九上期末压轴题
- 格式:doc
- 大小:51.50 KB
- 文档页数:4
人教版九年级上册数学期末动点问题压轴题1.如图所示,在Rt ABC ∆中,90,6cm,8cm,B AB BC ∠=︒==点P 由点A 出发,沿AB 方向向点B 匀速运动,速度为1cm/s ,点Q 由点B 出发,沿BC 方向向点C 匀速运动,速度为2cm/s .如果动点P ,Q 同时从A ,B 两点出发,(1)几秒后,PBQ 的面积为28cm ?(2)是否存在这样的时刻,使PBQ 的面积等于210cm ,如果存在请求出来,如果不存在请说明理由.(3)经过几秒,PBQ 的面积最大?并求出最大值.2.在等边ABC 中,D 是边AC 上一动点,连接BD ,将BD 绕点D 顺时针旋转120︒,得到DE ,连接CE .(1)如图1,连接AE ,当B 、A 、E 三点共线时,若4AB =,求AE 的长;(2)如图2,取CE 的中点F ,连接DF ,猜想AD 与DF 的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接BE AF 、交于G 点,若GF DF =,请直接写出CD BE的值.3.已知如图,在Rt ABC △中,AC =BC ,∠C =90°,点D 为直线AC 上一点,连接BD ,将BD 绕点B 逆时针旋转90°至BE ,连接AE 交直线BC 于点F .(1)如图1,若BD 平分∠ABC ,AC =3,求AD 的长;(2)如图2,求证:AF =EF ;(3)如图3,当123CD CF AC ===时,M 为直线AB 上一动点,连接FM ,将EFB △沿直线FM 翻折到EFB △同一平面得E FB ''△,当线段CE '最小时,直接写出DB E ''△的面积.4.如图,抛物线212y ax x c =-+的图象与x 轴交点为A 和B ,与y 轴交点为()0,3D ,与直线23y x =--交点为A 和C .(1)求抛物线的解析式;(2)求点C 的坐标,并结合函数图象直接写出当12y y >时x 的取值范围;(3)若点E 是x 轴上一个动点,把点E 向下平移4个单位长度得到点F ,点F 向右平移4个单位长度得到点G ,点G 向上平移4个单位长度得到点H ,若四边形EFGH 与抛物线有公共点,请直接写出点E 的横坐标E x 的取值范围.5.在平面直角坐标系中,二次函数23y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求这个二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使四边形ABCP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)将二次函数23y ax bx =++的图象先向右平移2个单位长度,再向上平移1个单位长度得到新抛物线,点M 在新抛物线上,点N 在原抛物线的对称轴上,直接写出所有使得以点A 、B 、M 、N 为顶点的四边形是平行四边形的点N 的坐标,并把求其中一个点N 的坐标的过程写出来.6.如图,抛物线2y x bx c =-++经过点()3,0A ,()0,3B ,点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M .设点P 的横坐标为t .(1)求抛物线的解析式;(2)若点P 在第一象限,连接AM BM ,,当线段PM 最长时,求ABM 的面积;(3)是否存在这样的点P ,使以点P ,M ,B ,O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由.7.如图,二次函数2(2)y x m =-+的图象交y 轴于点C ,点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y kx b =+的图象经过该二次函数图象上的点()1,0A 及点B .(1)求二次函数与一次函数的解析式.(2)点P 是该抛物线上一动点,点P 从A 点沿抛物线向B 点运动(点P 不与A 、B 重合),过点P 作PD y ∥轴,PD 交直线AB 于点D .请求出点P 在运动的过程中,线段PD 的长度的最大值以及此时点P 的坐标;(3)抛物线上是否存在点Q ,使15ABQ S =△,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.8.已知抛物线2y ax bx c =++经过()30A -,、()10B ,、()0,3C -三点,直线l 是抛物线的对称轴.(1)求抛物线的解析式;(2)设点P 是直线l 上的一个动点,当PBC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使以M 、B 、C 为顶点的三角形为直角三形.若存在,求出点M 的坐标;若不存在,请说明理由.9.如图,抛物线223y x x =-++与x 轴交A B 、两点(A 点在B 点左侧),直线l 与抛物线交于B C 、两点,其中C 点的横坐标为2-.(1)求B C 、两点的坐标;(2)求直线BC 的函数表达式;(3)若P 是线段BC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值.10.如图,抛物线²6y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,2OA =,4OB =,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接,,,AD BD BC CD .(1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,当BCD △的面积是92时,求D 点的坐标; (3)在(2)的条件下,点M 是x 轴上一点,点N 抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.11.如图所示,在ABC 中,AB BC =,90ABC ∠=︒,点D 为直线BC 上的一个动点(不与B 、C 重合),连接AD ,将线段AD 绕点D 按顺时针方向旋转90︒,使点A 旋转到点E ,连接EC .操作感知:如果点D 在线段BC 上运动,过点E 作EF BC ⊥交直线BC 于F ,如图所示,从而求得DCE ∠=___________︒.猜想论证:如果点D 在线段CB 的延长线上运动,如图所示,以上结论是否依然成立,并说明理由. 拓展应用:连接BE ,当点D 在直线BC 上运动时,若2AB =,则BE 的最小值为 ___________.12.抛物线2y ax c =+与x 轴交于()()6,0,2,0A C -两点,与y 轴交于点B ,抛物线的顶点为点D ,对称轴交线段AB 于点E ,交x 轴于点F .(1)求此抛物线的表达式;(2)如图 1,点P 是直线AB 下方抛物线上一动点,连接,PE PB ,求PBE △的最大面积及此时点P 的坐标;(3)如图 2,点M 是直线CD 上一点,点N 是抛物线上一点,试判断是否存在这样的点N ,使得以点B 、E 、M 、N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,且()4,2B ,E 为直线AC 上一动点,连OE ,过E 作GF OE ⊥,交直线BC 、直线OA 于点F 、G ,连OF .(1)求直线AC 的解析式.(2)当E 为AC 中点时,①求CF 的长.②在x 轴上是否存在点H ,使BH EH +的值最小,若存在,直接写出这个最小值,若不存在,请说明理由.(3)在点E 的运动过程中,坐标平面内是否存在点P ,使得以P 、O 、G 、F 为顶点的四边形为菱形,若存在,直接写出点P 的横坐标,若不存在,请说明理由.14.如图,在等腰直角ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别为AB ,AC 的中点,F 为线段DE 上一动点(不与点D ,E 重合),将线段AF 绕点A 逆时针方向旋转90︒得到AG ,连接GC FB FG EG FG ,,,,交AE 于点H .(1)证明:BF CG =;(2)①当点F 运动到什么位置时,四边形AFEG 是正方形?请你说明理由;②当BAF BFD ∠=∠时,求证:点B F G 、、三点共线.15.已知O 的直径AB 为10,D 为O 上一动点(不与A 、B 重合),连接AD BD 、.(1)如图1,若8AD =,求BD 的值;(2)如图2,弦DC 平分ADB ∠,过点A 作AE CD ⊥于点E ,连接BE .①当90DBE ∠=︒时,求BE 的值;②在点D 的运动过程中,BE 的值是否存在最小值?若存在,求BE 的最小值;若不存在,请说明理由.16.如图,A B C D 、、、为矩形的四个顶点,16cm AB =,6cm AD =,动点P Q 、分别从点,A C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2cm/s 的速度向D 移动.(1)P Q 、两点从出发开始到几秒时,四边形PBCQ 的面积为236cm ?(2)P Q 、两点从出发开始到几秒时,点P 和点Q 的距离是?(3)P Q 、两点从出发开始到几秒时,点P Q D 、、组成的三角形是等腰三角形?17.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧).(1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标;(3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.18.如图,在Rt ABC △中,90C ∠=︒,30AC =cm ,21BC =cm ,动点P 从点C 出发,沿CA 方向运动,动点Q 从点B 出发,沿BC 方向运动,如果点P ,Q 的运动速度均为1cm/s .(1)设点Q 、点P 运动时间为ts ,则CP =_______cm ,BQ =_______cm .(2)点P 、点Q 运动几秒时,它们相距15cm ?(3)OCQ △的面积能等于60平方厘米吗?为什么?参考答案:1.(1)2s 或4s(2)不存在不可能,(3)经过3秒,PBQ 的面积最大,最大面积为9cm 22.(1)2AE =; (2)12DF AD =,(3)CD BE =3.(1)6-(3)124.(1)223y x x =--+(2)32x -<<(3)51E x -<<5.(1)2y 23x x =--+(2)存在 P (31524-,)(3)11-(,),131--(,),11--(,)6.(1)223y x x =-++ (2)278ABM S =△(3)存在,点P7.(1)243y x x =-+,1y x =-(2)PD 最大值为94,53,24P ⎛⎫- ⎪⎝⎭(3)()6,15Q 或()1,8-8.(1)223y x x =+-(2)()12--,(3)213,或813,或()12--,或()1,1--9.(1)(3,0)B ,(2,5)C --(2)3y x =- (3)PE 的长度最大值为254 10.(1)33²642y x x =-- (2)153,4D ⎛⎫- ⎪⎝⎭(3)1514⎛⎫ ⎪⎝⎭或1514⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭11.操作感知:135;猜想论证:结论不成立,理由见解析过程;拓展应用:BE12.(1)24y x =-(2)P 的坐标为3,4⎛- ⎝⎭;(3)(4-或(4-或(4,-或(-13.(1)122y x =-+(2)存在,点8(,0)3H(3)存在,4或32-114(2)①F 运动到线段EF 的中点,15.(1)6(2)①16.(1)P Q 、两点从出发开始到4秒时,四边形PBCQ 的面积为236cm(2)P Q 、两点从出发开始到2秒或225秒时,点P 和点Q 的距离是(3)经过2秒时,点P Q D 、、组成的三角形是等腰三角形17.(1)2=23y x x -- (2)94,3(2,3)2(3)存在,点P 的坐标为(0,0)或0⎫⎪⎪⎝⎭或3,02⎛⎫ ⎪⎝⎭或0⎫⎪⎪⎝⎭18.(1)t ;t(2)9秒或12秒(3)不能,。
