A common pattern of persistent gene Source Ann Neurol SO 2005 Nov 58 5 736 47[PMIDM16240350]
- 格式:pdf
- 大小:1.58 MB
- 文档页数:12
Neurology病例:甲状旁腺功能减退所致的Fahr综合征
57岁女性,多年前曾行甲状腺切除术,既往无神经系统症状,因癫痫发作,发热和昏迷就诊。
其所在的海地农村医院由于检查措施有限,仅发现低钙血症(4 mg/dL)和头颅CT证实的广泛对称的大脑和小脑半球皮质下钙化(图)。
这种钙化类型可见于遗传性疾病如家族性特发性基底节钙化症(Fahr病)和获得性疾病(称Fahr综合征),包括甲状旁腺功能障碍和宫内感染。
考虑到本例患者严重的低钙血症,Fahr综合征可能因甲状旁腺功能减退所致,推测与先前的甲状腺切除术有关。
(图:CT平扫可见皮质下白质,基底节,丘脑和齿状核广泛对称的双侧钙化)
[参考文献]
Dade E, Saint-Joy V, Haynes NA, Berkowitz AL.Teaching NeuroImages: Fahr syndrome caused by hypoparat hyroidism.Neurology. 2017 Jun 6;88(23):e233.
温馨提醒请尊重我们的劳动成果,转载不要忘了注明出处哦~~~。
综㊀㊀述cGAS ̄STING通路的调控机制及其相关药物研究进展张旭飞ꎬ吴秀文综述ꎬ任建安审校㊀㊀[摘要]㊀鸟苷酸 ̄腺苷酸合成酶(cGAS)㊁干扰素基因刺激因子(STING)均为细胞内受体ꎬ参与细胞对双链DNA的识别ꎮ由cGAS激活的STING通路是近年来研究较为热门的信号通路ꎬ可介导细胞自噬㊁细胞死亡ꎬ发挥促炎㊁抗病毒㊁抗肿瘤等多种效应ꎮ随着研究深入ꎬ对cGAS ̄STING通路相关分子机制的了解逐渐增多ꎬ调控该通路有了较强的理论基础ꎮ鉴于cGAS ̄STING通路参与多种病理生理学功能ꎬ故针对cGAS ̄STING通路相关抑制剂㊁激动剂的研发具有潜在的临床应用价值ꎮ文章就cGAS ̄STING通路的各调控位点及其相关抑制剂㊁激动剂进行综述ꎮ㊀㊀[关键词]㊀鸟苷酸 ̄腺苷酸合成酶ꎻ干扰素基因刺激因子ꎻ环化二核苷酸ꎻ抑制剂ꎻ激动剂㊀㊀[中图分类号]㊀R91㊀㊀[文献标志码]㊀A㊀㊀㊀[文章编号]㊀1008 ̄8199(2021)03 ̄0303 ̄06㊀㊀[DOI]㊀10.16571/j.cnki.1008 ̄8199.2021.03.017基金项目:国家自然科学基金(81772052ꎬ81801971)作者单位:210002南京ꎬ南京医科大学金陵临床医学院(东部战区总医院)全军普通外科研究所[张旭飞(医学硕士研究生)㊁吴秀文㊁任建安]通信作者:任建安ꎬE-mail:jiananr@gmail.comResearchprogressonthemechanismandrelateddrugsofregulatingcGAS ̄STINGpathwayZHANGXu ̄feiꎬWUXiu ̄wenreviewingꎬRenJian ̄anchecking(ResearchInstituteofGeneralSurgeryꎬJinlingHospitalꎬNanjingMedicalUniversity/GeneralHospitalofEasternTheaterCommandꎬPLAꎬNanjing210002ꎬJiangsuꎬChina)㊀㊀[Abstract]㊀BothcyclicGMPAMPsynthase(cGAS)andstimulatorofinterferongenes(STING)areintracellularreceptors.TheSTINGpathwayactivatedbycGASisamuchpopularsignalingpathwayinrecentyearsꎬwhichcanmediateautophagyandcelldeathandexertvariouseffectsꎬincludinginflammatoryresponseꎬantiviraleffectꎬandanti ̄tumoreffect.Withthedeepeningofre ̄searchꎬthemolecularmechanismrelatedtothecGAS ̄STINGpathwayhasbeengraduallyimprovedꎬprovidingastrongtheoreticalbasisforregulatingthecGAS ̄STINGpathway.SincethecGAS ̄STINGpathwayisinvolvedinmultiplepathophysiologicalfunctionsꎬthede ̄velopmentofinhibitorsandagonistsforthecGAS ̄STINGpathwayhaspotentialclinicalapplicationvalue.ThereforeꎬwewilldiscussthemechanismofregulatingcGAS ̄STINGpathwayandtheinhibitorsoragonistsrelatedtothecGAS ̄STINGpathway.㊀㊀[Keywords]㊀cyclicGMP ̄AMPsynthaseꎻstimulatorofinterferongenesꎻcyclicdinucleotidesꎻinhibitorsꎻagonists0㊀引㊀㊀言㊀㊀病原微生物感染宿主释放的病原相关分子模式(pathogen ̄associatedmolecularpatternsꎬPAMPs)和细胞损伤释放的损伤相关分子模式(damage ̄associatedmolecularpatternsꎬDAMPs)一直是固有免疫研究中的热点[1-2]ꎮ模式识别受体(pattern ̄recognitionre ̄ceptorsꎬPRRs)是固有免疫中不可或缺的成分ꎬ可识别PAMPs和DAMPsꎬ激活固有免疫ꎬ诱导炎症因子或趋化因子的分泌ꎬ故PRRs在监测病原微生物的入侵和组织细胞的损伤中起到关键作用[3]ꎮ早期的研究已对细胞表面的PRRs进行了详细阐述ꎮ然而ꎬ近年来细胞内PRRs在病原微生物识别系统中的作用越来越受到重视ꎮ鸟苷酸 ̄腺苷酸合成酶(cyclicGMP ̄AMPsyn ̄thaseꎬcGAS)㊁干扰素基因刺激因子(stimulatorofinterferongenesꎬSTING)均是细胞内PRRsꎮcGAS可识别并结合细胞质内的双链DNA(double ̄strandedDNAꎬdsDNA)ꎬ激活状态的cGAS可将三磷酸腺苷(adenosinetriphosphateꎬATP)和三磷酸鸟苷(guanosinetriphosphateꎬGTP)合成2ᶄ3ᶄ ̄环化鸟苷酸 ̄腺苷酸(cyclicGMP ̄AMPꎬcGAMP)ꎮ2ᶄ3ᶄ ̄cGAMP可直接激活内质网上的STING蛋白ꎬSTING激活后由内质网向高尔基体上转移[4]ꎮ激活的STING在高尔基体上招募并激活TANK结合激酶1(TANKbindingkinase1ꎬTBK ̄1)ꎮ一方面ꎬTBK ̄1可直接激活NF ̄κB信号通路ꎬ诱导炎症因子的产生ꎻ另一方面ꎬTBK ̄1招募并磷酸化下游干扰素调节因子3(in ̄terferonregulatoryfactor3ꎬIRF3)ꎬ磷酸化的IRF3可入核启动干扰素相关基因的表达ꎬ促进Ⅰ型干扰素的合成ꎬ从而增强免疫反应[5]ꎬ见图1ꎮ此外ꎬcGAS ̄STING通路还参与调控细胞代谢㊁自噬㊁死亡ꎬ在肠道炎症㊁非酒精性脂肪肝㊁胰腺㊁肾纤维化等损伤中发挥着作用[6]ꎮ故调控cGAS ̄STING通路对于组织细胞内稳态的维持㊁相关疾病的治疗具有重要意义ꎮ本文针对cGAS ̄STING通路中各环节的干预机制及相关药物作一综述ꎮ图1㊀STING通路及其调控机制和药物Figure1㊀OverviewofthemechanismandtheinhibitorsoragonistsrelatedtotheSTINGsignaling1㊀cGAS的调控㊀㊀cGAS是细胞质内dsDNA的感受器ꎬcGAS与dsDNA结合后ꎬcGAS催化位点的构象由无序变为有序ꎮ最新的研究发现ꎬcGAS激活后会形成二聚体ꎬcGAS二聚体与外侧两条dsDNA形成梯形结构ꎬ并促进后续cGAS二聚体与两条dsDNA结合ꎬdsD ̄NA的链越长ꎬ结合的cGAS二聚体则越多ꎬ故cGAS的激活数量是取决于dsDNA的长度[7]ꎮ我们发现ꎬ给予盲肠结扎穿孔的小鼠腹腔注射脱氧核糖核酸酶Ⅰꎬ会明显减少造模小鼠血循环线粒体DNA和炎症因子含量ꎬ改善脓毒症介导的肠道损伤[8]ꎮ此外ꎬ线粒体转录因子A(mitochondrialtranscriptionfactorAꎬTFAM)或高迁移率族蛋白1(HighMobilityGroupBox1ꎬHMGB1)参与装配cGAS ̄dsDNA形成的梯形结构ꎬ促进cGAS的激活[7]ꎮ所以促进细胞质内ds ̄DNA的降解ꎬ减少细胞质内TFAM㊁HMGB1的释放可从根本上抑制cGAS ̄STING通路的始动环节ꎮ1.1㊀cGAS的抑制剂㊀Hall等[9]发现一种具有生物活性的小分子PF ̄06928215可抑制cGAS活性ꎬ并且这种试剂本身对细胞活性影响很小ꎮ深入研究发现ꎬPF ̄06928215可结合于cGAS的活性位点ꎬ这种结合可能会影响ATP与cGAS的结合以及下游cGAMP的合成ꎮ既往已发现羟化氯喹㊁奎纳克林等抗疟疾药物具有抑制cGAMP合成的作用ꎬ但深入研究发现这些药物作用机制并不是与cGAS活性位点结合ꎬ而是与细胞质内DNA结合ꎬ从而阻止了DNA与cGAS的结合[10]ꎮ据此ꎬAn等[11]设计㊁合成了一种类抗疟疾药物ꎬ命名为 X6 ꎬ能够阻止DNA与cGAS的结合ꎬ并且X6对cGAS ̄STING通路的抑制作用要强于羟化氯喹ꎮsuramin是WHO推荐治疗河盲症和非洲昏睡病药物清单上的基本药物ꎮ最近ꎬSintim团队通过筛选分析发现suramin是潜在的cGAS抑制剂ꎬ其作用机制较为独特ꎬ能够将dsDNA从cGAS解离下来ꎬ减少cGAMP的生成ꎬ缓解cGAS ̄STING通路的激活ꎬ降低Ⅰ型干扰素的合成[12]ꎮ1.2㊀cGAS的转录后修饰㊀cGAS转录后修饰可调控cGAS的活性ꎮ2015年ꎬSeo等[13]发现Akt激酶可通过磷酸化cGAS的Ser291或Ser305位点抑制cGAS的酶活性ꎬ给予Akt1/2特异性抑制剂Ⅷ或突变该磷酸化位点可促进dsDNA诱导的干扰素合成释放ꎮ此外ꎬcGAS的泛素化修饰亦可调控cGAS的活性ꎮRNF185是一种E3泛素化连接酶ꎬ在单纯疱疹病毒 ̄1感染细胞期间ꎬRNF185可于cGAS的K173和K384位点上介导K27泛素链形成ꎬ促进cGAS的酶活性ꎻ而沉默RNF185可抑制cGAS的酶活性ꎬ限制干扰素应答效应[14]ꎮTRIM56也是一种E3泛素化连接酶ꎬ早期研究认为TRIM56是通过泛素化STING蛋白促进STING通路激活ꎬ然而后期发现TRIM56的敲除并不影响cGAMP直接激活STINGꎮ有研究深入探索ꎬ发现TRIM56是通过介导cGAS的K335位点泛素化ꎬ促进cGAS二聚化以及cGAMP的产生ꎬ加强cGAS ̄STING通路[15]ꎮ尽管如此ꎬcGAS的活性是否受泛素 ̄蛋白酶体系统的其他成分动态调控仍是一个有待解决的问题ꎮ2㊀STING的激动剂和抑制剂㊀㊀STING是位于内质网上的跨膜蛋白ꎮ在人STING蛋白结构中ꎬ其N末端有5个跨膜结构域ꎬC末端是TBK1/IRF3连接结构域ꎬ此外还有一段CDNs连接结构域[16]ꎮ虽然STING激活后通过NF ̄κB㊁IRF3通路诱导炎症反应ꎬ损伤组织器官ꎬ但这种免疫应答亦可介导免疫防御ꎬ抵抗病原微生物感染ꎬ或监测肿瘤来源的dsDNAꎬ产生固有的抗肿瘤免疫ꎮ除了经典通路ꎬSTING也有许多非经典通路ꎮ最新的研究发现ꎬSTING被激活后ꎬ其TM5㊁TM2结构域负责招募并激活NLRP3炎性小体ꎬ促进抗病毒反应[17]ꎮ2.1㊀STING的核苷酸类激动剂㊀环化二核苷酸(cyclicdinucleotidesꎬCDNs)是STING的直接激动剂ꎮ在经典通路中ꎬcGAS产生的是2ᶄ3ᶄ ̄cGAMPꎬ2ᶄ3ᶄ ̄cGAMP也是CDNs的一种ꎮ而在细菌感染宿主细胞过程中ꎬ会释放其他种类的CDNsꎬ如2ᶄ2ᶄ ̄cGAMP㊁3ᶄ3ᶄ ̄cGAMP㊁c ̄diAMP以及c ̄diGMP[5]ꎮ这些环化二核苷酸可直接激活STINGꎬ诱导STING相关免疫应答ꎮ尽管CDNs种类众多ꎬ但既往研究发现cGAMP激活STING诱导Ⅰ型干扰素产生的能力高于c ̄diAMP和c ̄diGMP[18-19]ꎻ但在cGAMP中ꎬ2ᶄ3ᶄ ̄cGAMP结合STING的能力更强ꎬ诱导干扰素产生的能力也更强[18-19]ꎮ为对抗STING的激活ꎬ细胞内存在水解2ᶄ3ᶄ ̄cGAMP的固有机制ꎮ核苷酸外焦磷酸酶/磷酸二酯酶1(Ectonucleotidepyrophos ̄phatase/phosphodiesterase1ꎬENPP1)是一种跨膜糖蛋白ꎬ位于细胞膜和内质网膜中ꎬ在人体中广泛表达ꎬ包括胃肠道㊁肺㊁肝㊁脂肪组织等ꎮ研究发现EN ̄PP1可将细胞外和细胞内2ᶄ3ᶄ ̄cGAMP水解成AMP和GMPꎬ从而抑制2ᶄ3ᶄ ̄cGAMP激活STING[20]ꎮ此外ꎬENPP1的催化结构域中含两个锌离子结合位点ꎬ并且锌离子与ENPP1的水解活性密切相关[21]ꎮ尽管CDNs是STING的直接激动剂ꎬ但单纯的CDNs实际利用起来有诸多缺点ꎬ如:稳定性差㊁细胞膜穿透性较差等ꎮ鉴于此ꎬ许多研究致力于CDNs的修饰ꎬ从而改善CDNs的性能ꎮCDNs修饰的方法有很多ꎬ如为对抗磷酸酶可进行硫代磷酸化修饰㊁为增加膜穿透性可进行脂肪酸/氟修饰㊁为改善与STING的结合能力可进行核苷酸替换等ꎬ修饰的位点常在于磷酸二酯键的部位以及2ᶄ3ᶄ ̄OH部位[22-24]ꎮ尽管修饰可改善CDNs部分性能ꎬ但也可能会影响CDNs对STING的激活能力ꎮ2.2㊀STING的非核苷酸类激动剂㊀为克服CDNs的缺点ꎬ也为适合工业化生产和低成本保存的需求ꎬ许多团队试图寻找取代CDNs的分子ꎮ当前ꎬ主要有6种STING的非核苷酸类激动剂:5ꎬ6 ̄二甲基黄体酮 ̄4 ̄乙酸(5ꎬ6 ̄dimethylxanthenone ̄4 ̄aceticacidꎬDMXAA)㊁黄酮乙酸(flavoneaceticacidꎬFAA)㊁10 ̄羧甲基 ̄9 ̄吖啶酮(10 ̄carboxymethyl ̄9 ̄acridanoneꎬCMA)㊁α ̄倒捻子素(α ̄Mangostin)㊁BNBC以及[25-30]ꎮ在以上6种分子中ꎬ并不是全部都对人类STING蛋白有效ꎬ只有α ̄倒捻子素㊁BNBC㊁diABZ能够激活人类STING蛋白ꎻ此外ꎬ只有BNBC对鼠STING无效ꎬ其余5种都对鼠STING有效ꎮDMXAA和FAA是黄酮类化合物ꎬ它们被发现可通过破坏肿瘤血管系统和诱导细胞因子分泌来抑制小鼠模型下的黑素瘤㊁胶质瘤以及非小细胞肺癌[26ꎬ31-32]ꎮZhang等[29]发现α ̄倒捻子素对人类STING的激活能力要强于鼠STINGꎮ此外ꎬα ̄倒捻子素干预后ꎬ能促进巨噬细胞向M1型转变ꎬ而M1型巨噬细胞可参与抗肿瘤免疫[29]ꎮRamanjulu等[25]通过高通量筛选发现diABZI能够与cGAMP竞争结合于STING上ꎬ并且diABZI与STING的结合亲合力是2ᶄ3ᶄ ̄cGAMP的18倍ꎬ同时diABZI激活STING诱导干扰素产生的效果亦强于2ᶄ3ᶄ ̄cGAMPꎮ改良后的diABZI在静脉注射后对CT26结直肠肿瘤有显著的抑制作用作用[25]ꎮ尽管上述6种STING激动剂相比于CDNsꎬ具有较强的稳定性㊁适合商业化生产ꎬ但细胞膜穿透性仍较差ꎮ2.3㊀STING的抑制剂㊀近年来ꎬ关于STING抑制剂的研究主要围绕STING的棕榈酰化ꎮ在2016年ꎬMukai等[33]发现STING激活后从内质网转移到高尔基体上ꎬ并在高尔基体上发生棕榈酰化ꎬ其棕榈酰化位点是位于STING半胱氨酸88/91上ꎮSTING发生棕榈酰后ꎬ能够促进STING的二聚化形成ꎬ招募下游TBK1ꎮ故STING的棕榈酰化修饰对于STING下游的激活至关重要ꎮ2018年ꎬHaag等[34]通过筛选发现两种硝基呋喃衍生物(C ̄176㊁C ̄178)能够明显抑制干扰素的应答ꎬ其机制是抑制STING半胱氨酸91位点的棕榈酰化ꎻ但C ̄176㊁C ̄178只能抑制鼠STINGꎬ对人STING无效ꎮ研究者又根据C ̄176㊁C ̄178结构ꎬ得到另两种衍生物 C ̄170㊁C ̄171ꎮC ̄170和C ̄171亦可抑制STING半胱氨酸91位点的棕榈酰化ꎬ并且C ̄170和C ̄171可同时抑制人STING和鼠STINGꎮ此外ꎬ研究者也筛选出另一种衍生物H ̄151ꎬ通过同样机制负调控人STING和鼠STINGꎮ同年ꎬHansen等[35]发现3种硝基脂肪酸 硝基共轭亚油酸㊁9 ̄硝基油酸和10 ̄NO2 ̄OAꎬ这3种硝基脂肪酸可抑制STING半胱氨酸88/91位点的棕榈酰化ꎬ同时抑制人STING和鼠STINGꎮSTING也存在一些竞争性抑制剂ꎮ2018年ꎬLi等[36]从环肽数据库里筛选出了能抑制cGAS ̄STING通路的AstinCꎬ其为从药用植物紫菀中提取的环肽ꎮ研究发现AstinC可结合于STING的C末端结构域ꎬ从而抑制IRF3的招募[36]ꎮ并且给予AstinC可显著缓解小鼠Trex1敲除所诱导的自发性炎症反应[36]ꎮ2019年ꎬSiu等[37]通过自动配体识别系统ꎬ筛选出Compound18ꎮCompound18可连接STING结构域上cGAMP结合的位点ꎬ抑制STING的激活ꎻ并且Compound18具有较好的口服生物利用度ꎮ2.4㊀STING的转录后修饰㊀2013年ꎬKonno等[38]发现cGAS产生的2ᶄ3ᶄ ̄cGAMP除可直接激活STING外ꎬ也可通过负反馈轴介导STING的磷酸化ꎬ抑制干扰素应答ꎮ具体机制而言ꎬcGAMP可使腺苷酸活化蛋白激酶(AMPactivatedproteinkinaseꎬAMPK)去磷酸化ꎬ去磷酸化的AMPK丧失了对UNC ̄51样激酶(UNC ̄51 ̄likekinaseꎬULK1)的抑制作用ꎮ活化的ULK1可磷酸化STING的S366位点ꎬ从而抑制STING介导的干扰素应答效应ꎮ值得注意的是ꎬ活性抑制的STING将通过自噬途径被细胞降解ꎮSTING的泛素化修饰也参与调控下游的活性ꎮ线粒体E3泛素蛋白连接酶(mitochondrialE3ubiq ̄uitinproteinligase1ꎬMUL1)可催化STING的K224位点发生泛素化ꎬSTING的泛素化参与调控IRF3的招募与激活[39]ꎮ而阻断K224位点的泛素化可明显抑制IRF3介导的干扰素表达ꎬ但不影响NF ̄κB通路的激活[39]ꎮ此外ꎬ有研究发现使用泛素蛋白特异性蛋白酶13(ubiquitin ̄specificprotease13ꎬUSP13)可使STING去泛素化[40]ꎮ去泛素化的STING招募TBK1的能力大大减弱ꎬ从而抑制了炎症反应[40]3㊀TBK1的调控㊀㊀TBK1是一种丝氨酸/苏氨酸蛋白激酶ꎬ并且是STING的关键下游ꎬSTING通过招募TBK1可介导NF ̄κB㊁IRF3激活ꎮ在经典通路中ꎬcGAS ̄STING ̄TBK1介导的下游激活更偏重于IRF3通路[41]ꎮ但在依托泊苷诱导的核损伤中ꎬ共济失调 ̄毛细血管扩张突变蛋白(ataxiatelangiectasiamutatedꎬATM)和干扰素γ诱导因子16(interferon ̄g ̄induciblefactor16ꎬIFI16)共同介导STING ̄TBK ̄1的激活ꎬ此时的TBK1主要激活的是NF ̄κB通路[42]ꎮ目前ꎬTBK1对两种下游的选择机制尚不清楚ꎮ故在不同方式激活STING的过程中ꎬ抑制TBK1可能会有不同的效应ꎮ据报道ꎬBX795是TBK1/IKKε通路强力的抑制剂[43]ꎮ也有研究发现ꎬ使用BX795治疗原代外周血单核细胞(来源于STING基因突变㊁干扰素效应阳性的儿童患者)ꎬ治疗后可明显抑制IRF3的磷酸化以及干扰素的产生[44]ꎮMclever等[45]设计合成了4 ̄二氨基 ̄5 ̄环丙基嘧啶ꎬ这种分子能够弥补BX795的部分性能以及激酶选择性ꎮ2019年ꎬThomson等[46]发现了GSK8612是一种强效㊁高选择性TBK1抑制剂ꎬ并且具有较好的细胞膜穿透性ꎮ研究者使用dsDNA或cGAMP刺激THP1细胞ꎬ给予GSK8612治疗后可明显抑制干扰素的产生ꎮ值得注意的是ꎬ如果长期使用TBK1抑制剂ꎬ可能会导致抗病毒免疫缺陷ꎬ增加感染病毒的风险ꎮ4㊀结㊀㊀语㊀㊀cGAS ̄STING通路参与多种疾病的发生发展ꎬ阻断cGAS ̄STING通路可抑制炎症反应㊁减轻组织损伤ꎬ而激活cGAS ̄STING通路可促进抗病毒㊁抗肿瘤效应ꎮ了解cGAS ̄STING通路各环节的调控机制ꎬ可利用现有的药物或研发新药物干预cGAS ̄STING通路ꎬ为临床相关疾病治疗提供新的思路和方法ꎮ随着研究的深入ꎬcGAS下游不依赖STING㊁STING上游不依赖cGAS以及STING下游不依赖IRF3等非经典cGAS ̄STING通路逐步被发现ꎬ使得关于该通路的调控位点的研究更引人入胜ꎮʌ参考文献ɔ[1]㊀张旭飞ꎬ吴秀文ꎬ任建安.线粒体DNA在危重症中的研究进展[J].中华危重症医学杂志(电子版)ꎬ2018ꎬ11(5):353 ̄356.[2]㊀胡琼源ꎬ任建安ꎬ吴秀文.线粒体DNA在固有免疫调节中的研究进展[J].医学研究生学报ꎬ2019ꎬ32(4):432 ̄435.[3]㊀蔡炳冈ꎬ朱㊀进ꎬ汪茂荣.Toll样受体4信号通路研究进展[J].医学研究生学报ꎬ2015ꎬ28(11):1228 ̄1232. [4]㊀AblasserAꎬChenZJ.cGASinaction:Expandingrolesinimmu ̄nityandinflammation[J].Scienceꎬ2019ꎬ363(6431):eaat8657.[5]㊀MarinhoFVꎬBenmerzougSꎬOliveiraSCꎬetal.TheEmergingRolesofSTINGinBacterialInfections[J].TrendsMicrobiolꎬ2017ꎬ25(11):906 ̄918.[6]㊀GuiXꎬYangHꎬLiTꎬetal.AutophagyinductionviaSTINGtraffickingisaprimordialfunctionofthecGASpathway[J].Na ̄tureꎬ2019ꎬ567(7747):262 ̄266.[7]㊀AndreevaLꎬHillerBꎬKostrewaDꎬetal.cGASsenseslongandHMGB/TFAM ̄boundU ̄turnDNAbyformingprotein ̄DNAlad ̄ders[J].Natureꎬ2017ꎬ549(7672):394 ̄398. [8]㊀HuQꎬRenHꎬLiGꎬetal.STING ̄mediatedintestinalbarrierdysfunctioncontributestolethalsepsis[J].EBioMedꎬ2019ꎬ41:497 ̄508.[9]㊀HallJꎬBraultAꎬVincentFꎬetal.DiscoveryofPF ̄06928215asahighaffinityinhibitorofcGASenabledbyanovelfluorescencepolarizationassay[J].PLoSOneꎬ2017ꎬ12(9):e0184843. [10]㊀AnJꎬMinieMꎬSasakiTꎬetal.AntimalarialDrugsasImmuneModulators:NewMechanismsforOldDrugs[J].AnnuRevMedꎬ2017ꎬ68:317 ̄330.[11]㊀AnJꎬWoodwardJJꎬLaiWꎬetal.InhibitionofCyclicGMP ̄AMPSynthaseUsingaNovelAntimalarialDrugDerivativeinTrex1 ̄DeficientMice[J].ArthritisRheumatolꎬ2018ꎬ70(11):1807 ̄1819.[12]㊀WangMꎬSooreshjaniMAꎬMikekCꎬetal.Suraminpotentlyin ̄hibitscGAMPsynthaseꎬcGASꎬinTHP1cellstomodulateIFN ̄betalevels[J].FutureMedChemꎬ2018ꎬ10(11):1301 ̄1317. [13]㊀SeoGJꎬYangAꎬTanBꎬetal.AktKinase ̄MediatedCheckpointofcGASDNASensingPathway[J].CellRepꎬ2015ꎬ13(2):440 ̄449.[14]㊀WangQꎬHuangLꎬHongZꎬetal.TheE3ubiquitinligaseRNF185facilitatesthecGAS ̄mediatedinnateimmuneresponse[J].PLoSPathogꎬ2017ꎬ13(3):e1006264.[15]㊀SeoGJꎬKimCꎬShinWJꎬetal.TRIM56 ̄mediatedmonoubiquit ̄inationofcGASforcytosolicDNAsensing[J].NatCommunꎬ2018ꎬ9(1):613.[16]㊀IshikawaHꎬBarberGN.STINGisanendoplasmicreticulumada ̄ptorthatfacilitatesinnateimmunesignalling[J].Natureꎬ2008ꎬ455(7213):674 ̄678.[17]㊀WangWꎬHuDꎬWuCꎬetal.STINGpromotesNLRP3localiza ̄tioninERandfacilitatesNLRP3deubiquitinationtoactivatetheinflammasomeuponHSV ̄1infection[J].PLoSPathogꎬ2020ꎬ16(3):e1008335.[18]㊀ZhangXꎬShiHꎬWuJꎬetal.CyclicGMP ̄AMPcontainingmixedphosphodiesterlinkagesisanendogenoushigh ̄affinitylig ̄andforSTING[J].MolCellꎬ2013ꎬ51(2):226 ̄235. [19]㊀LiuHꎬMoura ̄AlvesPꎬPeiGꎬetal.cGASfacilitatessensingofextracellularcyclicdinucleotidestoactivateinnateimmunity[J].EMBORepꎬ2019ꎬ20(4):e46293.[20]㊀LiLꎬYinQꎬKussPꎬetal.Hydrolysisof2ᶄ3ᶄ ̄cGAMPbyEN ̄PP1anddesignofnonhydrolyzableanalogs[J].NatChemBiolꎬ2014ꎬ10(12):1043 ̄1048.[21]㊀KatoKꎬNishimasuHꎬOikawaDꎬetal.StructuralinsightsintocGAMPdegradationbyEcto ̄nucleotidepyrophosphatasephos ̄phodiesterase1[J].NatCommunꎬ2018ꎬ9(1):4424. [22]㊀GaffneyBLꎬVeliathEꎬZhaoJꎬetal.One ̄flasksynthesesofc ̄di ̄GMPandthe[RpꎬRp]and[RpꎬSp]thiophosphateana ̄logues[J].OrgLettꎬ2010ꎬ12(14):3269 ̄3271.[23]㊀ZhouJꎬWattSꎬWangJꎬetal.Potentsuppressionofc ̄di ̄GMPsynthesisviaI ̄siteallostericinhibitionofdiguanylatecyclaseswith2ᶄ ̄F ̄c ̄di ̄GMP[J].BioorgMedChemꎬ2013ꎬ21(14):4396 ̄4404.[24]㊀WangCꎬSinnMꎬStifelJꎬetal.SynthesisofAllPossibleCanon ̄ical(3ᶄ ̄5ᶄ ̄Linked)CyclicDinucleotidesandEvaluationofRi ̄boswitchInteractionsandImmune ̄StimulatoryEffects[J].JAmChemSocꎬ2017ꎬ139(45):16154 ̄16160.[25]㊀RamanjuluJMꎬPesiridisGSꎬYangJꎬetal.Designofamidoben ̄zimidazoleSTINGreceptoragonistswithsystemicactivity[J].Natureꎬ2018ꎬ564(7736):439 ̄443.[26]㊀CorralesLꎬGlickmanLHꎬMcWhirterSMꎬetal.DirectActiva ̄tionofSTINGintheTumorMicroenvironmentLeadstoPotentandSystemicTumorRegressionandImmunity[J].CellRepꎬ2015ꎬ11(7):1018 ̄1030.[27]㊀KimSꎬLiLꎬMaligaZꎬetal.Anticancerflavonoidsaremouse ̄selectiveSTINGagonists[J].ACSChemBiolꎬ2013ꎬ8(7):1396 ̄1401.[28]㊀CavlarTꎬDeimlingTꎬAblasserAꎬetal.Species ̄specificdetec ̄tionoftheantiviralsmall ̄moleculecompoundCMAbySTING[J].EMBOJꎬ2013ꎬ32(10):1440 ̄1450.[29]㊀ZhangYꎬSunZꎬPeiJꎬetal.Identificationofalpha ̄MangostinasanAgonistofHumanSTING[J].ChemMedChemꎬ2018ꎬ13(19):2057 ̄2064.[30]㊀ZhangXꎬLiuBꎬTangLꎬetal.DiscoveryandMechanisticStudyofaNovelHuman ̄Stimulator ̄of ̄Interferon ̄GenesAgonist[J].ACSInfectDisꎬ2019ꎬ5(7):1139 ̄1149.