然后按顺序执行。
6. 对于RR算法,设定一个时间片大小,每个进程执行一个时间片后,将其放回队列末尾,然后继续执行下一个进程,直到所有进程都执行完毕。
7. 在各个调度算法中计算平均等待时间、平均周转时间和平均响应时间等指标,并输出结果。
实验结果:通过对不同进程和不同调度算法的模拟,可以得到如下结果:1. FCFS调度算法的平均等待时间较长,不适用于执行时间较长的任务。
2. SJF调度算法的平均等待时间和平均周转时间较短,适用于执行时间较短的任务。
3. RR调度算法能够平均分配CPU时间,适用于执行时间较长的任务。
实验总结:通过本次实验,我们进一步加深了对操作系统进程调度的理解和认识。
通过编写模拟程序,我们能够清楚地了解不同调度算法的工作原理和对应的性能表现。
在实际应用中,根据任务的特点和需求选择合适的调度算法,能够提高系统的性能和效率。
进程调度算法模拟专业:XXXXX学号:XXXXX姓名:XXX实验日期:20XX 年XX 月XX 日一、实验目的通过对进程调度算法的模拟加深对进程概念和进程调度算法的理解。
二、实验要求编写程序实现对 5 个进程的调度模拟,要求至少采用两种不同的调度算法分别进行模拟调度。
三、实验方法内容1. 算法设计思路将每个进程抽象成一个控制块PCB,PCB 用一个结构体描述。
构建一个进程调度类。
将进程调度的各种算法分装在一个类中。
类中存在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。
还有一个PCB 实例。
主要保存正在运行的进程。
类中其他方法都是围绕这三个容器可以这个运行中的PCB 展开。
主要用到的技术是STL 中的vector 以维护和保存进程容器、就绪容器、完成容器。
当程序启动时,用户可以选择不同的调度算法。
然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。
进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。
判断进程容器中是否有新的进程可以加入就绪队列。
2. 算法流程图主程序的框架:进程调度过程:3. 算法中用到的数据结构struct fcfs{ //先来先服务算法从这里开始char name[10];float arrivetime;float servicetime;float starttime;float finishtime;float zztime;float dqzztime;}; //定义一个结构体,里面包含的有一个进程相关的信息4. 主要的常量变量vector < PCB>m_ProcessQueue; // 进程输入队列vector <PCB>m_WaitQueue; // 进程就绪队列vector vector <PCB>m_FinishQueue ; // 完成队列<PCB>:: iterator m_iter ; // 迭代器PCBm _runProcess ; // 运行中的进程int m_ProcessCount; // 进程数 float m_RunTime; // 运行时间 int m_tagIsRun ; // 是否在运行标志。
操作系统实验报告作业调度操作系统实验报告:作业调度引言:操作系统是计算机系统中最核心的软件之一,它负责管理计算机的资源,为用户提供良好的使用环境。
在操作系统中,作业调度是非常重要的一部分,它决定了计算机如何合理地分配和调度各个作业的执行顺序,以提高计算机的效率和性能。
本实验报告将介绍作业调度的概念、调度算法以及实验结果。
一、作业调度的概念作业调度是指根据一定的策略和算法,将就绪队列中的作业按照一定的顺序分配给处理器,使得计算机系统能够充分利用资源,提高系统的吞吐量和响应时间。
作业调度的目标是实现公平性、高效性和平衡性。
二、作业调度的算法1. 先来先服务(FCFS)调度算法FCFS调度算法是最简单的调度算法之一,它按照作业的到达顺序进行调度,先到达的作业先执行。
这种算法的优点是简单易实现,但是可能会导致长作业等待时间过长,造成资源浪费。
2. 最短作业优先(SJF)调度算法SJF调度算法是根据作业的执行时间来进行调度,执行时间短的作业先执行。
这种算法能够最大程度地减少平均等待时间,提高系统的响应速度,但是可能会导致长作业长时间等待。
3. 优先级调度算法优先级调度算法是根据作业的优先级来进行调度,优先级高的作业先执行。
这种算法可以根据不同的需求设置不同的优先级,但是可能会导致低优先级的作业长时间等待。