九年级上学期期末【压轴100题考点专练】一、单选题1.(2022·安徽合肥·九年级期末)如图,矩形ABCD 中,∠BAC =60°,点E 在AB 上,且BE :AB =1:3,点F 在BC 边上运动,以线段EF 为斜边在点B 的异侧作等腰直角三角形GEF ,连接CG ,当CG 最小时,CF AD的值为( )A B .13 C .12 D 2.(2022·山东济南·九年级期末)如图,∠ABC 为等腰直角三角形,∠BAC =90°,AB =AC =2,点D 为∠ABC 所在平面内一点,∠BDC =90°,以AC 、CD 为边作平行四边形ACDE ,则CE 的最小值为( )A B .3 C .75 D .3.(2022·山东临沂·九年级期末)如图,点A 的坐标是(-4,0),C 为OB 的中点,将∠ABC 绕点B 逆时针旋转90后得到∠A BC ''.若反比例函数24y x=的图象恰好经过A B '的中点D ,则点B 的坐标是( )A.(0,6)B.(0,8)C.(0,10)D.(0,12)4.(2022·湖南岳阳·九年级期末)如图,在平面直角坐标系xOy中,Rt△OAB的直角顶点A在x轴上,∠B=30°,反比例函数y=kx(k≠0)在第一象限的图象经过OB边上的点C和AB的中点D,连接AC.已知S△OAC=,则实数k的值为()A.B.C.D.5.(2022·甘肃·甘州中学九年级期末)如图,∠ABC是边长为4cm的等边三角形,动点P从点A出发,以2cm/s的速度沿A→C→B运动,到达B点即停止运动,过点P作PD∠AB于点D,设运动时间为x(s),∠ADP的面积为y(cm2),则能够反映y与x之间函数关系的图象大致是()A .B .C .D .6.(2022·四川乐山·九年级期末)如图,正方形ABCD 中,E 为BC 的中点,CG DE ⊥于G ,BG 延长交CD 于点F ,CG 延长交BD 于点H ,交AB 于N .下列结论:①DE CN =;②12BH DH =;③3DEC BNH S S =;④60BGN ∠=︒;⑤GN EG +=.其中正确结论的个数有( )个A .2B .3C .4D .5二、填空题7.(2021·全国·九年级期末)在矩形ABCD 中,AB =8cm ,BC =3cm ,点P 从点A 出发沿AB 以2cm/s 的速度向终点B 移动,同时,点Q 从点C 出发沿CD 以3cm/s 的速度向终点D 移动,其中一个点到达终点,另一个点也停止运动. 经过_________秒P 、Q 两点之间的距离是5cm .8.(2020·浙江杭州·九年级期末)已知关于x 的方程222(2)40x m x m +-++=有两个实根,并且这两个实数根的平方和比两个根的积大21,则m =________.9.(2020·浙江·九年级期末)如图,某数学兴趣小组在学完矩形的知识后一起探讨了一个纸片折叠问题:如何将一张平行四边形纸片ABCD 的四个角向内折起,拼成一个无缝隙、无重叠的矩形EFGH .图中EF ,FG ,GH ,HE 表示折痕,折后,B D 的对应点分别是,M N .若8AB cm =,10AD cm =,=60B ∠︒,则纸片折叠时AH 的长应取________.10.(2021·浙江杭州·九年级期末)如图,已知抛物线235684y x x =-++与x 轴交于点A ,与y 轴交于点B ,点P 为线段OA 上一点,点Q 为OB 延长线上一点,PQ 的中点M 恰好落在线段AB 上,点G 为该抛物线第二象限部分上一点,连接GQ ,GM ,将GM 绕点M 旋转180︒后得到MH ,连接AH ,已知AH x ⊥轴,6AH =,则GQ 的值为____.11.(2022·山东滨州·九年级期末)如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到;②点O 与O '距离为4;③150AOB ∠=︒;④6AOBO S '=+四边形⑤6AOC AOB S S +=△△中正确的结论是________.12.(2022·河北·平山县教育局教研室九年级期末)如图,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合),第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H.依次操作下去.若第二次操作后,点H和点E重合,则BE的长为_____;若经过三次操作,得到四边形EFGH,且AE=1,则四边形EFGH的面积为_____.13.(2022·浙江·义乌市稠州中学九年级期末)城市的许多街道是相互垂直或平行的,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.如A(﹣2,1),B (﹣1,﹣2),则d(A,B)=|﹣2﹣(﹣1)|+|1﹣(﹣2)|=4.(1)函数y=﹣2x+4的图像如图(1)所示,C是图像上一点,d(O,C)=5,则点C的坐标是_____.(2)某市要修建一条通往景观湖的道路(既不能破坏景观湖,也不在景观湖底钻隧道),如图(2),道路以M为起点,先沿水平MN方向到某处.再在该处拐一次直角可沿直线到湖边某点P处,如图建立平面直角坐标系xOy,圆心O(7,3),则修建道路距离d(M,P)的取值范围_____.14.(2022·江西上饶·九年级期末)如图,在边长为ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点,若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为______.15.(2022·安徽·九年级期末)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=kx(k≠0)的图象,与大正方形的一边交于点A(32,4),且经过小正方形的顶点B.求图中阴影部分的面积为_____.16.(2022·四川成都·九年级期末)如图,在正方形ABCD 中,点E 在对角线AC 上(AE <EC ),连接DE 并延长交AB 于点F ,过点E 作EG ∠DE 交BC 于点G ,连接DG ,FG ,DG 交AC 于H ,现有以下结论:①DE =EG ;②222AE HC EH +=;③DEH S 为定值;④CG CD +=;⑤GF =.以上结论正确的有______(填入正确的序号即可).17.(2022·重庆市育才中学九年级期末)在Rt ∠BAC 中,∠ABC =90°,AB =4,AC =D 是AC 边的中点,点E 是BC 边上一点,连接DE ,AE .将∠AED 沿着DE 翻折得到∠GED ,连接CG ,若∠DGE =45°,则点G 到边BC 的距离为 __.18.(2022·福建泉州·九年级期末)如图,y =k x (x >0)的图象经过A (2,6)、B 两点,且tan∠AOB =12,则点B 的坐标是 _____.三、解答题19.(2021·福建·厦门双十中学思明分校九年级期末)定义:有一组邻边相等的凸四边形叫做“等邻边四边形”,回答下列问题.(1)如图1,四边形ABCD 中,∠A =90°,AB =1,CD ∠BCD =∠DBC ,判断四边形ABCD 是不是“等邻边四边形”,并说明理由;(2)如图2,Rt ABC 中,∠ABC =90°,AB =2,BC =1,现将Rt △ABC 沿∠ABC 的平分线BB ′方向平移得到A B C ''',连结AA ',BC ',若平移后的四边形ABC A ''是“等邻边四边形”,求'BB 的长.20.(2022·新疆·乌鲁木齐市第70中九年级期末)如图所示,四边形ABCD 为矩形,AB =6cm ,AD =4cm ,若点Q 从A 点出发沿AD 以1cm/s 的速度向D 运动,P 从B 点出发沿BA 以2cm/s 的速度向A 运动,如果P 、Q 分别同时出发,当一个点到达终点时,另一点也同时停止.设运动的时间为t (s ).(1)当t 为何值时,△P AQ 为等腰三角形?(2)当t 为何值时,△APD 的面积为6cm 2?(3)五边形PBCDQ 的面积能否达到20cm 2?若能,请求出t 的值;若不能,请说明理由.(4)当t 为何值时,P 、Q 两点之间的距离为?21.(2018·云南临沧·九年级期末)如图,抛物线y=ax2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当PA∠NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.22.(2022·河南周口·九年级期末)因式定理:对于多项式()f x ,若()0f a =,则()x a -是()f x 的一个因式,并且可以通过添减单项式从()f x 中分离出来.已知()f x 325(4)x x k x k =-++-.(1)填空:当1x =时,(1)0f =,所以(1)x -是()f x 的一个因式.于是()f x 32244x x x x kx k=--++-(1)()x g x =-⨯.则()g x =________________;(2)已知关于x 的方程()0f x =的三个根是一个等腰三角形的三边长,求实数k 的值.23.(2022·山西晋中·九年级期末)综合与实践问题情境:数学活动课上,同学们开展了以“矩形纸片折叠”为主题的探究活动(每个小组的矩形纸片规格相同),已知矩形纸片宽6AD =.动手实践:(1)如图1,腾飞小组将矩形纸片ABCD 折叠,点A 落在DC 边上的点A '处,折痕为DE ,连接A E ',然后将纸片展平,得到四边形AEA D '.试判断四边形AEA D '的形状,并加以证明.(2)如图2,永攀小组在矩形纸片ABCD 的边BC 上取一点F ,连接DF ,使30CDF ∠=︒,将CDF 沿线段DF 折叠,使点C 正好落在AB 边上的点G 处.连接DG ,GF ,将纸片展平,①求DFG 的面积;②连接CG ,线段CG 与线段DF 交于点M ,则CG =______.深度探究:(3)如图3,探究小组将图1的四边形AEA D '剪下,在边A D '上取一点N ,使:1:2DN A N '=,将AND △沿线段AN 折叠得到AND '△,连接A D '',探究并直接写出A D ''的长度.24.(2022·江苏·九年级期末)阅读材料:各类方程的解法:求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式,求解二元一次方程组,把它转化为一元一次方程来解;类似的,三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为2(2)0x x x +-=,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.(1)问题:方程32614120x x x +-=的解是:1x =0,2x =______,3x =_______;(2)拓展:用“转化”x =的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=21m ,宽AB=8m ,点P 在AD 上(AP >PD ),小华把一根长为27m 的绳子一段固定在点B ,把长绳PB 段拉直并固定在点P ,再拉直,长绳的另一端恰好落在点C ,求AP 的长.25.(2021·湖北·公安县教学研究中心九年级期末)如图,抛物线23y ax bx =++交x 轴于A (-2,0)、B (3,0)两点,与y 轴交于点C ,连AC 、BC .M 为线段OB 上的一个动点,过点M 作PM ∠x 轴,交抛物线于点P ,交BC 于点Q .(备用公式:点11()A x y ,与点22()B x y ,(1)求抛物线的表达式;(2)过点P 作PN ∠BC ,垂足为点N .设M 点的坐标为M (m ,0),请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点M 在运动过程中,平面内是否存在点D ,使得以A 、C 、Q 、D 为顶点的四边形是菱形.若存在,请求出点D 的坐标;若不存在,请说明理由.26.(2021·贵州·兴仁市真武山街道办事处黔龙学校九年级期末)如图,抛物线y =ax 2+bx ﹣4经过点A (﹣2,0)、B (4,0),与y 轴交于点C ,点P 为线段AB 上一动点(不与点B 重合),连接PC 、AC 、BC ,将∠BPC 沿直线BC 翻折得到.∠BP 'C ,P 'C 交拋物线的另一点为Q ,连接QB .(1)求抛物线的表达式;(2)求四边形QCOB面积的最大值;(3)当CQ:QP'=1:2时,点N为抛物线上一点,直线NQ交y轴于点M,①若∠NQP'的面积为∠MQC面积的8倍,求出点N的坐标;②在①的条件下,点D在直线NQ上,点E在x轴负半轴上,当∠ADE∠∠ABC时,求点E的横坐标(直接写出答案).x2+2x+6与x轴交于A,B两点(点A在点B的左27.(2022·湖北随州·九年级期末)如图,抛物线y= -12侧),与y轴交于点C,其对称轴与抛物线交于点D,与x轴交于点E.(1)求点A,B,D的坐标;(2)点G为抛物线对称轴上的一个动点,从点D出发,沿直线DE以每秒2个单位长度的速度运动,过点G 作x轴的平行线,交抛物线于M,N两点(点M在点N的左边).设点G的运动时间为t s.①当t 为何值时,以点M ,N ,B ,E 为顶点的四边形是平行四边形;②连接BM ,在点C 运动的过程中,是否存在点M ,使得∠MBD =∠EDB ,若存在,求出点 M 的坐标;若不存在,请说明理由;(3)点Q 为坐标平面内一点,以线段MN 为对角线作菱形MENQ ,当菱形MENQ 为正方形时,请直接写出t 的值.28.(2022·河北保定·九年级期末)疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化情况如图所示,当030x ≤≤时,y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为()30,1800;当3040x <≤时,累计人数保持不变.