[31]㊀BahrOꎬGrossSꎬHarterPNꎬetal.ASA404ꎬavasculardisrup ̄tingagentꎬasanexperimentaltreatmentapproachforbraintumors[J].OncolLettꎬ2017ꎬ14(5):5443 ̄5451.[32]㊀DowneyCMꎬAghaeiMꎬSchwendenerRAꎬetal.DMXAAcau ̄sestumorsite ̄specificvasculardisruptioninmurinenon ̄smallcelllungcancerꎬandliketheendogenousnon ̄canonicalcyclicdinucleotideSTINGagonistꎬ2ᶄ3ᶄ ̄cGAMPꎬinducesM2macro ̄phagerepolarization[J].PLoSOneꎬ2014ꎬ9(6):e99988. [33]㊀MukaiKꎬKonnoHꎬAkibaTꎬetal.ActivationofSTINGre ̄quirespalmitoylationattheGolgi[J].NatCommunꎬ2016ꎬ7:11932.[34]㊀HaagSMꎬGulenMFꎬReymondLꎬetal.TargetingSTINGwithcovalentsmall ̄moleculeinhibitors[J].Natureꎬ2018ꎬ559(7713):269 ̄273.[35]㊀HansenALꎬBuchanGJꎬRuhlMꎬetal.Nitro ̄fattyacidsareformedinresponsetovirusinfectionandarepotentinhibitorsofSTINGpalmitoylationandsignaling[J].ProcNatlAcadSciUSAꎬ2018ꎬ115(33):E7768 ̄E7775.[36]㊀LiSꎬHongZꎬWangZꎬetal.TheCyclopeptideAstinCSpecif ̄icallyInhibitstheInnateImmuneCDNSensorSTING[J].CellRepꎬ2018ꎬ25(12):3405 ̄3421.[37]㊀SiuTꎬAltmanMDꎬBaltusGAꎬetal.DiscoveryofaNovelcGAMPCompetitiveLigandoftheInactiveFormofSTING[J].ACSMedChemLettꎬ2019ꎬ10(1):92 ̄97.[38]㊀KonnoHꎬKonnoKꎬBarberGN.CyclicdinucleotidestriggerULK1(ATG1)phosphorylationofSTINGtopreventsustainedinnateimmunesignaling[J].Cellꎬ2013ꎬ155(3):688 ̄698. [39]㊀NiGꎬKonnoHꎬBarberGN.UbiquitinationofSTINGatlysine224controlsIRF3activation[J].ScienceImmunologyꎬ2017ꎬ2(11):eaah7119.[40]㊀SunHꎬZhangQꎬJingYYꎬetal.USP13negativelyregulatesan ̄tiviralresponsesbydeubiquitinatingSTING[J].NatCommunꎬ2017ꎬ8:15534.[41]㊀DobbsNꎬBurnaevskiyNꎬChenDꎬetal.STINGActivationbyTranslocationfromtheERIsAssociatedwithInfectionandAu ̄toinflammatoryDisease[J].CellHostMicrobeꎬ2015ꎬ18(2):157 ̄168.[42]㊀DunphyGꎬFlannerySMꎬAlmineJFꎬetal.Non ̄canonicalActi ̄vationoftheDNASensingAdaptorSTINGbyATMandIFI16MediatesNF ̄kappaBSignalingafterNuclearDNADamage[J].MolCellꎬ2018ꎬ71(5):745 ̄760.[43]㊀ClarkKꎬPlaterLꎬPeggieMꎬetal.UseofthepharmacologicalinhibitorBX795tostudytheregulationandphysiologicalrolesofTBK1andIkappaBkinaseepsilon:adistinctupstreamkinasemediatesSer ̄172phosphorylationandactivation[J].JBiolChemꎬ2009ꎬ284(21):14136 ̄14146.[44]㊀FremondMLꎬUggentiCꎬVanEyckLꎬetal.BriefReport:BlockadeofTANK ̄BindingKinase1/IKKvarepsilonInhibitsMu ̄tantStimulatorofInterferonGenes(STING) ̄MediatedInflamma ̄toryResponsesinHumanPeripheralBloodMononuclearCells[J].ArthritisRheumatolꎬ2017ꎬ69(7):1495 ̄1501. [45]㊀McIverEGꎬBryansJꎬBirchallKꎬetal.Synthesisandstructure ̄activityrelationshipsofanovelseriesofpyrimidinesaspotentin ̄hibitorsofTBK1/IKKepsilonkinases[J].BioorgMedChemLettꎬ2012ꎬ22(23):7169 ̄7173.[46]㊀ThomsonDWꎬPoeckelDꎬZinnNꎬetal.DiscoveryofGSK8612ꎬaHighlySelectiveandPotentTBK1Inhibitor[J].ACSMedChemLettꎬ2019ꎬ10(5):780 ̄785.(收稿日期:2020 ̄07 ̄04ꎻ㊀修回日期:2020 ̄08 ̄11)(责任编辑:缪㊀琴ꎻ㊀英文编辑:徐家宝)。
M OLECULAR AND C ELLULAR B IOLOGY,July2009,p.3465–3477Vol.29,No.13 0270-7306/09/$08.00ϩ0doi:10.1128/MCB.00206-09Copyright©2009,American Society for Microbiology.All Rights Reserved.The Active Form of Human Aryl Hydrocarbon Receptor(AHR)Repressor Lacks Exon8,and Its Pro185and Ala185Variants Repressboth AHR and Hypoxia-Inducible Factorᰔ†Sibel I.Karchner,1Matthew J.Jenny,1Ann M.Tarrant,1Brad R.Evans,1,2Hyo Jin Kang,3Insoo Bae,3David H.Sherr,4and Mark E.Hahn1*Biology Department,Woods Hole Oceanographic Institution,Woods Hole,Massachusetts025431;Biology Department, Boston University,Boston,Massachusetts022152;Department of Oncology,Georgetown University Medical Center, Washington,DC200073;and Department of Environmental Health,Boston University School ofPublic Health,Boston,Massachusetts021184Received16February2009/Accepted10April2009The aryl hydrocarbon receptor(AHR)repressor(AHRR)inhibits AHR-mediated transcription and has beenassociated with reproductive dysfunction and tumorigenesis in humans.Previous studies have characterizedthe repressor function of AHRRs from mice andfish,but the human AHRR ortholog(AHRR715)appeared tobe nonfunctional in vitro.Here,we report a novel human AHRR cDNA(AHRR⌬8)that lacks exon8ofAHRR715.AHRR⌬8was the predominant AHRR form expressed in human tissues and cell lines.AHRR⌬8effectively repressed AHR-dependent transactivation,whereas AHRR715was much less active.Similarly,AHRR⌬8,but not AHRR715,formed a complex with AHR nuclear translocator(ARNT).Repression of AHR byAHRR⌬8was not relieved by overexpression of ARNT or AHR coactivators,suggesting that competition for these cofactors is not the mechanism of repression.AHRR⌬8interacted weakly with AHR but did not inhibit its nuclear translocation.In a survey of transcription factor specificity,AHRR⌬8did not repress the nuclear receptor pregnane X receptor or estrogen receptor␣but did repress hypoxia-inducible factor(HIF)-dependent signaling.AHRR⌬8-Pro185and-Ala185variants,which have been linked to human reproductive disorders,both were capable of repressing AHR or HIF.Together,these results identify AHRR⌬8as the active form of human AHRR and reveal novel aspects of its function and specificity as a repressor.The aryl hydrocarbon receptor(AHR)repressor(AHRR)is a basic-helix-loop-helix/Per-AHR nuclear translocator(ARNT)-Sim(bHLH-PAS)protein discovered because of its similarity to the AHR,a ligand-activated transcription factor involved in the response to synthetic aromatic hydrocarbons(48).The AHR and AHRR form a negative regulatory loop that is evolutionarily conserved in vertebrates(32);expression of AHRR is regulated by the AHR,and AHRR acts as a transcriptional repressor of AHR function(1,32,48).Like the AHR,AHRR can dimerize with the ARNT,and the AHRR-ARNT complex can bind to AHR-responsive enhancer elements(AHREs).Repression oc-curs through competition between AHR and AHRR for binding to AHREs(14,48)as well as through additional mechanisms that do not involve competition for ARNT and are independent of AHRE binding by AHRR(14).The biological and toxicological functions of AHRR are not well understood,but recentfindings suggest that AHRR is involved in human reproductive physiology and in the regula-tion of cell growth(reviewed in references20and22).A human AHRR(hAHRR)Ala185Pro polymorphism has been associated with altered reproductive development and infertil-ity in men(16,46,59,64)and endometriosis in women(19,35,62,65),but the functional properties of the polymorphic vari-ants have never been assessed.AHRR overexpression inhibits the growth of human tumor cells in culture(30,56,68).Con-versely,knockdown of AHRR expression enhances cell growth and confers resistance to apoptosis;consistent with this,the AHRR gene has been found to be silenced by hypermethylation