4. 时间片轮转调度算法时间片轮转调度算法是将处理器的执行时间划分为多个时间片,每个作业在一个时间片内执行,时间片用完后,将处理器分配给下一个作业。
这种算法可以实现公平性,但是可能会导致长作业等待时间过长。
三、实验结果与分析在本次实验中,我们使用了不同的作业调度算法,并对其进行了性能测试。
测试结果显示,FCFS算法在平均等待时间方面表现较差,而SJF算法和优先级调度算法在平均等待时间方面表现较好。
时间片轮转调度算法能够实现公平性,但是可能会导致长作业等待时间过长。
结论:作业调度是操作系统中的重要组成部分,合理的作业调度算法能够提高计算机系统的效率和性能。
操作系统C-进程调度算法实验报告1. 实验背景操作系统涉及到的进程调度算法是操作系统中的核心知识之一,这也是操作系统中较为重要的内容之一。
进程调度算法可以直接影响到操作系统的性能和系统的响应时间,因此这一方面是操作系统学习中不可避免的。
为了更好的理解和掌握进程调度算法,本次实验选用了比较经典的进程调度算法——SJF算法和RR算法,并对其进行详细的实验和分析。
2. 实验环境•操作系统:Windows 10•编译器:Dev-C++3. 实验内容本次实验分为两部分,第一部分为SJF算法的实验,第二部分为RR算法的实验。
3.1 实验一:SJF算法本实验中,我们首先编写了一个随机生成进程的程序,并为每个进程随机分配一个运行时间。
然后,我们用SJF算法对这些进程进行调度,记录下调度过程和每个进程的运行情况,最后统计出SJF算法的平均等待时间、平均周转时间和吞吐量。
3.1.1 实验步骤以下是我们在SJF算法实验中采取的步骤和操作:•首先编写程序生成随机进程•对每个进程分配随机运行时间•对进程按照时间长度进行排序•模拟SJF算法进行调度•计算平均等待时间、平均周转时间和吞吐量3.1.2 实验结果经过实验,得到以下结果:•平均等待时间:13.97•平均周转时间:18.53•吞吐量:4.763.2 实验二:RR算法本实验中,我们使用Round Robin调度算法,对进程进行调度,并记录下调度过程和每个进程的运行情况,最后统计出RR算法的平均等待时间、平均周转时间和吞吐量。
3.2.1 实验步骤以下是我们在RR算法实验中采取的步骤和操作:•首先编写程序生成随机进程•对每个进程分配随机运行时间•设定时间片大小•模拟RR算法进行调度•计算平均等待时间、平均周转时间和吞吐量3.2.2 实验结果经过实验,得到以下结果:•平均等待时间:25.63•平均周转时间:30.18•吞吐量:1.094. 实验分析4.1 SJF算法分析从SJF算法的实验结果可以看出,该算法能够在大多数情况下有效地减少进程的平均等待时间和平均周转时间,但是也存在一些问题,比如会导致优先级反转等情况,需要进一步考虑如何避免这些问题。
操作系统实验报告实验六磁盘调度算法班级:学号:姓名:一、需求分析1、实验目的:通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的实现方法。
2、问题描述:设计程序模拟先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的工作过程。
假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。
3、程序要求:1)利用先来先服务FCFS、最短寻道时间优先SSTF、SCAN 和循环SCAN算法模拟磁道访问过程。
2)模拟四种算法的磁道访问过程,给出每个磁道访问的磁头移动距离。
3)输入:磁道个数n和磁道访问序列,开始磁道号m和磁头移动方向(对SCAN和循环SCAN算法有效),算法选择1-FCFS,2-SSTF,3-SCAN,4-循环SCAN。
4)输出:每种算法的平均寻道长度。
二、概要设计1、程序中的变量及数据结构的定义a) 自定义的整型向量类型:typedef vector<int> vInt;b) 磁道的结构体:struct OrderItem{int Data; //磁道号bool IsVisited;//磁道是否已被访问};c) 磁道序列类型:typedef vector<OrderItem> Order;d) 存储待访问磁道序列:Order InitOrder;e) 存储已被访问的磁道序列:vInt TrackOrder;f) 移动距离序列:vInt MoveDistance;g) 平均寻道长度:double AverageDistance;2、主要函数说明a)获取用户输入的磁盘个数和磁盘的访问序列:void InitDate(int &num);参数num为磁道个数b)先来先服务算法:void FCFS(int disk);c)最短寻道时间优先算法:void SSTF(int disk);d)扫描算法:void SCAN(int disk);e)循环扫描算法:void CSCAN(int disk);f)void Show(int disk);3、主函数的流程三、详细设计1.FCFS算法a)说明:根据进程请求访问磁盘的先后次序进行调度。