(1)求y 与x 之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测点,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在10分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?29.(2022·江西赣州·九年级期末)如图,已知点M (﹣2,0),a <0,n 为正整数.抛物线C 1:y 1=a (x ﹣1)2+k 1交x 轴于点M 与点A 1(b 1,0),C 2:y 2=a (x ﹣12b 1)2+k 2交x 轴于点M 与点A 2(b 2,0),C 3:y 3=a (x ﹣12b 2)2+k 3交x 轴于点M 与点A 3(b 3,0),…按此规律,Cn :yn =a (x ﹣12bn ﹣1)2+kn .交x 轴于点M 与点An (bn ,0).(1)填空:b 1= ,b 2= ,b 3= ,An ﹣1An = ;(2)用含a 的代数式表示:抛物线y 3的顶点坐标为 ;抛物线yn 的顶点坐标为 ;(3)设抛物线Cn 的顶点为Pn .①若∠MP 10A 10为等腰直角三角形,求a 的值;②直接写出当a 与n 满足什么数量关系时,∠MPnAn 是等腰直角三角形.30.(2022·河南周口·九年级期末)抛物线2y ax bx c =++对称轴为直线=1x -,与x 轴交于A (-3,0),B 两点,与y 轴交于点C (0,3),设抛物线的顶点为D .(1)求该抛物线的解析式;(2)连接AC 、CD 、DA ,试判断ACD 的形状,并说明理由;(3)若点Q 在抛物线的对称轴上,抛物线上是否存在点P ,使以A 、B 、Q 、P 四点为顶点的四边形为平行四边形?若存在,请直接写出满足条件的点P 的坐标;若不存在,请说明理由.31.(2022·福建南平·九年级期末)已知抛物线2y x bx c =++的顶点为P ,与y 轴交于点A ,与直线OP 交于点B .(1)若点P 的横坐标为1,点B 的坐标为(3,6).①求抛物线的解析式;②若当3m x ≤≤时,2y x bx c =++的最小值为2,最大值为6,求m 的取值范围;(2)若点P 在第一象限,且PA PO =,过点P 作PD x ⊥轴于D ,将抛物线2y x bx c =++平移,平移后的抛物线经过点A 、D ,与x 轴的另一个交点为C ,试探究四边形OABC 的形状,并说明理由.32.(2022·黑龙江哈尔滨·九年级期末)在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +3交x 轴负半轴于点A ,交x 轴正半轴于点B ,交y 轴于点C ,且OA =OC =3OB .(1)求这个抛物线的解析式;(2)如图1,点P 为第三象限抛物线上的点,设点P 的横坐标为t ,∠P AC 面积S ,求S 与t 的函数解析式(直接写出自变量t 的取值范围);(3)如图2,在(2)的条件下,Q 为CA 延长线上的一点,若P 到x 轴的距离为d ,∠PQB 的面积为2d ,且∠P AQ =∠AQB ,求点P 的坐标.33.(2022·浙江台州·九年级期末)疫情就是命令,台州新冠疫情防控指挥部安排某中学进行了核酸检测采样演练,演练下午3点开始,设6个采样窗口,每个窗口采样速度相同,学生陆续到操场排队,4点半排队完毕,小明就排队采样的时间和人数进行了统计,得到下表:小明把记录的数据,在平面直角坐标系里,描成点连成线,发现满足学过的某些函数图象如图,请你解答:(1)求曲线ABC部分的函数解析式;(2)若排队人数在220人及以上,即为满负荷状态,问满负荷状态的时间持续多长?(3)如果采样进行45分钟后,为了减少扎堆排队的时间,指挥部要求4点15分后,采样可以随到随采,那么至少需新增多少个采样窗口?(4)疫情防控指挥部按照每个采样窗口与某中学相同采样速度对员工人数为600的某单位进行全员核酸检测,如果采样时间t(分钟)控制在30分钟到60分钟之间(即30≤t≤60),则开设的采样窗口数量n(个)的范围是.34.(2021·山东烟台·九年级期末)如图1,抛物线y=ax2+bx+3与x轴交于A(−2,0),B两点,与y轴交于点C,矩形OCDE的顶点D,E分别在抛物线及x轴上.若OE=OA,点P为y轴上一动点,连接BP,DP,DE与BP交于点F.(1)求抛物线的表达式;(2)当△BDP 为直角三角形时,求点P 的坐标;(3)如图2,抛物线的对称轴分别与DP ,BP 交于点M ,N . 点P 在线段OC 上运动,当OP 为何值时,△PMN 为等腰三角形?35.(2022·福建宁德·九年级期末)已知抛物线G 1:y =﹣x 2+2mx +m 和G 2:y =﹣x 2+2nx +n (n >m )相交于点A ,过点A 的直线l :y =kx +b 与抛物线G 1交于另一点B ,与抛物线G 2交于另一点C ,抛物线G 1的顶点为点M ,抛物线G 2的顶点为点N .(1)直接写出顶点M 的坐标;(用含m 的式子表示)(2)当m =﹣3,n =2,且直线l ∥x 轴时,求证:MB =NA ;(3)当k ≠0时,若AB =AC ,求直线l 的表达式.(用含m ,n 的式子表示)36.(2022·河南开封·九年级期末)如图,抛物线24y ax =+的图象与x 轴分别交于A 、B 两点,与y 轴交于C 点,且OC =AB .(1)求抛物线的解析式.(2)点D(1,3)在抛物线上,若点P是直线AD上的一个动点,过点P作PQ垂直于x轴,垂足为Q,且以PQ为斜边作等腰直角∠PQE.①当点P与点D重合时,求点E到y轴的距离.②若点E落在抛物线上,请直接写出E点的坐标.37.(2022·广东广州·九年级期末)已知抛物线G:y1=mx2﹣(3m﹣3)x+2m﹣3,直线h:y2=mx+3﹣2m,其中m≠0.(1)当m=1时,求抛物线G与直线h交点的坐标;(2)求证:抛物线G与直线h必有一个交点A在坐标轴上;(3)在(2)的结论下,解决下列问题:①无论m怎样变化,求抛物线G一定经过的点坐标;②将抛物线G关于原点对称得到的图象记为抛物线'G,试结合图象探究:若在抛物线G与直线h,抛物线'G与直线h均相交,在所有交点的横坐标中,点A横坐标既不是最大值,也不是最小值,求此时抛物线G的对称轴的取值范围.38.(2021·浙江台州·九年级期末)某一种蜜桔在农贸水果市场的需求量y1(万斤)、市场供应量y2(万斤)与市场价格x(元/斤)分别满足下列关系:y1=-0.2x + 2.8 ,y2= 0.4x - 0.8.当y1=y2 时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量.(1)求平衡价格和平衡需求量.(2)若该蜜桔的市场销售量 y (万件)是市场需求量 y 1 和市场供应量 y 2 两者中的较小者,该蜜桔的市场销售额 P (万元)等于市场销售量 y 与市场价格 x 的乘积.当市场价格 x 取何值时,市场销售额 P 取得最大值?(3)蜜桔的每斤进价为 m 元,若当 3≤x ≤10 时,随着 x 的增大,蜜桔的销售利润(万元)会经历先减小后增大再减小的变化,请直接写出 m 的取值范围.39.(2022·北京海淀·九年级期末)在平面直角坐标系xOy 中,点(4,3)在抛物线23(0)y ax bx a =++>上.(1)求该抛物线的对称轴;(2)已知0m >,当222+m x m -≤≤时,y 的取值范围是13y -≤≤,求a ,m 的值;(3)在(2)的条件下,是否存在实数n ,当2n x n -<<时,y 的取值范围是3335n y n -<<+,若存在,直接写出n 的值;若不存在,请说明理由.40.(2022·广东广州·九年级期末)已知抛物线y 12=-x 2+mx +m 12+与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C (0,52-),点P 为抛物线在直线AC 上方图象上一动点. (1)求抛物线的解析式;(2)求∠P AC 面积的最大值,并求此时点P 的坐标;(3)在(2)的条件下,抛物线y 12=-x 2+mx +m 12+在点A 、B 之间的部分(含点A 、B )沿x 轴向下翻折,得到图象G .现将图象G 沿直线AC 平移,得到新的图象M 与线段PC 只有一个交点,求图象M 的顶点横坐标n 的取值范围.41.(2022·湖南·长沙市中雅培粹学校九年级期末)“三高四新”战略是习近平总书记来湘考察时,为建设现代化新湖南擘画的宏伟战略蓝图.在数学上,我们不妨约定:在平面直角坐标系中,将点()3,4P 称为“三高四新”点,经过()3,4P 的函数,称为“三高四新”函数.(1)下列函数是“三高四新”函数的有_____;①22y x =- ②2613y x x =-+ ③23611y x x =-++ ④12y x= (2)若关于x 的一次函数y kx b =+是“三高四新”函数,且它与y 轴的交点在y 轴的正半轴,求k 的取值范围;(3)关于x 的二次函数()2134y x =-的图象顶点为A ,点()11,M x y 和点()22,N x y 是该二次函数图象上的点且使得90MAN ∠=︒,试判断直线MN 是否为“三高四新”函数,并说明理由.42.(2022·辽宁沈阳·九年级期末)如图,在平面直角坐标系xOy 中,抛物线y =ax 2+2x +c (a ≠0)与x 轴交于点A (﹣1,0)和点B ,交y 轴于点C (0,3),顶点为D .(1)求抛物线解析式;(2)点E 为线段BD 上的一个动点,作EF ∠x 轴于点F ,连接OE ,当∠OEF 面积最大时.求点E 的坐标;(3)G 是第四象限内抛物线上一点,过点G 作GH ∠x 轴于点H ,交直线BD 于点K 、且145OH GK =,作直线AG .①点G 的坐标是 ;②P 为直线AG 上方抛物线上一点,过点P 作PQ ∠AG 于点Q ,取点70,4M ⎛⎫ ⎪⎝⎭,点N 为平面内一点,若四边形MPNQ 是菱形,请直接写出菱形的边长.43.(2022·天津和平·九年级期末)已知抛物线2y (1)23x m x m =-+++(m 为常数),点A (-1,-1),B (3,7).(1)当抛物线2y (1)23x m x m =-+++经过点A 时,求抛物线解析式和顶点坐标; (2)抛物线的顶点随着m 的变化而移动,当顶点移动到最高处时, ①求抛物线的解析式;②在直线AB 下方的抛物线上有一点E ,过点E 作EF ∠x 轴,交直线AB 于点F ,求线段EF 取最大值时的点E 的坐标;(3)若抛物线与线段AB 只有一个交点,求m 的取值范围.44.(2021·辽宁沈阳·九年级期末)如图,在平面直角坐标系中,抛物线y =﹣x 2+2x 与x 轴正半轴交于点A ,点B 在抛物线的对称轴上,点D 在抛物线上,且在对称轴右侧,点C 是平面内一点,四边形OBCD 是平行四边形.(1)求点A 的坐标及抛物线的对称轴;(2)若点B 的纵坐标是﹣3,点D 的横坐标是52,则S ▱OBCD = ; (3)若点C 在抛物线上,且▱OBCD 的面积是12,请直接写出点C 的坐标.45.(2021·山东济南·九年级期末)定义:关于x 轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y 1=(x ﹣1)2﹣2的“同轴对称抛物线”为y 2=﹣(x ﹣1)2+2.(1)请写出抛物线y1=(x﹣1)2﹣2的顶点坐标;及其“同轴对称抛物线”y2=﹣(x﹣1)2+2的顶点坐标;(2)求抛物线y=﹣2x2+4x+3的“同轴对称抛物线”的解析式.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B 作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点B'、C',连接BC、CC'、B C''、BB'.''为正方形时,求a的值.①当四边形BB C C②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.46.(2021·四川成都·九年级期末)如图1,抛物线C1:y=ax2+bx+c经过A(﹣1,0),B(5,0),C(0三点,直线DF为该抛物线的对称轴,连接线段AC,∠CAB的平分线AE交抛物线C1于点E.(1)求抛物线C1的表达式;(2)如图1,作点C关于x轴的对称点C',将原抛物线沿对称轴向下平移经过点C′得到抛物线C2,在射线AE上取点Q,连接CQ,将射线QC绕点Q逆时针旋转120°交抛物线C 2于点P,当CAQ为等腰三角形时,求点P的横坐标;(3)如图2,将抛物线C1沿一定方向平移,使顶点D'落在射线AE上,平移后的抛物线C3与线段CB相交于点M、N,线段CB与DF相交于点Q,当点Q恰好为线段MN的中点时,求抛物线C3的顶点坐标.47.(2022·河南·驻马店市第二初级中学九年级期末)已知抛物线()2123y x m x m =-+++(1)当0m =时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m 的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标; (3)已知点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,求该抛物线顶点横坐标的取值范围.48.