in a variety of human cancers(71).Based on these and other findings,the AHRR has been proposed to function as a tumor suppressor gene(22,71).In order to assess the functions of AHRR and its polymor-phic variants and their relationship to human disease,it is important to understand the nature of the transcripts and proteins encoded by the AHRR gene,as well as their expres-sion in human tissues and cell lines.An hAHRR cDNA iden-tified in a large-scale screen of cDNAs from brain(50)encodes a protein of715amino acids(aa)(referred to here as AHRR715).The human AHRR gene encoding this protein has been reported to contain12exons,thefirst of which is non-coding(8,16).Our initial functional analysis of this protein suggested that,unlike AHRRs from mouse,frog,andfish(15,32,48,70),human AHRR715was not an effective repressor of AHR function in vitro.In phylogenetic analyses involving amino acid sequence alignments of multiple vertebrateAHRRs,we identified an18-aa segment of AHRR715that was absent from all other AHRRs.We therefore hypothesized the existence of an alternative hAHRR form lacking this segment and also hypothesized that this alternative form might exhibit characteristic repressor function.*Corresponding author.Mailing address:Biology Department,MS#32,Woods Hole Oceanographic Institution Woods Hole,MA 02543.Phone:(508)289-3242.Fax:(508)457-2134.E-mail:mhahn@.†Supplemental material for this article may be found at http://mcb/.ᰔPublished ahead of print on20April2009.3465Here,we report the identification and cloning of a novel hAHRR cDNA that lacks exon8of the original AHRR clone. This new AHRR(AHRR⌬8)is the predominant form ex-pressed in multiple human tissues and human tumor cell lines. We compare the functions of the two AHRR splice variants and provide thefirst functional mechanistic assessment of the hAHRR Pro185Ala polymorphic variants that have been as-sociated with increased susceptibility to reproductive dysfunc-tion in human populations.We also show that competition for ARNT or AHR coactivators is not involved in the mechanism of AHR repression and that human AHRR⌬8(hAHRR⌬8)is capable of repressing hypoxia-inducible factor(HIF)-depen-dent signaling.MATERIALS AND METHODSChemicals and cell lines.2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD)was obtained from Ultra Scientific(Hope,RI).Dimethyl sulfoxide(DMSO),clo-trimazole,cobalt chloride,and17-estradiol were obtained from Sigma-Aldrich (St.Louis,MO).COS-7cells and the human cell lines HepG2,HeLa,MCF-7, Hs578T,and MDA231were obtained from the American Type Culture Collec-tion(ATCC;Manassas,VA)and grown according to standard procedures.BP-1 cells were generously provided by J.Russo(Fox Chase Cancer Center,Phila-delphia,PA).Human cDNA panel screening.The expression of AHRR exon8in various human tissues was determined by amplifying a partial fragment of AHRR with primersflanking the exon8region.Primers hRR-F635(5Ј-AGTACTCGGCCT TCCTGACC-3Ј)and hRR-R816(5Ј-CGCCTTCTTCTTCTGTCCAA-3Ј)were used with5l of cDNAs from adult and fetal human cDNA panels(BD Biosciences,Mountain View,CA)in a25-l amplification reaction mixture using AmpliTaqGold DNA polymerase(Applied Biosystems,Foster City,CA).The PCR conditions were as follows:94°C for10min,94°C for15s and60°C for30s for35cycles,and72°C for7min.The PCR products were resolved on15% Tris-borate EDTA gels.Screening of human cell lines for the Pro/Ala polymorphism and the presence of exon8.Total RNA was isolated from human cell lines MCF-7,Hs578T, MDA231,and BP-1as described earlier(68).Briefly,cells were frozen and pulverized into afine powder.Total cellular RNA was isolated using RNAzol as described by the manufacturer(Leedo Medical Laboratories,Houston,TX). RNA was quantified with a spectrophotometer at optical densities of260nm and 280nm.cDNA was synthesized from2g of total RNA using Omniscript reverse transcriptase(Qiagen,Valencia,CA).A partial fragment of AHRR was ampli-fied from cDNA derived from each cell line using primers hRR-F494(5Ј-AGG ACTTCTGCCGGCAGCTCC-3Ј)and RRex8R(5Ј-CAGCTGCCAAGCCTGT GACC-3Ј)flanking the region containing the Pro185Ala polymorphism and exon 8.The PCR products were cloned into the pGEM-T vector(Promega),and multiple clones were sequenced for each cell line.Generation of AHRR plasmid constructs.The pcDNAhAHRR(AHRR715) construct was prepared by subcloning the KIAA1234cDNA(clone fH08618;a gift from Takahiro Nagase,Kazusa DNA Research Institute,Chiba,Japan[50]) into pcDNA3.1,as we described earlier(32).Full-length hAHRR⌬8was ampli-fied from testes cDNA(human cDNA panel;BD Biosciences,Mountain View, CA)using primers hRR-F39(5Ј-GATCATATGCCGAGGACGAT-3Ј)and hRR-R2227(5Ј-GAGCTTGGATGGTGGTCACT-3Ј)and Advantage DNA polymerase(BD Biosciences).The PCR conditions were as follows:94°C for1 min;94°C for5s,64°C for10s,and68°C for2.5min forfive cycles;94°C for5s, 62°C for10s,and68°C for2.5min forfive cycles;94°C for5s,60°C for10s,and 68°C for2.5min for25cycles;72°C for10min.The amplified product was cloned into the pGEM-T vector(Promega,Madison,WI)and sequenced.The insert was cut out of EcoRI and SpeI sites and transferred to the EcoRI and XbaI sites of the pcDNA3.1vector(Invitrogen,Carlsbad,CA).Other plasmid constructs.The pEF-hAHR and mouse AHR-yellowfluores-cent protein(YFP)fusion constructs were provided by Gary Perdew(Pennsyl-vania State University,University Park,PA).The plasmid pGudLuc6.1,which contains thefirefly luciferase reporter under the control of a mouse mammary tumor virus promoter regulated by four AHREs from the murine CYP1A1 promoter,was a gift from M.Denison(University of California,Davis,CA).Rat Cyp1a1-Luc and human XRE.1A1-Luc were obtained from R.Barouki(Univer-sity of Rene Descartes,France)and S.K.Kim(Seoul National University,South Korea),respectively.Expression constructs for human ARNT and the hypoxia-responsive luciferase reporter,HRE-luc(PL949[25]),were obtained from C. Bradfield(University of Wisconsin,Madison,WI).The human pregnane X receptor(PXR)expression construct was provided by S.Kliewer(University of North Carolina at Chapel Hill),and the PXR reporter construct(XREM-tk-luc) was obtained from J.Moore(Molecular Discovery Research,GlaxoSmithKline, Research Triangle Park,NC).The human estrogen receptor␣(ER␣)construct and an estrogen-responsive luciferase reporter(3xERE-TATA-luc)were ob-tained from D.McDonnell(Duke University Medical Center,Durham,NC). Expression constructs for the receptor coactivators GRIP,CoCoA,and GAC63 were provided by M.Stallcup(University of Southern California,Los Angeles, CA).Src-1a and Src-1e constructs were obtained from E.Kalkhoven(University Medical Center Utrecht,The Netherlands)and M.Parker(Imperial College London,United Kingdom).The p300expression construct was from Upstate Biotechnologies(Lake Placid,NY).Transient transfections and luciferase assays.Transient transfections were performed as described earlier(14,32).Briefly,transfections of DNA with Lipofectamine2000reagent(Invitrogen,Carlsbad,CA)were carried out in triplicate wells24h after plating.Approximately300ng of DNA was complexed with1l of Lipofectamine2000and then added to cells;the amount of DNA used for each expression construct is listed in thefigure legends.The total amount of DNA was kept constant by adding in empty vector.Five hours after transfection,cells were exposed to DMSO(0.5%),TCDD(10nMfinal concen-tration),clotrimazole(10Mfinal concentration),CoCl(150Mfinal concen-tration),or17-estradiol(10nMfinal concentration).