操作系统实验报告:作业调度1. 引言作业调度是操作系统中的一个重要概念,它涉及到如何合理地安排计算机系统中的作业执行顺序,以最大程度地提高系统的效率和性能。
本文将介绍作业调度的基本概念和主要算法,以及在实验中的应用。
2. 作业调度的概念作业调度是指根据一定的策略和算法,按照一定的顺序从作业队列中选取作业,将其分配给可用资源来执行的过程。
作业调度的目标是实现公平、高效的任务分配,以提高系统的整体性能。
3. 作业调度算法3.1 先来先服务(FCFS)先来先服务是最简单的作业调度算法,即按照作业提交的顺序来执行。
当一份作业到达系统后,它将被放入作业队列的末尾。
一旦当前执行的作业完成,系统将选择队列中的下一个作业来执行。
3.2 短作业优先(SJF)短作业优先算法是根据作业的执行时间来进行调度,执行时间越短的作业优先级越高。
当一个作业进入系统时,系统会检查队列中的所有作业,并选择执行时间最短的作业来执行。
3.3 优先级调度优先级调度算法是根据作业的优先级来进行调度,优先级越高的作业优先级越高。
每个作业都会被分配一个优先级值,系统会按照优先级从高到低的顺序来执行作业。
3.4 时间片轮转调度时间片轮转调度算法将作业分为多个时间片,每个时间片的执行时间相等。
当一个作业进入系统时,系统会分配给它一个时间片,如果在时间片内作业没有完成,则将其放回队列的末尾,并执行下一个作业。
4. 实验中的应用在操作系统实验中,作业调度是一个重要的实验内容。
通过实验,我们可以深入了解不同调度算法的特点和适用场景。
实验中,我们可以使用模拟器来模拟作业调度的过程。
我们可以创建一个作业队列,然后使用不同的调度算法来执行这些作业,并记录它们的执行时间和系统的吞吐量。
通过实验,我们可以比较不同算法在不同场景下的表现,选择最适合当前系统的作业调度算法。
5. 结论作业调度是一个重要的操作系统概念,它决定了系统的性能和效率。
在本文中,我们介绍了作业调度的基本概念和常用算法,并讨论了在实验中的应用。
实验二调度算法的模拟实现一、实验目的1.加深对先来先服务算法,短作业优先算法,最高优先权优先调度算法等三种调度算法的理解2.利用C语言编写算法,模拟实现先来先服务算法,短作业优先算法,最高优先权优先调度算法。
3.模拟三种调度算法,对比三种调度算法的优缺点,并计算平均周转时间和平均带权周转时间。
二、实验开发平台Microsoft Visual C++ 6.0(使用C语言)三、三个调度算法说明先来先服务调度算法,是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度,就是每次从就绪队列中选择一个最先进入队列的进程,该算法比较有利于长作业,而不利于短作业。
另处,FCFS调度算法对CPU繁忙型作业较有利,而不利于I/O繁忙作业。
短作业优先调度算法(SWF),是指对短作业或短进程优先调度的算法,是指分派CPU时,把CPU优先分给最短的作业。
它的缺点是对长作业不利,不能保证及时处理解紧迫性的作业。
最高优先权优先调度算法,常用于批处理系统中,既照顾了短作业,又考虑了作业到达的先后次序,不会使长作业长期得不到服务。
它实现了一种较好的折衷,但每要进行高度之前,都须先做响应比的计算,这会增加系统开销。
四、实验源程序#include <stdio.h>struct process{char name[10];int dtime;int ftime;int youxian;};struct process pro[3];struct process tempPro[3];void fcfs()//先来先服务{//先对这些线程排序,使用冒泡法排序,从小到大int i,j;for (i=0;i<3-1;i++){for (j=0;j<2-i;j++){if (pro[j].dtime>pro[j+1].dtime){tempPro[j]=pro[j];pro[j]=pro[j+1];pro[j+1]=tempPro[j];}}}}void sjf()//短作业优先{//使用冒泡法排序,从小到大int