(2021·广东·海珠外国语实验中学九年级期末)已知函数2211()22()x x m x m y x mx m x m ⎧-++<⎪=⎨⎪-+≥⎩,记该函数图像为G .(1)当2m =时,①已知()4,M n 在该函数图像上,求n 的值; ②当02x ≤≤时,求函数G 的最大值; (2)当0m >时,作直线12x m =与x 轴交于点P ,与函数G 交于点Q ,若45POQ ∠=︒时,求m 的值; (3)当3m ≤时,设图像与x 轴交于点A ,与y 轴交于点B ,过B 做BC BA ⊥交直线x m =与点C ,设点A 的横坐标为a ,C 点的纵坐标为c ,若3a c =-,求m 的值.49.(2022·福建·莆田擢英中学九年级期末)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象经过点70,4A ⎛⎫- ⎪⎝⎭,点11,4B ⎛⎫ ⎪⎝⎭.(1)求此二次函数的解析式;(2)当22x -≤≤时,求二次函数2y x bx c =++的最大值和最小值;(3)点P 为此函数图象上任意一点,其横坐标为m ,过点P 作//PQ x 轴,点Q 的横坐标为21m -+.已知点P 与点Q 不重合,且线段PQ 的长度随m 的增大而减小. ①求m 的取值范围;②当7PQ ≤时,直接写出线段PQ 与二次函数2123y x bx c x ⎛⎫=++-≤< ⎪⎝⎭的图象交点个数及对应的m 的取值范围.50.(2022·湖南长沙·九年级期末)如图,抛物线2y ax bx c =++交x 轴于(1,0)A -,(3,0)B 两点,交y 轴于点(0,3)C -,点Q 为线段BC 上的动点. (1)求抛物线的解析式; (2)求||||QO QA +的最小值;(3)过点Q 作//PQ AC 交抛物线的第四象限部分于点P ,连接P A ,PB ,记PAQ △与PBQ 的面积分别为1S ,2S ,设12S S S =+,求点P 坐标,使得S 最大,并求此最大值.51.(2021·浙江·九年级期末)在平面直角坐标系中抛物线21:L y x bx c =-++经过点()()1,0,3,0A B -,顶点为点E .过点E 作x 轴的垂线EH ,垂足为H .(1)求抛物线1L 对应的函数表达式;(2)如图1,将抛物线1L 向下平移得到抛物线2L ,抛物线2L 与x 轴交于C ,D 两点,其顶点F 恰为EH 的中点,求BD 的长.(3)如图2,将(2)中的抛物线2L 沿x 轴正方向平移,当点C 与点B 重合时,将这两条抛物线在x 轴以上(包括x 轴上)部分的图象记为L .若点(),,()a m a n 在图象L 上,且m n ≥,求a 的取值范围.52.(2022·福建·莆田哲理中学九年级期末)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点()1,A r 与点(),4B s 是关于x 的“T 函数”()()240,0,0,.x x y tx x t t ⎧-<⎪=⎨⎪≥≠⎩是常数的图象上的一对“T 点”,则r =______,s =______,t =______(将正确答案填在相应的横线上);(2)关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”;如果不是,请说明理由;(3)若关于x 的“T 函数”2y ax bx c =++(0a >,且a ,b ,c 是常数)经过坐标原点O ,且与直线:l y mx n =+(0m ≠,0n >,且m ,n 是常数)交于()11,M x y ,()22,N x y 两点,当1x ,2x 满足()11211x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.53.(2021·浙江·九年级期末)定义:在平面直角坐标系中,有一条线段AB ,若抛物线21111y a x b x c =++的顶点是A ,经过点B ,抛物线22222y a x b x c =++的顶点是B ,经过点A ,称这两条抛物线是关于线段AB 的一对“有礼抛物线”,如图所示.(1)若抛物线()21213y x =-+与()2225y a x =-+是一对“有礼抛物线”,求a 的值.(2)若线段AB 两端点坐标是()(),,e f m n 、,关于线段AB 的一对有礼抛物线是21111y a x b x c =++和22222y a x b x c =++,猜想1a 与2a 的数量关系,并证明你的猜想.(3)若抛物线()21122y x =-的顶点为A ,它与y 轴交于点E ,点B 在抛物线上,关于线段AB 的另一条“有礼抛物线”22222y a x b x c =++与y 轴交点记为点F ,若6EF =,求2y 的函数关系式.54.(2022·山东济南·九年级期末)二次函数2()40y ax bx a =++≠的图象经过点(4,0)A -,(1,0)B ,与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD x ⊥轴于点D .(1)求二次函数的表达式;(2)连接BC ,当2DPB BCO ∠=∠时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由. 55.(2022·江西·上犹县教学研究室九年级期末)如图,已知抛物线2:L y x bx c =++经过点(0,5),(5,0)A B -.(1)求,b c 的值;(2)连结AB ,交抛物线L 的对称轴于点M . ①求点M 的坐标;②将抛物线L 向左平移(0)m m >个单位得到抛物线1L .过点M 作//MN y 轴,交抛物线1L 于点N .P 是抛物线1L 上一点,横坐标为1-,过点P 作//PE x 轴,交抛物线L 于点E ,点E 在抛物线L 对称轴的右侧.若10PE MN +=,求m 的值.。
初三九年级数学上册数学压轴题试题(WORD版含答案)一、压轴题1.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.2.如图①,A(﹣5,0),OA=OC,点B、C关于原点对称,点B(a,a+1)(a>0).(1)求B、C坐标;(2)求证:BA⊥AC;(3)如图②,将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,连接DC,问:∠BDC的角平分线DE,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.3.如图,⊙O的直径AB=26,P是AB上(不与点A,B重合)的任一点,点C,D为⊙O 上的两点.若∠APD=∠BPC,则称∠DPC为直径AB的“回旋角”.(1)若∠BPC =∠DPC =60°,则∠DPC 是直径AB 的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC 的度数与弧CD 的度数的关系,给出证明(提示:延长CP 交⊙O 于点E );(3)若直径AB 的“回旋角”为120°,且△PCD 的周长为24+133,直接写出AP 的长.4.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ;②如图3,弦AB 与弦CD 不相交:③如图4,点B 与点C 重合.5.如图,在平面直角坐标系中,直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,以AB 为斜边作等腰直角△ABC ,使点C 落在第一象限,过点C 作CD ⊥AB 于点D ,作CE ⊥x 轴于点E ,连接ED 并延长交y 轴于点F .(1)如图(1),点P 为线段EF 上一点,点Q 为x 轴上一点,求AP +PQ 的最小值. (2)将直线l 进行平移,记平移后的直线为l 1,若直线l 1与直线AC 相交于点M ,与y 轴相交于点N ,是否存在这样的点M 、点N ,使得△CMN 为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.6.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示).(2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.7.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC . (1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.8.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.9.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 10.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).11.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m a m b--的值为 ;当点M 不在y 轴上时,求证:m a m b--为一个定值,并求出这个值.12.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ;(2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4【解析】【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解.【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F∴BE EF =,80BEF ∠=∴180502BEF EBF BFE -∠∠=∠== ,即50BFD ∠= ∵AB=AC=4,D 是BC 的中点∴BD DC =,AD BC ⊥ ∴BF CF =,ABD ACD △≌△∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠=∴50CFD BAD ∠=∠=∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥∴9040ABC BAD ∠=-∠=∴ABC BCF ∠=∠∴//CF AB ,(1)中的结论仍然成立(3)由(1)和(2)知,//CF AB∴点F 的运动路径在CF 上如图,作AM ⊥CF 于点M∵8090BEF ∠=<∴点E 在线段AD 上运动时,点B 旋转不到点M 的位置∴故当点E 与点A 重合时,AF 最小此时AF 1=AB=AC=4,即AF 的最小值为4.【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.2.(1)点B (3,4),点C (﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【解析】【分析】(1)由中心对称的性质可得OB =OC =5,点C (﹣a ,﹣a ﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB ,AC ,BC 的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO =BO =CO ,可得△BCD 是直角三角形,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,由圆周角定理和角平分线的性质可得∠HBC =∠CDE =45°=∠BDE =∠BCH ,可证CH =BH ,∠BHC =90°,由两点距离公式可求解.【详解】解:(1)∵A (﹣5,0),OA =OC ,∴OA =OC =5,∵点B 、C 关于原点对称,点B (a ,a +1)(a >0),∴OB =OC =5,点C (﹣a ,﹣a ﹣1),∴5=()()220+10a a -+-,∴a =3,∴点B (3,4),∴点C (﹣3,﹣4);(2)∵点B (3,4),点C (﹣3,﹣4),点A (﹣5,0),∴BC =10,AB =45 ,AC =25,∵BC 2=100,AB 2+AC 2=80+20=100,∴BC 2=AB 2+AC 2,∴∠BAC =90°,∴AB ⊥AC ;(3)过定点,理由如下:∵将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,∴CO =DO ,又∵CO =BO ,∴DO =BO =CO ,∴△BCD 是直角三角形,∴∠BDC =90°,如图②,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,∵DE 平分∠BDC ,∴∠BDE =∠CDE =45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=,OH=OB=OC=5,设点H(x,y),∵点H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴点H(4,﹣3),∴∠BDC的角平分线DE过定点H(4,3).