(For transfections involv-ing17-estradiol and ER␣,cells were grown in phenol red-free medium with charcoal-stripped serum.)Renilla luciferase(pRL-TK or pGL4.74;Promega, Madison,WI)was used as the transfection control.Cells were lysed19h after dosing,and luminescence was measured using the dual luciferase assay kit (Promega)in a TD20/20luminometer(Turner Designs,Sunnyvale,CA).The final values are expressed as a ratio of thefirefly luciferase units to the Renilla luciferase units.Experiments were repeated multiple times.AHRR antibody production and Western blots.Polyclonal antibodies to hAHRR(designed to recognize both forms)were raised in two rabbits(21st Century Biochemicals,Marlboro,MA)by coimmunizing the animals with two peptides corresponding to amino acid residues18to31(LQKQRPAVGAE KSN)and80to101(FQVVQEQSSRQPAAGAPSPGDS).To avoid cross-re-activity with AHR,the peptides were in regions of the AHRR protein exhibiting low sequence identity with the AHR(see Fig.S1in the supplemental material). Preimmune serum and serum from six bleeds were collected over the course of several weeks,and antibody titer was tested by Western blotting using hAHRR-transfected COS-7cell lysates;lysates from COS-7cells transfected with empty vector served as a control for specificity.COS-7cells were plated and transfected as described above.Twenty-four hours after transfection,cells were rinsed with phosphate-buffered saline and resuspended in2ϫsample treatment buffer.Cell lysates were subjected to sodium dodecyl sulfate-polyacrylamide gel electro-phoresis,and the gels were blotted onto nitrocellulose.The serum antibody titer for each bleed was tested by blotting with two dilutions(1:250and1:1,000).Two affinity-purified polyclonal antibodies were isolated from serum(bleeds3thru6) from a single rabbit by separate affinity purification procedures using the two individual peptides.The affinity-purified antibodies are designated PAb-RR-18-1 (against residues18to31)and PAb-RR-80-2(against residues80to101).The specificity of the affinity-purified polyclonal antibodies was assessed by blotting against lysates from COS-7cells transfected with plasmids for hAHRR,human AHR,mouse AHRR,and killifish AHRR.All results reported here(Western blots and immunoprecipitations)were performed using PAb-RR-80-2. Expression of hAHRR protein in the transient-transfection assays was mea-sured by Western blotting with PAb-RR-80-2(3g/ml),followed by a goat anti-rabbit immunoglobulin G(IgG)Ϫhorseradish peroxidase(Upstate/Milli-pore,Billerica,MA)secondary antibody(1:5,000).The AHRR proteins were then visualized by enhanced chemiluminescence(ECL-Plus;GE Healthcare, Piscataway,NJ).Coimmunoprecipitation assay.The full-length AHRR715,AHRR⌬8,AHR, and ARNT proteins were synthesized by in vitro transcription and translation (TnT;Promega,Madison,WI)in the presence or absence of[35S]methionine (MP Biomedicals,Solon,OH).Five microliters of unlabeled protein was mixed with15l of radiolabeled protein and incubated at room temperature for2h. For mixtures containing AHR,TCDD(10nM)was added.The mixtures were adjusted to25mM HEPES,200mM NaCl,1.2mM EDTA,10%glycerol,and 0.1%Nonidet P-40,pH7.4,with protease inhibitors(immunoprecipitation buffer).After two rounds of preclearing with normal mouse IgG and protein G-agarose,5g of specific antibody or IgG was added and incubated for2h, followed by precipitation with protein G-agarose overnight.The beads were washed two times with IP buffer,boiled in sample treatment buffer,and subjected3466KARCHNER ET AL.M OL.C ELL.B IOL.to sodium dodecyl sulfate-polyacrylamide gel electrophoresis on an8%poly-acrylamide gel.The gels were dried and visualized byfluorography.hAHRR antibody(PAb-RR-80-2)or normal rabbit IgG was used to precipitate AHRR complexes and nonspecific complexes,respectively.For ARNT complexes, monoclonal ARNT antibody(MA1-515;Affinity BioReagents,Golden,CO)and normal mouse IgG were used.Subcellular localization of mouse AHR-YFP.COS-7cells were grown on coverslips in six-well plates.Cells were cotransfected with350ng of mouse AHR-YFP and350ng of human ARNT expression constructs,with or without 350ng of hAHRR⌬8construct,using Lipofectamine2000reagent(Invitrogen). Luciferase reporter pGudLuc6.1(300ng)and the transfection control pRL-TK (40ng)were also transfected.Cells were dosed with DMSO or TCDD(10nM final concentration)5h after transfection.Twenty-four hours after transfection, cells were washed with1ϫphosphate-buffered saline andfixed in4%formalde-hyde.The coverslips were inverted onto slides and mounted with Vectashield hard-setting mounting medium(Vector Laboratories,Burlingame,CA).Cells were visualized using a Zeiss Axio Imager.Z1fluorescence microscope,and Axiovision software was used to collect the images.To confirm the effectiveness of AHRR⌬8as a repressor under the conditions of the assay,luciferase was measured in a plate of cells run in parallel.Nucleotide sequence accession numbers.The AHRR⌬8sequences have been deposited in GenBank,with accession numbers EU293605(mRNA)and ABX89616(protein).RESULTSIdentification and characterization of the major form of hAHRR.In our earlier studies of the evolutionary conservation of AHRR in vertebrates(15,32),we noticed that the predicted 715-aa protein derived from the original hAHRR cDNA(AHRR715[50])included an18-aa segment that had no coun-terpart(homologous amino acids)in other AHRRs.A more recent phylogenetic analysis involving an alignment of all known(i.e.,verified)mammalian,amphibian,andfish AHRR protein sequences confirmed that this unique18-aa segment ispresent only in the human AHRR715(Fig.1A).This segmentis located in an otherwise