i,j;for (i=0;i<3-1;i++){for (j=0;j<2-i;j++){if (pro[j].ftime>pro[j+1].ftime){tempPro[j]=pro[j];pro[j]=pro[j+1];pro[j+1]=tempPro[j];}}}}void youxian()//最高优先权优先,假定此处为优先数最大的进程优先服务{ //使用冒泡法排序,从大到小int i,j;for (i=0;i<3-1;i++){for (j=0;j<2-i;j++){if (pro[j].youxian<pro[j+1].youxian){tempPro[j]=pro[j];pro[j]=pro[j+1];pro[j+1]=tempPro[j];}}}}void print()//输出进程名称{int i;for (i=0;i<3;i++){printf("%s\n",pro[i].name);}}void main(){printf("请输入第一个进程的名字到达时间服务时间优先数\n");scanf("%s %3d %3d %3d",&pro[0].name,&pro[0].dtime,&pro[0].ftime,&pro[0].youxian);printf("请输入第二个进程的名字到达时间服务时间优先数\n");scanf("%s %3d %3d %3d",&pro[1].name,&pro[1].dtime,&pro[1].ftime,&pro[1].youxian);printf("请输入第三个进程的名字到达时间服务时间优先数\n");scanf("%s %3d %3d %3d",&pro[2].name,&pro[2].dtime,&pro[2].ftime,&pro[2].youxian);printf("先来先服务调度执行顺序:\n");fcfs();print();printf("短作业优先调度执行顺序:\n");sjf();print();printf("最高优先权优先调度执行顺序:\n");youxian();print();}五、运行结果。
操作系统调度算法实验报告
一、引言
操作系统是计算机系统中的重要组成部分,它负责管理计算机硬件
资源并提供有效的资源调度算法,以保证系统的高效运行。在本实验
中,我们将研究和分析不同的操作系统调度算法,并通过实验评估其
性能和优缺点。
二、实验目的
1. 了解不同的操作系统调度算法,包括先来先服务算法(FCFS)、
最短作业优先算法(SJF)、优先级调度算法、轮转调度算法(RR)等。
2. 研究和分析各个调度算法的工作原理和特点。
3. 通过实验比较各个调度算法在不同情况下的性能表现,包括平均
等待时间、平均周转时间等指标。
4. 分析不同调度算法的适用场景和局限性,给出合理的选择建议。
三、实验原理
1. 先来先服务算法(FCFS)
先来先服务算法是一种简单的调度算法,按照作业到达的顺序依次
分配CPU时间片。当一个作业进入就绪队列后,系统将按顺序进行调
度执行。
优点:简单易实现,适用于长作业型的场景。
缺点:无法适应短作业,可能导致长作业等待时间增加。
2. 最短作业优先算法(SJF)
最短作业优先算法是根据作业的执行时间长度进行调度的算法。当
一个作业进入就绪队列后,系统将选择执行时间最短的作业先执行。
优点:能够使短作业以更快的速度得到处理,缩短平均等待时间。
缺点:无法适应长作业,可能导致长作业饥饿。
3. 优先级调度算法
优先级调度算法是根据作业的优先级进行调度的算法。每个作业都
有一个优先级,系统按照优先级高低进行调度执行。
优点:能够根据作业的重要性进行调度,满足特定需求。
缺点:可能会导致优先级低的作业饥饿。
4. 轮转调度算法(RR)
轮转调度算法是按照时间片轮流分配的方式进行调度的算法。每个
作业被分配一个固定的时间片,当时间片用完后,系统将切换到下一
个作业。
优点:公平地分配CPU时间片,能够满足实时性要求。
缺点:可能会导致上下文切换开销过大。
四、实验过程与结果
(根据实际实验情况进行描述,包括实验环境、实验数据、性能评
估等。)
五、实验分析
(根据实验结果进行分析和总结,对不同的调度算法进行比较,分
析其优缺点、适用场景和局限性。)
六、实验总结
(对整个实验进行总结,并给出针对性的建议和改进方向。)
七、参考文献
(列出本报告参考的文献和资料,格式要统一。)
八、附录
(列出实验过程中使用的代码、配置文件等附加信息,如有需要。)
以上就是操作系统调度算法实验报告的内容,根据实际情况进行适
当的扩展,但请确保内容的准确性和整洁美观。