【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.3.(1)∠DPC是直径AB的回旋角,理由见解析;(2)“回旋角”∠CPD的度数=CD的度数,证明见解析;(3)3或23.【解析】【分析】(1)由∠BPC=∠DPC=60°结合平角=180°,即可求出∠APD=60°=∠BPC,进而可说明∠DPC是直径AB的回旋角;(2)延长CP交圆O于点E,连接OD,OC,OE,由“回旋角”的定义结合对顶角相等,可得出∠APE=∠APD,由圆的对称性可得出∠E=∠D,由等腰三角形的性质可得出∠E=∠C,进而可得出∠D=∠C,利用三角形内角和定理可得出∠COD=∠CPD,即“回旋角”∠CPD的度数=CD的度数;(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,则PF=PC,利用(2)的方法可得出点P,D,F在同一条直线上,由直径AB的“回旋角”为120°,可得出∠APD=∠BPC=30°,进而可得出∠CPF=60°,即△PFC是等边三角形,根据等边三角形的性质可得出∠CFD=60°.连接OC,OD,过点O作OG⊥CD于点G,则∠COD=120°,根据等腰三角形的性质可得出CD=2DG,∠DOG=12∠COD=60°,结合圆的直径为26可得出CD=PCD的周长为DF=24,过点O作OH⊥DF于点H,在Rt△OHD和在Rt△OHD中,通过解直角三角形可得出OH,OP的值,再根据AP=OA﹣OP可求出AP的值;②当点P在半径OB上时,用①的方法,可得:BP=3,再根据AP=AB﹣BP可求出AP的值.综上即可得出结论.【详解】(1)∵∠BPC=∠DPC=60°,∴∠APD=180°﹣∠BPC﹣∠DPC=180°﹣60°﹣60°=60°,∴∠APD=∠BPC,∴∠DPC是直径AB的回旋角.(2)“回旋角”∠CPD的度数=CD的度数,理由如下:如图2,延长CP交圆O于点E,连接OD,OC,OE.∵∠CPB=∠APE,∠APD=∠CPB,∴∠APE=∠APD.∵圆是轴对称图形,∴∠E=∠D.∵OE=OC,∴∠E=∠C,∴∠D=∠C.由三角形内角和定理,可知:∠COD=∠CPD,∴“回旋角”∠CPD的度数=CD的度数.(3)①当点P在半径OA上时,在图3中,过点F作CF⊥AB,交圆O于点F,连接PF,则PF=PC.同(2)的方法可得:点P,D,F在同一条直线上.∵直径AB的“回旋角”为120°,∴∠APD=∠BPC=30°,∴∠CPF=60°,∴△PFC是等边三角形,∴∠CFD=60°.连接OC,OD,过点O作OG⊥CD于点G,则∠COD=120°,∴CD=2DG,∠DOG=12∠COD=60°,∵AB=26,∴OC=13,∴32 CG∴CD=2×1332=133∵△PCD的周长为24+133,∴PD+PC+CD=24+133,∴PD +PC =DF =24.过点O 作OH ⊥DF 于点H ,则DH =FH =12DF =12. 在Rt △OHD 中,OH =222213125OD DH -=-=, 在Rt △OHP 中,∠OPH =30°, ∴OP =2OH =10,∴AP =OA ﹣OP =13﹣10=3; ②当点P 在半径OB 上时, 同①的方法,可得:BP =3, ∴AP =AB ﹣BP =26﹣3=23. 综上所述,AP 的长为:3或23.【点睛】此题是圆的综合题,考查圆的对称性质,直角三角形、等腰三角形与圆的结合,(3)是此题的难点,线段AP 的长度由点P 所在的位置决定,因此必须分情况讨论.4.(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【解析】 【分析】(1)根据AD BD ⊥得到AB 是直径,连接OC 、OD ,发现等边三角形,再根据圆周角定理求得30EBD ∠=︒,再进一步求得E ∠的度数;(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得. 【详解】解:(1)连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒ ∴60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OD 、OC 、AC ,如图:∵1OD OC CD === ∴OCD 为等边三角形 ∴60COD ∠=︒ ∴30DAC ∠=︒ ∴30EBD ∠=︒ ∵90ADB ∠=︒ ∴903060E ∠=︒-︒=︒②结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒∴903060BED ∠=︒-︒=︒③结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:如图:∵当点B 与点C 重合时,则直线BE 与O 只有一个公共点∴EB 恰为O 的切线∴90ABE ∠=︒∵90ADB ∠=︒,1CD =,2AD = ∴30A ∠=︒ ∴60E ∠=︒.故答案是:(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【点睛】本题考查了圆周角定理、等边三角形的判定、圆内接四边形的性质.此题主要是能够根据圆周角定理的推论发现AB 是直径,进一步发现等边COD △,从而根据圆周角定理以及圆内接四边形的性质求解.5.(1)AP +PQ 的最小值为4;(2)存在,M 点坐标为(﹣12,﹣4)或(12,8). 【解析】 【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC 可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标.【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC , ∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒, ∴∠ACK =∠CBE 在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, △AKC ≌△CEB (AAS ) ∴AK =CE ,CK =BE , ∵四边形AOEK 是矩形, ∴AO =EK =BE , 由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4), ∵∠CDB =∠CEB =90︒, ∴B 、C 、D 、E 四点共圆, ∵CD CD =,∠CBA =45︒, ∴∠CED =45︒, ∴FE 平分∠CEO ,过P 点作PH ⊥CE 于H ,作PG ⊥OE 于G ,过A 点作AK ⊥EC 于K . ∴PH =PQ ,∵PA +PQ =PA +PH ≥AK =OE , ∴OE =4, ∴AP +PQ ≥4, ∴AP +PQ 的最小值为4.(2)∵A 点坐标为(0,2),C 点坐标为(4,4), 设直线AC 解析式为:y =kx+b 把(0,2),(4,4)代入得244bk b =⎧⎨=+⎩解得122k b ⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.6.(1)45°+ ;(2)证明见解析;(3)2BF+CF.【解析】【分析】(1)过点A作AG⊥DF于G,由轴对称性质和正方形的性质可得AE=AD,∠BAP=∠EAF,根据等腰三角形“三线合一”的性质可得∠EAG=∠DAG,即可得∠FAG=12∠BAD=45°,∠DAG+∠BAP=45°,根据直角三角形两锐角互余的性质即可得答案;(2)由(1)可得∠FAG=12∠BAD=45°,由AG⊥PD可得∠APG=45°,根据轴对称的性质可得∠BPA=∠APG=45°,可得∠BFD=90°,即可证明BF⊥DF;(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,由∠BFD=∠BCD=90°可得B、F、C、D四点共圆,根据圆周角定理可得∠FBC=∠FDC,∠DFC=∠DBC=45°,根据平行线的性质可得∠FDC=∠DCH,根据角的和差关系可得∠ABF=∠BCH,由轴对称性质可得BF=EF,可得△BEF是等腰直角三角形,即可得∠BEF=45°,2BF,即可证明∠BEF=∠DFC,可得BH//FC,即可证明四边形EFCH是平行四边形,可得EH=FC,EF=CH,利用等量代换可得CH=BF,利用SAS可证明△ABF≌△BCH,可得AF=BH,即可得AF、BF、CF的数量关系.【详解】(1)过点A作AG⊥DF于G,∵点B关于直线AF的对称点为E,四边形ABCD是正方形,∴AE=AB,AB=AD=DC=BC,∠BAF=∠EAF,∴AE=AD,∵AG⊥FD,∴∠EAG=∠DAG,∴∠BAF+∠DAG=∠EAF+∠EAG,∵∠BAF+∠DAG+∠EAF+∠EAG=∠BAD=90°,∴∠BAF+∠DAG=∠GAF=45°,∴∠DAG=45°-α,∴∠ADF=90°-∠DAG=45°+α.(2)由(1)得∠GAF=45°,∵AG⊥FD,∴∠AFG=45°,∵点E、B关于直线AF对称,∴∠AFB=∠AFE=45°,∴∠BFG=90°,∴BF⊥DF.(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,∵∠BFD=∠BCD=90°,∴B、F、C、D四点共圆,∴∠FDC=∠FBC,∠DFC=∠DBC=45°,∵CH//FD,∴∠DCH=∠FDC,∴∠FBC=∠DCH,∵∠ABC=∠BCD=90°,∴∠ABC+∠FBC=∠BCD+∠DCH,即∠ABF=∠BCH,∵点E、B关于直线AF对称,∴BF=EF,∵∠BFE=90°,∴△BEF是等腰直角三角形,∴∠BEF=45°,2BF,∴∠BEF=∠DFC,∴FC//BH,∴四边形EFCH是平行四边形,∴EH=FC,CH=BF,在△ABF和△BCH中,AB BCABF BCHBF CH=⎧⎪∠=∠⎨⎪=⎩,∴2BF+CF.【点睛】本题考查正方形的性质、等腰三角形的性质、轴对称的性质、圆周角定理、四点共圆的判定及全等三角形的判定与性质,正确得出B 、F 、C 、D 四点共圆并熟练掌握圆周角定理及轴对称的性质是解题关键. 7.(1)2114y x =-;(2)点P 37(,)216-;(3)(222,222M --+ 【解析】 【分析】(1)根据题意得到AB=4,根据函数对称轴x=0,得到OA=OB=2,得到A 、B 坐标,代入函数解析式即可求解;(2)首先求得直线OD 解析式,然后设P (21,14t t -),得到PQ 关于t 的解析式,然后求出顶点式即可求解; (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,然后求得直线CM 的解析式,得到EM 的表达式,然后根据CMNCNEMNESSS=+即可求解.【详解】(1)∵AB =4OC ,且C (0,-1) ∴AB=4∴OA=OB=2,即A 点坐标()2,0-,B 点坐标()2,0 代入A 点坐标得2021a =- 解得14a =∴G 的解析式为2114y x =- 故答案为2114y x =-(2)当1x =-时,34y =-,即:点D 为(31,4--)∴直线OD 为:34y x = 设P (21,14t t -),则Q 为(22141,1334t t --),则: 22214141325()()33333212PQ t t t t t =--=-++=--+∴当32t =时,PQ 取得最大值2512,此时点P 位37(,)216- (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,则N ()214,414m m ⎛⎫++- ⎪⎝⎭∵C 点坐标为(0,1)-∴可设直线CM 为1y kx =-,带入M 点坐标得:14k m = ∴直线CM 为114y mx =- 过点N 作NE y ∥轴交CM 于点E ,则E 点为()14,414m m m ⎛⎫++- ⎪⎝⎭∴4EN m =-- ∵()()12CMNCNE MNEC N N M S SSx x x x EN ⎡⎤=+=-+-•⎣⎦ ∴()()104=22m m ---∴2440m m +-=解得:1222m =--,2222m =-+(舍去) ∴M ()222,222--+ 【点睛】本题考查了待定系数法求函数解析式,二次函数综合应用,是二次函数部分的压轴题,题目较难,应画出示意图,然后进行讨论分析. 8.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 9922m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M 、N 关于直线对称,所以,设,则,利用勾股定理求出a 以及MN 的长,再根据根与系数关系,列出方程即可解决问题.