conserved portion of the PAS region downstream of the PAS-A repeat(sometimes referred to as the“intervening region”[10]between PAS repeats)(see Fig. S1in the supplemental material);it is encoded by a single exon of54nucleotides in the human genome(Fig.1B),correspond-ing to exon8described by others(8,16).AHRR715,the715-aaprotein encoded by the cDNA containing this exon,functioned poorly as a repressor in transient-transfection assays in three different laboratories(unpublished results;see below).We therefore hypothesized that there might be an alternatively spliced AHRR transcript lacking this exon and that the protein encoded by this alternative transcript might have a repressor function like that of AHRRs from other species.Using primersflanking exon8,we used PCR to amplify this region of the AHRR transcript from human tissue cDNAs. The primary amplicon was128bp,the size predicted for a form lacking exon8,rather than the182bp predicted for the exon 8-containing transcript.Subsequently,we amplified,cloned, and sequenced a full-length cDNA of2,173bp with an open reading frame of2091bp encoding a predicted AHRR proteinof697aa.The new cDNA is identical to AHRR715(50),exceptthat it lacks the sequences corresponding to exon8and thus has been designated AHRR⌬8.Two polymorphic variants of AHRR⌬8,corresponding to the Ala185Pro single nucleotide polymorphism described earlier(65),were found among the sequenced clones.To assess the relative expression of AHRR715andAHRR⌬8,we performed PCR analysis on cDNA from human tissues with primersflanking exon8,designed to produce am-plicons of different sizes for the two AHRR variants.A survey of multiple adult and fetal tissues demonstrated that AHRR⌬8 is the predominant,and in most cases only,form of AHRR expressed(Fig.1C).We also examined the relative expression of AHRR715and AHRR⌬8and the presence of Ala185Pro polymorphic variants in several human tumor cell lines.As seen with the human tissues,AHRR⌬8was the predominant form of AHRR expressed in HeLa,HepG2,MCF-7,Hs578T, MDA231,and BP-1cells(see Fig.S2A and Table S1in thesupplemental material).Although AHRR715transcripts were not detected by using primersflanking exon8,use of a primerwithin exon8showed that AHRR715transcripts were ex-pressed at low levels in HeLa and HepG2cells(see Fig.S2B in the supplemental material).Sequencing of AHRR cDNA clones from each of the cell lines confirmed AHRR⌬8as the predominant expressed form and showed that all of the cell lines except BP-1are heterozygous for the Ala185Pro poly-morphism(see Table S1in the supplemental material). AHRR⌬8and AHRR differ in repressor activity.To com-pare the functional properties of the original715-aa AHRRprotein(AHRR715)and AHRR⌬8,we performed transient-transfection assays in which we measured the ability of the AHRRs to inhibit the TCDD-inducible transactivation of re-porter gene construct pGudLuc6.1mediated by either trans-fected or endogenously expressed AHR.After transfectionwith the respective constructs,AHRR715and AHRR⌬8pro-teins were expressed at similar levels in COS-7cells,as as-sessed by Western blotting using an hAHRR antibody that recognizes both AHRR forms but does not recognize human AHR(Fig.2A and B).When transfected into COS-7cells with ARNT in the presence or absence of TCDD,neither AHRR form was able to activate transcription of pGudLuc6.1(see Fig. S3A in the supplemental material).Thus,hAHRRs lack a function as transcriptional activators,as observed previously for AHRRs from other species(15,32,48).To test the ability of AHRR715and AHRR⌬8to repress AHR-mediated signaling,each form was transfected into COS-7cells together with expression constructs for human AHR and ARNT and pGudLuc6.1.In the absence of cotrans-fected AHRR,AHR and ARNT caused transactivation of the luciferase reporter that was enhanced by TCDD(Fig.2C).Transfection of the AHRR715expression construct at50and 150ng/well caused little change in the AHR-dependent acti-vation of luciferase expression or its induction by TCDD.In contrast,AHRR⌬8at50or150ng/well completely repressed both constitutive(i.e.,exogenous ligand-independent)and TCDD-inducible reporter gene activity(Fig.2C).Similarly,AHRR⌬8,but not AHRR715,repressed transactivation by mouse AHR in COS-7cells(see Fig.S3B in the supplemental material).To evaluate the effect of the AHRRs on endog-enously expressed human AHR,AHRR715or AHRR⌬8was cotransfected with pGudLuc6.1into HepG2cells,which ex-press abundant AHR(13).As we saw with the transfectedAHRs in COS-7cells,AHRR715was ineffective as a repressor of the endogenous HepG2AHR,whereas AHRR⌬8reduced TCDD-inducible reporter gene activation by61%(Fig.2D).AHRR⌬8also was much more effective than AHRR715at repressing endogenous AHR in MCF-7cells cotransfected with two different reporter gene constructs(Cyp1a1-Luc andV OL.29,2009HUMAN AHRR⌬8AND VARIANTS REPRESS AHR AND HIF3467XRE.1A1-Luc)(Fig.2E;see also Fig.S3C in the supplemental material).(The lower percent repression in HepG2and MCF-7cells than in COS-7cells likely reflects the fact that endogenous AHR is expressed in all HepG2and MCF-7cells,whereas not all of the cells take up transiently transfected AHRR.)Together,these results demonstrate that the much greater ability of AHRR ⌬8than of AHRR 715to repress AHR transactivation is consistently observed for transfected and en-dogenously expressed AHRs from humans and mice,in three different cell lines,and with AHRE-containing reporter gene constructs derived from three different mammalian species.AHRR ⌬8and AHRR 715differ in ability to interact with ARNT.The 18-aa peptide encoded by exon 8in AHRR 715lies in the ϳ100-aa “intervening region”downstream of the PAS-A repeat.This region is highly conserved in AHR and AHRR proteins (Fig.1A;see also Fig.S1in the supplemental mate-rial),and in the AHR,it has been shown to be important for dimerization with ARNT (10,45).This region also appears to be important for dimerization of AHRR and ARNT,because deletion of this region in the zebrafish AHRRa caused a dra-matic reduction in the ability of AHRRa to interact with ARNT (14).To determine whether the presence of the 18-aa peptide within the intervening region of AHRR 715affects its ability to dimerize with ARNT,we performed a coimmuno-precipitation experiment in which radiolabeled ARNT was in-cubated with in vitro-expressed AHRR ⌬8or AHRR 715and the complex was immunoprecipitated with affinity-purified antibody against hAHRR,which recognizes both forms.AHRR ⌬8and AHRR 715were synthesized to similar levels by in vitro transcription and translation (Fig.3A).AHRR ⌬8FIG.1.Identification of hAHRR splice variant AHRR ⌬8as the major variant expressed in human tissues.