【详解】 (1),,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD 、BD,对称轴交x 轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,, ,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则,设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃),,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.69.(1)y=−x2+3;(2)①2或563⩽t【解析】【分析】(1)根据已知条件求出AB和CD的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D(3,3),则平移后坐标为D´(3,3),F(t,-t2+3);则有DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2,再根据DF=7FB,即可求得t;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB的中点坐标为(−3,0),CD的中点坐标为(0,3),分别代入y=ax2+b得:3a b0b3+=⎧⎨=⎩,解得a1b3=-⎧⎨=⎩,∴y=−x2+3.(2)①D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2DF=7FB,则(−3+t-t)2+(-t2+3-3)2=7(-t2+3)2解得:t2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE且MN⩾C′N.∵F(t,3−t2),∴EF=3−(3−t2)=t2,∴EE′=2EF=2t2,由EE′⩽BE,得2t2⩽3,解得t6∵3∴C′点的横坐标为3∴3)2,又C′N=BE′=BE−EE′=3−2t2由MN⩾C′N,得32⩾3−2t2,解得t63或t⩽63舍去).∴t63t⩽6 2【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..10.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++【解析】 【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标;②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解. 【详解】解:(1)因为直线交抛物线于B 、C 两点, ∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2); 当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得:2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上, ∴∠PMC 为固定角且不等于90, ∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴, ∴点P 的纵坐标为﹣2, 将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去), ∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D , ∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°, ∴∠OBC=∠OCD , 又∵∠BOC=∠COD=90°, ∴BOC ∽COD (AAA ),∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4, ∴OD=1,又∵D 点在X 的负半轴 ∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数), 将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2, 联立直线PC 和抛物线方程,得: 22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10, 点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10);②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++. 【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等. 11.(1)214y x x =-;(2)①122y x =-+,②1,见解析,定值为1 【解析】 【分析】(1)利用待定系数法把点(4,0)、(2,3)-代入解析式,再结合抛物线对称轴方程得到三元一次方程组,解方程组即可.(2)①先求出平移后的抛物线解析式,设出直线MA 的解析式1y kx =-,再联立抛物线解析式2114y kx y x =-⎧⎪⎨=⎪⎩,得到21104x kx -+=,令210k ∆=-=,求出k 的值,得出APM∆为等腰直角三角形,运用APM ∆与BQO ∆相似得出90BQO APM ∠=∠=,故AB :y mx n =+,则2144m n m n +=⎧⎨-+=⎩即可求出AB 函数关系式.②当M 在y 轴上时,m=0,再根据图像对称性可得A 、B 两点关于y 轴对称,得出a ,b 的关系,即可求出答案;当M 不在与轴上时,设MA :111y k x k m =--,联立抛物线解析式112114y k x k m y x =--⎧⎪⎨=⎪⎩,得出2114440x k x k m -++=,令212=16(1)0k k m ∆--=,同理设出MB ,令22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,得出12k k m +=,即可求出答案. 【详解】解:(1)设2y=ax +bx+c a (≠0),把点(4,0)、(2,3)-代入 ∵对称轴为x=2∴164042322a b c a b c b a ⎧⎪++=⎪-+=⎨⎪⎪-=⎩ 解得1410a b c ⎧=⎪⎪=-⎨⎪=⎪⎩∴抛物线解析式214y x x =-. (2)①(0,1)M -,平移后抛物线214y x = 设MA :1y kx =-则联立2114y kx y x =-⎧⎪⎨=⎪⎩,21104x kx -+= 210k ∆=-=1k ∴=±又由图,A 在y 轴右侧 故1k =,(2,1)A2AP PM ∴==,APM ∆为等腰直角三角形又APM ∆与BQO ∆相似∴△BQO 为等腰直角三角形,设B (﹣x ,x ),带入抛物线解析式得:214x x = 解得x=4或x=0(舍去) ∴B (﹣4,4)设AB :y mx n =+,把(2,1)A ,B (﹣4,4)带入得:则2144m n m n +=⎧⎨-+=⎩,122m n ⎧=-⎪⎨⎪=⎩∴AB 解析式为:122y x =-+. ②(i )∵214y x =关于y 轴对称,M 在y 轴上,且MA ,MB 与抛物线只有一个交点 ∴A 、B 两点关于y 轴对称, ∴a=﹣b∴m a m b --=0+b0b-=1, 故答案是:1;(ii )设MA :111y k x k m =--,则联立112114y k x k m y x =--⎧⎪⎨=⎪⎩, 2114440x k x k m -++=,此方程仅一个根, 故11422k a k ==, 且212=16(1)0k k m ∆--=,同理设MB :221y k x k m =--, 亦有22b k =,22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,12k k m +=,()111122122m k m k m am b m m k k m ---∴===----, 即m am b--为一定值1,∴当点M不在y轴上时,m am b--为一个定值1.【点睛】本题考查的是二次函数综合题型,二次函数待定系数法求函数解析式,二次函数与一元二次方程的综合应用,二次函数与相似三角形的综合应用,解题关键在于理解题意,正确分析题目,运用数形结合思想进行解题.12.(1)4﹣23;(2)32;(3)4﹣5≤S≤4+5【解析】【分析】(1)在Rt△DCG中,利用勾股定理求出DG即可解决问题;(2)首先证明AH=CH,设AH=CH=m,则DH=AD﹣HD=4﹣m,在Rt△DHC中,根据CH2=CD2+DH2,构建方程求出m即可解决问题;(3)如图,当点G在对角线AC上时,△OGE的面积最小,当点G在AC的延长线上时,△OE′G′的面积最大,分别求出面积的最小值,最大值即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴BC=AD=CG=4,∠D=90°,∵AB=CD=2,∴DG=22CDCG-=2242-=23,∴AG=AB﹣BG=4﹣23,故答案为:4﹣23.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=52,∴AH=52,GH=22AH AG-=22522⎛⎫-⎪⎝⎭=32.(3)在Rt△ABC中,2225AC AB BC=+=,152OC AC,由题可知,G点在以C点为圆心,BC为半径的圆上运动,且GE与该圆相切,因为GE=AB 不变,所以O到直线GE的距离即为△OGE的高,当点G在对角线AC上时,OG最短,即△OGE的面积最小,最小值=12×OG×EG=12×2×(4﹣5)=4﹣5.当点G在AC的延长线上时,OG最长,即△OE′G′的面积最大.最大值=12×E′G′×OG′=12×2×(4+5)=4+5.综上所述,455【点睛】本题考查求一点到圆上点距离的最值、矩形的性质、全等三角形的判定和性质、旋转变换、勾股定理.(1)比较简单,掌握勾股定理和旋转的性质是解决此问的关键;(2)能表示Rt△DHC三边,借助方程思想是解决此问的关键;(2)理解线段GE的运动轨迹,得出面积最小(大)时G点的位置是解决此问的关键.。
九年级上册数学压轴题(提升篇)(Word 版 含解析)一、压轴题1.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.2.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.3.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<). (1)当47t <<时,BP = ;(用含t 的式子表示)(2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.4.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.5.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径. 6.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.7.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 8.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)9.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P (3,2),Q (3+1,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式. 10.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =,求CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可). 11.如图,扇形OMN 的半径为1,圆心角为90°,点B 是上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q . (1)当点B 移动到使AB :OA=:3时,求的长;(2)当点B 移动到使四边形EPGQ 为矩形时,求AM 的长. (3)连接PQ ,试说明3PQ 2+OA 2是定值.12.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【解析】 【分析】(1)根据AD BD ⊥得到AB 是直径,连接OC 、OD ,发现等边三角形,再根据圆周角定理求得30EBD ∠=︒,再进一步求得E ∠的度数;(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得. 