(A)Partial amino acid sequence alignment of AHRRs and AHRs from different species.The top sequence is human AHRR 715;immediately below it is the sequence of AHRR ⌬8.Abbreviations:Hs,human;Mm,mouse;Rn,rat;Xl,frog;Fh,killifish;Tr,Japanese puffer fish;Dr,zebrafish;Mt,tomcod.For GenBank accession numbers,see the legend to Fig.S1in the supplemental material.(B)hAHRR gene structure.Translated exons are shown in black boxes.The first exon and part of the second exon are untranslated.The additional exon (exon 8)is shown in gray.The position of the Pro185Ala polymorphism is marked by an arrow.(C)Survey of adult human tissues for the expression of AHRR 715and AHRR ⌬8transcripts.A partial AHRR cDNA fragment was amplified from adult and fetal human cDNAs,using primers flanking exon 8(shown in gray in panel B).The presence of the exon would have produced a 182-bp PCR product (AHRR 715),as opposed to the 128-bp product (AHRR ⌬8)obtained in all tissues.3468KARCHNER ET AL.M OL .C ELL .B IOL .formed a complex with ARNT that could be specifically and strongly immunoprecipitated by the AHRR antibody (Fig.3B,lane 3versus lane 4;see also Fig.S4B in the supplemental material).In contrast,AHRR 715did not interact with ARNT (Fig.3B,lane 1versus lane 2;see also Fig.S4B in the supple-mental material).The results suggest that the presence of the 18-aa peptide encoded by exon 8disrupts ARNT dimerization,that hAHRR requires ARNT to repress AHR,and that the difference in the repressor function of AHRR ⌬8and AHRR 715reflects the inability of the latter protein to associate with ARNT.Functional comparison of AHRR ⌬8-Ala 185and AHRR ⌬8-Pro 185polymorphic variants.An Ala185Pro polymorphism in the hAHRR has been associated with human diseases in sev-eral studies (16,19,35,46,59,62,64,65),but the functional properties of the two variants have never been assessed.Both of these polymorphic variants were present in our pool of AHRR ⌬8clones.To compare their abilities to repress AHR transactivation,we performed transient-transfection assays in which we measured the abilities of AHRR ⌬8-Ala 185and AHRR ⌬8-Pro 185to repress AHR-and ARNT-dependent transactivation of pGudLuc6.1in COS-7cells.The AHRR ⌬8variants were expressed at similar levels in the transfected cells (Fig.4A).Both AHRR ⌬8-Ala 185and AHRR ⌬8-Pro 185were effective at repressing constitutive (exogenous ligand-indepen-dent)and TCDD-inducible expression of pGudLuc6.1.In ex-periments in which increasing amounts of AHRR ⌬8expres-sion constructs were transfected,the two variants were equally potent at repressing AHR-mediated transactivation of the re-porter gene (Fig.4B and C).We conclude that both AHRR ⌬8-Ala 185and AHRR ⌬8-Pro 185are fully functional as repressors of AHR and thus that the Ala185Pro polymorphism does not affect repression of AHR-mediated transcription.Mechanism of repression of AHR by AHRR ⌬8.Mimura et al.(48)showed that mouse AHRR could dimerize with ARNT and bind to AHREs and proposed that the mechanism of repression involved competition between AHR and AHRR for binding to ARNT and for binding to AHRE sequences.Our recent studies using the zebrafish AHRRa provided evidence that competition for ARNT is not an important element of the mechanism of repression and that AHRE binding may con-tribute to the repression but is not required (14).To assess the role of competition for ARNT in the repression of human AHR by hAHRR ⌬8,we performed a series oftransient-trans-FIG.2.Repressor activity of hAHRR splice variants AHRR 715and AHRR ⌬8.(A)The hAHRR antibody does not recognize human AHR or AHRRs from other species.Cell lysates from COS-7cells transiently expressing the indicated constructs were blotted and probed with antibody PAb-RR-80-2raised against the hAHRR.(B)In transient-transfection assays in COS-7cells,AHRR 715and AHRR ⌬8are expressed at similar levels.Cell lysates were blotted and probed with the hAHRR antibody.Numbers at left of panels A and B are molecular masses in kilodaltons.(C)Repression of exogenously expressed AHR by AHRR 715and AHRR ⌬8in COS-7cells.COS-7cells were transfected with human AHR (5ng),human ARNT (25ng),and AHRR 715or AHRR ⌬8constructs (50or 150ng each),along with a luciferase reporter under the control of dioxin response elements (pGudLuc6.1)and a transfection control plasmid expressing Renilla luciferase (pRL-TK).Cells were dosed with DMSO or TCDD (10nM final concentration),followed by a luciferase assay.The results shown are representative of seven independent experiments.(D and E)Repression of endogenous AHR in HepG2(D)and MCF-7(E)cells by AHRR 715and AHRR ⌬8.Cells were transfected with AHRR 715or AHRR ⌬8constructs (25and 100ng each),along with a luciferase reporter under the control of dioxin response elements (for HepG2,pGudLuc6.1;for MCF-7,Cyp1a1-Luc)and pRL-TK.Cells were dosed with DMSO or TCDD (10nM final concentration),followed by a luciferase assay.The results shown in panels D and E are representative of two and three independent experiments,respectively.V OL .29,2009HUMAN AHRR ⌬8AND VARIANTS REPRESS AHR AND HIF 3469。
神经内科100个基本知识及神经科学中英文词汇神经内科不管是在学校学习的时候还是实习的时候,总是?得神经内科的学习很困难,理解起来也不容易,下面总结了神经内科的100条小秘密来分享一下,希望大家也能提出自己的意见。
1. 治疗神经系统疾病患者的第一步是宄位病灶。
2. 肌沟病变病通常引起近端的对称的无力,没有感觉丧失。
3. 神绞肌均接头病变幻起疲劳性。
4. 周困神经病变引起远端的不对称的无力,伴有萎缩,束類,感兗丧失和疼痛。
5. 神经根病变M起放射痛。
6. 脊髓病变导致远蟪的对称的无力,括约肌陣碍和感兗平面三联征。
7. 脑千的单倒病变常手致'交又综合征”,即一个或多个同倒脑神绞功能漳碍伴有对倒身体偏瘫和/或感觉异常。
8. 小脑病变导致共济失调和意向性震顏(或称动作性震頻)。
9. 在大脑中,皮质病变可导致失语,碥痫,部分偏瘫(脸和手臂),而皮居下病变可手致視野缺损,初级感觉麻痹,更全面的偏瘫(脸部,手臂和晓)。
10. 大脑通过血脑屏障孤立于身体的其余部分。
11. 学习和记忆是可能的,因为刺激重复输入到突触可手致神经元功能的持久改变(长时程增强)。
12. 一些最常见和重要的神绞系统疾病是由于神经递廣异常造成的:阿尔茨海默氏症(乙酜胆碱),癍痫(γ- 氨基丁酸,GΛBΛ),帕金森氏症(多巴胺),偏头痛(血清索)等。
13. 许多遺传性神经系统疾病已被证明是由于的三核苷酸重复序列造成的。
14. 足下垂<胫前肌无力)可由腓总神经或味5神绖根损伤引起。
15. 如果面神经受损(如贝尔氏麻痹),則一倒顏面部无力,即周因性面瘫。
如果皮质输入到面神经核通路受损(如从卒中),則只有面部下枣部无力,即中枢性面瘫。
16. 一倒?孔散大意味着第三对颅神绖受压迫。
17. 通常由Willi S环路提供的倒支血流,有时能够防止卒中而造成損伤。
18. 非交通性脑积水,往往是S疗急症,因为被阻断的脑脊液(CSF)将导致颅内压上升。
19. 对肌病的诊断往往是基于血清肌酸激梅(CK)的水平,肌电图(EMG)的结果,及肌肉活检。
Same Genetic Basis Found in 5 Types of Mental Disorders五种精神病中发现共同基因故障The psychiatric illnesses seem very different —schizophrenia, bipolar disorder, autism, major depression and attention deficit hyperactivity disorder. Yet they share several genetic glitches that can nudge the brain along a path to mental illness, researchers report. Which disease, if any, develops is thought to depend on other genetic or environmental factors.精神疾病似乎各不相同——精神分裂症、躁郁症、孤独症、重性抑郁症和注意缺陷多动症。
然而,研究人员报告,这些疾病有几个共同的基因故障,这些故障将会使大脑出现病变。