【详解】解:(1)连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒ ∴60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OD 、OC 、AC ,如图:∵1OD OC CD === ∴OCD 为等边三角形 ∴60COD ∠=︒ ∴30DAC ∠=︒ ∴30EBD ∠=︒ ∵90ADB ∠=︒∴903060E ∠=︒-︒=︒②结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒∴903060BED ∠=︒-︒=︒③结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:如图:∵当点B 与点C 重合时,则直线BE 与O 只有一个公共点∴EB 恰为O 的切线∴90ABE ∠=︒∵90ADB ∠=︒,1CD =,2AD = ∴30A ∠=︒ ∴60E ∠=︒.故答案是:(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【点睛】本题考查了圆周角定理、等边三角形的判定、圆内接四边形的性质.此题主要是能够根据圆周角定理的推论发现AB 是直径,进一步发现等边COD △,从而根据圆周角定理以及圆内接四边形的性质求解. 2.(1)OA =6,AB =10;(2)3011;(3)0<t≤1813或3011<t≤5. 【解析】 【分析】(1)在Rt △AOB 中,tan B =34,OB =8,即可求解; (2)利用△ACD ∽△ABO 、AD +OQ =OA ,即可求解;(3)分QC 与圆P 相切、QC ⊥OA 两种情况,求解即可. 【详解】解:(1)在Rt △AOB 中,tan B =34,OB =8, ∴34OA OB = ,∴OA =6,则AB =10; (2)OP =AP ﹣t ,AC =2t ,∵AC 是圆直径,∴∠CDA =90°,∴CD ∥OB , ∴△ACD ∽△ABO ,∴AC AD AB AO = ,即: 2,106t AD= ∴AD =65t , 当Q 与D 重合时,AD +OQ =OA , ∴66,5t t += 30.11t ∴= (3)当QC 与圆P 相切时,∠QAC =90°, ∵OQ =AP =t ,∴AQ =6﹣t ,AC =2t , ∵∠A =∠A ,∠QCA =∠ABO , ∴△AQC ∽△ABO ,∴,AQ ACAB AO= 即:62106t t -= ,18.13t ∴= ∴当18013t <≤时,圆P 与QC 只有一个交点, 当QC ⊥OA 时,D 、Q 重合,由(1)知: 30.11t = ∴30511t <≤时,圆P 与线段QC 只有一个交点, 故:当圆P 与线段只有一个交点,t 的取值范围为:18013t <≤或30511t <≤. 【点睛】本题为圆的综合题,涉及到圆与直线的关系、三角形相似等知识点,(3)是本题的难点,要注意分析QC 和圆及线段的位置关系分类求解.3.(1)7-t (2)()()()22904;25{1674725t t S t t ππ<≤=-<<(3)516,23t t ==【解析】 【分析】(1)先判断出点P 在BC 上,即可得出结论;(2)分点P 在边AC 和BC 上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;(3)分点P 在边AC 和BC 上两种情况:借助(2)求出的圆P 的半径等于PC ,建立方程求解即可得出结论. 【详解】(1)∵AC =4,BC =3,∴AC +BC =7. ∵4<t <7,∴点P 在边BC 上,∴BP =7﹣t . 故答案为:7﹣t ;(2)在Rt △ABC 中,AC =4,BC =3,根据勾股定理得:AB =5,由运动知,AP =t ,分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,如图1,记⊙P 与边AB 的切点为H ,连接PH ,∴∠AHP =90°=∠ACB . ∵∠A =∠A ,∴△APH ∽△ACB ,∴PH AP BC AB =,∴35PH t =,∴PH 35=t ,∴S 925=πt 2; ②当点P 在边BC 上时,即:4<t <7,如图,记⊙P 与边AB 的切点为G ,连接PG ,∴∠BGP =90°=∠C .∵∠B =∠B ,∴△BGP ∽△BCA ,∴PG BP AC AB =,∴745PG t -=,∴PG 45=(7﹣t ),∴S 1625=π(7﹣t )2. 综上所述:S 22904251674725t t t t ππ⎧≤⎪⎪=⎨⎪-⎪⎩(<)()(<<);(3)分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,由(2)知,⊙P 的半径PH 35=t . ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边BC 相切,∴PC =PH . ∵PC =4﹣t ,∴4﹣t 35=t ,∴t 52=秒; ②当点P 在边BC 上时,即:4<t <7,由(2)知,⊙P 的半径PG 45=(7﹣t ).∵⊙P与△ABC的另一边相切,即:⊙P和边AC相切,∴PC=PG.∵PC=t﹣4,∴t﹣445=(7﹣t),∴t163=秒.综上所述:在⊙P运动过程中,当⊙P与三角形ABC的另一边也相切时,t的值为52秒或163秒.【点睛】本题是圆的综合题,主要考查了切线的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想解决问题是解答本题的关键.4.(1)详见解析;(2)45【解析】【分析】(1)通过证明OE∥AD得出结论OE⊥CD,从而证明CD是⊙0的切线;(2)在Rt△ADE中,求出AD,DE,利用勾股定理即可解决问题.【详解】(1)证明:∵AE平分∠DAC,∴∠CAE=∠DAE.∵OA=OE,∴∠OEA=∠OAE.∴∠DAE=∠AEO,.∴AD∥OE.∵AD⊥CD,∴OE⊥CD.∴CD是⊙O的切线.(2)解:连接BF交OE于K.∵AB是直径,∴∠AFB=90°,∵AB=10,AF=6,∴BF8,∵OE∥AD,∴∠OKB=∠AFB=90°,∴OE⊥BF,∴FK=BK=4,∵OA=OB,KF=KB,∴OK=1AF=3,2∴EK=OE﹣OK=2,∵∠D=∠DFK=∠FKE=90°,∴四边形DFKE是矩形,∴DE=KF=4,DF=EK=2,∴AD=AF+DF=8,在Rt△ADE中,AE.【点睛】本题考查切线的判定和性质,勾股定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.;(2)见解析;(3)⊙O的半径为2或5.(1)PA O的半径为3【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=12AB=2,AH=AB•sin60°=∴HP=BP﹣BH=1,∴在Rt△AHP中,AP∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM=APsin60︒,∴⊙O的半径为3,即PA⊙O(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•si n60°=BF=12AB=2,∴28,∴EF=5,在Rt△BFE中,BE,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ=DN=设QE=x,则PE=x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴PEDN =BPBN,∴BP10,∴BP=10x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10x)2+(x)2,解得,x1=(舍),x2,∴AE=∴BE=∴r,∴⊙O的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.6.(1)15°;(2)见解析;(3)16【解析】【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=.【详解】(1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠=453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .AN BN =AON BON ∴∠=∠,ON AB ⊥//OD AB90DON ︒∴∠=OM ON =OMN ONM ∴∠=∠180OMN ONM MOD DON ︒∠+∠+∠+∠=290MOD DMO ︒∴∠+∠=(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.设AM a =,BM b =.四边形AMBN 是圆内接四边形180A MBN ︒∴∠+∠=180NBM MBN '︒∠+∠=A NBM '∴∠=∠AN BN =AN BN ∴=(SAS)AMN BM N '∴≅MN NM '∴=,BM AM a '==,NE MM '⊥于点E.11()22ME EM MM a b ''∴===+, ()2222ME BN BE MN +-=22211()()1622a b BN b a ⎡⎤⎡⎤∴++--=⎢⎥⎢⎥⎣⎦⎣⎦化简得216ab NB +=, 16AM MB AN NB ∴⋅+⋅=【点睛】本题考查了圆的综合题,涉及的知识点有圆周角定理和垂径定理以及圆内接四边形的性质,综合性质较强,能够做出相应的辅助线是解题的关键.7.(1)y=−x 2+3;(2)①2或5 63⩽t ⩽62 【解析】【分析】(1)根据已知条件求出AB 和CD 的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D (3,3),则平移后坐标为D´(3,3),F (t ,-t 2+3);则有DF 2=(3)2+(-t 2+3-3)2;FB 2=(-t 2+3)2,再根据7FB ,即可求得t ;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键 【详解】 (1)由题意得AB 的中点坐标为(−3,0),CD 的中点坐标为(0,3),分别代入y=ax 2+b 得:3a b 0b 3+=⎧⎨=⎩,解得a 1b 3=-⎧⎨=⎩, ∴y=−x 2+3. (2)①D (−3,3),则平移后坐标为D´(−3+t ,3),F (t ,-t 2+3);DF 2=(−3+t-t )2+(-t 2+3-3)2;FB 2=(-t 2+3)2 DF=7FB ,则(−3+t-t )2+(-t 2+3-3)2=7(-t 2+3)2解得:t 2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN ⊥x 轴,分别交抛物线、x 轴于点M 、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE 且MN ⩾C′N.∵F(t,3−t 2),∴EF=3−(3−t 2)=t 2,∴EE′=2EF=2t 2,由EE′⩽BE,得2t 2⩽3,解得t 6 ∵3∴C′点的横坐标为3∴3)2,又C ′N=BE′=BE−EE′=3−2t 2由MN ⩾C′N,得32⩾3−2t 2,解得t 63或t ⩽63舍去).∴t 63t 6 【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..8.(1)21322y x x =-++;(2)92;(3)点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【解析】【分析】 (1)由图可知点B 、点D 的坐标,利用待定系数法,即可求出抛物线的解析式;(2)过点M 作ME ⊥AB 于点E ,由二次函数的性质,分别求出点A 、C 、M 的坐标,然后得到OE 、BE 的长度,再利用切割法求出四边形的面积即可;(3)由点Q 在y 轴上,设Q (0,y ),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ 2为对角线时;③当AQ 3为对角线时;分别求出三种情况的点P 的坐标,即可得到答案.