如果发病,究竟是哪种疾病,取决于其他基因或者环境因素。
Their study, published online Wednesday in the Lancet, was based on an examination of genetic data from more than 60,000 people worldwide. Its authors say it is the largest genetic study yet of psychiatric disorders. The findings strengthen an emerging view of mental illness that aims to make diagnoses based on the genetic aberrations underlying diseases instead of on the disease symptoms.他们的研究于本周三发表在《柳叶刀》(Lancet)杂志的网站上,是以世界各地6万多人的基因数据检测为基础的。
ACommonPatternofPersistentGeneActivationinHumanNeocorticalEpilepticFoci
SanjayN.Rakhade,MBBS,1BinYao,MS,1,2SharlinAhmed,MS,3EishiAsano,MD,PhD,4ThomasL.Beaumont,BS,1AashitK.Shah,MD,3SorinDraghici,PhD,5RaulKrauss,PhD,6HarryT.Chugani,MD,3,4,7SandeepSood,MD,8andJeffreyA.Loeb,MD,PhD1,3
Epilepsyisadiseaseofrecurrentseizuresthatcandevelopafterawiderangeofbraininsults.Althoughsurgicalresectionoffocalregionsofseizureonsetcanresultinclinicalimprovement,themolecularmechanismsthatproduceandmaintainfocalhyperexcitabilityarenotunderstood.Here,wedemonstratearegional,persistentinductionofacommongroupofgenesinhumanepilepticneocortexin17patientswithneocorticalepilepsy,regardlessoftheunderlyingpathology.Thisrelativelysmallgroupofcommongenes,identifiedusingcomplementaryDNAmicroarraysandconfirmedwithquan-titativereversetranscriptionpolymerasechainreactionandimmunostaining,includetheimmediateearlygenetranscrip-tionfactorsEGR-1,EGR-2,andc-fos,withrolesinlearningandmemory,andsignalinggenessuchasthedual-specificitykinase/phosphataseMKP-3.MaximalexpressionofthesegeneswasobservedinneuronsinneocorticallayersIIthroughIV.Theseneuronsalsoshowedpersistentcyclicadenosinemonophosphateresponseelementbindingprotein(CREB)activationandnucleartranslocationofEGR-2andc-fosproteins.Intwopatients,localinterictalepileptiformdischargefrequenciescorrelatedpreciselywiththeexpressionofthesegenes,suggestingthatthesegeneseitheraredirectlymod-ulatedbythedegreeofepilepticactivityorhelpsustainongoingepilepticactivity.TheidentificationofacommonsetofgenesandthepersistentactivationofCREBsignalinginhumanepilepticfociprovideaclinicallyrelevantsetofbiologicalmarkerswithpotentialimportancefordevelopingfuturediagnosticandtherapeuticoptionsinhumanepi-lepsy.
AnnNeurol2005;58:736–747
Epilepsyisadisablingneurologicaldisorderofrecur-rentseizuresaffectingupto1%ofpeople.1Althoughsinglegenedefectsinionchannelsorneurotransmitterreceptorsareassociatedwithsomeinheritedformsofepilepsy,2–4thesemutationscannotaccountforthemajorityofpatientswithepilepsy.Inmostpatientswithpartialepilepsy,seizuresstartinfocalbrainre-gionsinresponsetoawidevarietyofbraininsultsof-tenwithnoclearhistopathologicalabnormalities.5Pa-tientswhodonotrespondtoantiepilepticmedicationscangreatlybenefitfromsurgerytoremovebrainre-gionswhereseizuresoriginate.Whereasepilepticfociaremostlyintheneocortexinyoungchildren,theyarepredominantlyinthehippocampusinadults.1Littleisknownabouthowtheseoftennormal-appearingbrainregionsbecomeandremainepileptic.Regardlessoftheoriginalbraininsult,neocorticalepi-lepticfocishowaremarkablysimilarelectrophysiolog-icalpatternoflocalized,abnormalelectricaldischargesthatcanbecomerhythmicandspreadtowidespreadbrainregionstoproduceclinicalseizures.Betweensei-zures,andfarmorefrequentlythanseizures,thesefocalbrainregionsgeneratelocalized“interictal”dischargesthatcanbeusedtohelpidentifyregionsofseizureon-set.6Becausenormalneuronalactivityisacritical
forcethatshapesnervoussystemdevelopmentandplasticity,7–9itappearslikelythatongoingictaland
interictalepilepticactivityinfluencethefunctionalandstructuralchangesthatcouldleadtohyperexcitabilityandhyperconnectivity.Consistentwiththisidea,genesencodingneurotransmitterreceptors,ionchannels,transcriptionfactors,andneurotrophicfactorshavebeenfoundtobedifferentiallyexpressedinvariousan-imalmodelsofepilepsyandinhumanepilepticbraintissues.10–18Activity-dependentsynapticplasticityisperhapsbest
Fromthe1CenterforMolecularMedicineandGenetics;2MichiganCenterforBiologicalInformationWayneStateNode;Departmentsof3Neurology;4Pediatrics;and5ComputerScience,WayneState
University,Detroit,MI;6Newton,MA;andDeparmentsof7Radi-
ologyand8Neurosurgery,WayneStateUniversity,Detroit,MI.
ReceivedMar30,2005,andinrevisedformJul7.AcceptedforpublicationJul22,2005.
PublishedonlineOct24,2005,inWileyInterScience(www.interscience.wiley.com).DOI:10.1002/ana.20633
AddresscorrespondencetoDrLoeb,WayneStateUniversity,421EastCanfieldAvenue,EllimanResearchBuilding,Room3122,De-troit,MI48201.E-mail:jloeb@med.wayne.edu
736©2005AmericanNeurologicalAssociationPublishedbyWiley-Liss,Inc.,throughWileySubscriptionServicesunderstoodinmodelsoflearningandmemory.Forex-ample,activationofcyclicadenosinemonophosphateresponseelementbindingprotein(CREB)byneuronalactivitycanresultinchangesingeneexpressionthatresultinthereinforcementandstabilizationofmoreactiveneuronalcircuits.19–22DownstreamfromCREBactivation,immediateearlygenes(IEGs),suchasc-fos,EGR-1,andEGR-2havebeenshowntomediatetheselong-lastingchangesinneuronalstructureandexcit-abilitythroughtheinductionofadditionalgenesthatinducestructuralchangestoenhancesynaptictransmis-sion.WhereastheactivationofIEGswaspreviouslyconsideredtobeanattractivemodelforepileptogen-esis,ithasfallenoutoffavorbecausemicewithgeneticdeletionsinsomeIEGsdidnotshowdetectablechangesinkindlingdevelopmentordisruptioninmossyfibersproutinginthehippocampus.23Asanunbiasedapproachtoelucidateactivity-dependentmolecularpathwaysinhumanepilepticfoci,weappliedfunctionalgenomicmethodstoelectricallymappedhumanbraintissues.Weusedmicroarraystudiestoidentifyactivity-dependentgenesbycompar-ingelectricallyactiveepilepticneocortexto“control”neocortexwithinthesamepatienttosearchforcom-mongeneexpressionchangesacrossmanypatients.Thisapproachreducestheconfoundingeffectsofge-neticheterogeneity,medications,andanatomicalloca-tions.Bycomparinglocalgeneexpressionchangeswithinthesameindividual,wewereabletoidentifyasmallgroupofdifferentiallyexpressedgenesathumanepilepticfoci,whichwereconsistentlyinducedregard-lessoftheirunderlyingbrainpathology.ThesegenesincludedIEGsknowntobeactivatedbyCREB,aswellasgenesabletomodulateCREBsignalingandgenesknowntobefurtherdownstreamfromCREBsignal-ing.Quantitativereal-timereversetranscriptionpoly-merasechainreaction(RT-PCR),insituhybridization,andimmunolocalizationstudiesconfirmedtheseresultsandlocalizedthisinductiontoneuronswithincorticallayersIIthroughIVthatshowedpersistentCREBphosphorylationandnucleartranslocationofEGR-2andc-fos.Thesegenesrepresentacommonlinktoanotherwiseheterogeneousdiseasewithpotentialimpor-tanceinfuturediagnosticandtherapeuticapproachesforhumanepilepsy.