【详解】解:(1)根据题意,抛物线212y x bx c =-++经过B 、D 两点, 点D 为(2-,52-),点B 为(3,0), 则2215(2)22213302b c b c ⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩, 解得:132b c =⎧⎪⎨=⎪⎩, ∴抛物线的解析式为21322y x x =-++; (2)∵22131(1)2222y x x x =-++=--+, ∴点M 的坐标为(1,2)令213022x x -++=,解得:11x =-,23x =,∴点A 为(1-,0);令0x =,则32y =, ∴点C 为(0,32); ∴OA=1,OC=32, 过点M 作ME ⊥AB 于点E ,如图:∴2ME =,1OE =,2BE =,∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形, 如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线; 由平行四边形的性质, ∴点E 为AB 和11PQ 的中点, ∵E 为(1,0), ∵点Q 1为(0,y ), ∴点P 1的横坐标为2; 当2x =时,代入21322y x x =-++, ∴32y =,∴点13(2,)2P ;②当BQ 2是对角线时,AP 也是对角线, ∵点B (3,0),点Q 2(0,y ), ∴BQ 2中点的横坐标为32,∵点A 为(1-,0), ∴点P 2的横坐标为4,当4x =时,代入21322y x x =-++, ∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线;∵点A 为(1-,0),点Q 3(0,y ),∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-,当4x =-时,代入21322y x x =-++, ∴212y =-, ∴点P 3的坐标为(4-,212-); 综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【点睛】本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.9.(1)45,45;(2)k =3±3)y 2 【解析】【分析】(1)如图3,连接AC ,则∠ABC=45°;设M 是x 轴的动点,当点M 运动到点O 时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M 为圆心,长度1为半径作圆M ,当圆与直线y=kx 相切时,直线y=kx (k≠0)关于线段EF 的视角为90°,即∠EQF=90°,则MQ ⊥直线OE ,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ 的倾斜角为45°,分别作点Q 、P 作x 轴、y 轴的平行线交于点R ,RQ=RP=1,以点R 为圆心以长度1为半径作圆R ,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q 为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′,1),即可求解.【详解】(1)如图3,连接AC ,则∠ABC =45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=3±;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′31,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y3,将点Q′的坐标代入上式并解得:直线的表达式为:y332【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.10.(1)详见解析;(2)333CD=或3;(3)详见解析.【解析】【分析】(1)只要证明△EAF∽△FEG即可解决问题;(2)如图3中,作DE⊥BA交BA的延长线于E.设AE=a.在Rt△BDE中,利用勾股定理构建方程求出a ,分两种情形构建方程求解即可; (3)①当△AFE ∽△EFC 时,连接BC ,AC ,BD .②当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .③当△AFE ∽△CEF 时,分别求解即可,注意答案不唯一.【详解】解:(1)如图1,∵正方形ABCD 中4AB AD CD ===,90A D ∠=∠=,E 为AD 中点∴2AE ED ==,∵1AF DH ==,∴12AF DE AE CD == ∴AEF DCE ∆∆∽∴AEF DCE ∠=∠,AFE DEC ∠=∠∵//AF DH ,∴四边形AFHD 为平行四边形∴AD FH ,∴AEF EFG ∠=∠,DEC EGF AFE ∠=∠=∠∴AEF EFG ∆∆∽∴EF 为四边形AFGE 的相似对角线.(2)如图2,过点D 作DE BA ⊥,垂足为E ,设AE a =∵120A CBD ∠=∠=,∴60EAD ∠=,∴3DE a =∵2AB =,6BD =∴()22236a a ++=312a -=(负根已经舍弃), ∴31AD =-分为两种情况:①如图3,当ABD BCD ∆∆∽时,AD BD BD CD = ∴()316CD -=,∴333CD =+②如图4,当ABD BDC ∆∆∽时,AB BD BD CD= ∴26CD =,∴3CD = 综上,333CD =+或3(3)①如图5,∵∠FEC=∠A=90°,∠BEF=∠BEC+∠FEC=∠A+∠AEF ,∴AFE BEC ∠=∠,AF EF AF AE EC BE==,∴AFE BEC ∆∆∽,∴90B ∠= 由“一线三等角”得83AF =.②如图,当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .∵△AFE ∽△FEC ,∴∠AFE=∠FEC ,∴AD ∥EC ,∴∠CEB=∠DAB=90°,∵∠OMA=∠AHC=90°,∴四边形AEOM ,四边形AECH 都是矩形,∵OM ⊥AD ,∴AM=MD=3,∴AM=OE=3,∵OE ⊥AB ,∴AE=EB=4,∴2234+,∴CE=AH=8,设AF=x,则FH=8-x,CH=AE=4,由△AEF∽△HFC,可得AFCH=AEFH,∴448xx =-,解得x=4,经检验x=4是分式方程的解,∴AF=4.③如图当△AFE∽△CEF时易证四边形AECF是矩形,AF=EC=8.综上所述,满足条件的AF的长为83或4或8.(答案不唯一)【点睛】本题属于圆综合题,考查正方形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)证明见解析(2)当AM的长为(1﹣)时,四边形EPGQ是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM的长为(1﹣)时,四边形EPGQ是矩形;(3)如图③,连接GE交PQ于O′,∵四边形EPGQ是平行四边形,∴O′P=O′Q,O′G=O′E.过点P作OC的平行线分别交BC、GE于点B′、A′.由△PCF∽△PEG得, =2,∴PA′=A′B′=AB,GA′=GE=OA,∴A′O′=GE﹣GA′=OA.在Rt△PA′O′中,PO′2=PA′2+A′O′2,即=+,又 AB2+OA2=1,∴3PQ2=AB2+,∴OA2+3PQ2=OA2+(AB2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用.12.(1)详见解析;(2)详见解析;【解析】【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥,BD CD ∴=, CBD DCB ∴∠=∠,90DFE EDF ∠+∠=,90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠, 190902DFE AOD ∴-∠=-∠, 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠;()2解:OD BC⊥,∴=,BD CDBE CE=,∴=,BD CD=,OA OD∴∠=∠,ADO OADPA切O于点A,PAO∴∠=,90OAD DAP∴∠+∠=,90∠=∠,PFA DFE∴∠+∠=,PFA ADO90∴∠=∠,PAF PFA∴=.PA PF【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.。
初三九年级上册上册数学压轴题练习(Word 版 含答案)一、压轴题1.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.2.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.3.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.4.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.5.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.6.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径. 7.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.8.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B在原点的右侧),与y 轴交于点C ,3OB OC ==. (1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.9.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).10.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E (3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.11.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.12.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【解析】【分析】(1)由中心对称的性质可得OB=OC=5,点C(﹣a,﹣a﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB,AC,BC的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO=BO=CO,可得△BCD是直角三角形,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,由圆周角定理和角平分线的性质可得∠HBC=∠CDE =45°=∠BDE=∠BCH,可证CH=BH,∠BHC=90°,由两点距离公式可求解.【详解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵点B、C关于原点对称,点B(a,a+1)(a>0),∴OB=OC=5,点C(﹣a,﹣a﹣1),∴5∴a=3,∴点B(3,4),∴点C(﹣3,﹣4);(2)∵点B(3,4),点C(﹣3,﹣4),点A(﹣5,0),∴BC=10,AB=,AC=∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)过定点,理由如下:∵将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如图②,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,∵DE 平分∠BDC , ∴∠BDE =∠CDE =45°,∴∠HBC =∠CDE =45°=∠BDE =∠BCH , ∴CH =BH ,∠BHC =90°, ∵BC =10,∴BH =CH =2,OH =OB =OC =5, 设点H (x ,y ), ∵点H 在第四象限, ∴x <0,y >0,∴x 2+y 2=25,(x ﹣3)2+(y ﹣4)2=50, ∴x =4,y =3, ∴点H (4,﹣3),∴∠BDC 的角平分线DE 过定点H (4,3). 【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.2.(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥, 90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒,BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=, ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-,ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 3.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M 点作轴的垂线与过N 点垂直于轴的直线交于点Q ,则当点P 位于矩形OMQN 内部或边界时,矩形OMQN 是点M ,N ,P 的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x 的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18; ②t=4或t=-1; (2)如图,过M 点作轴的垂线与过N 点垂直于轴的直线交于点Q ,则当点P 位于矩形OMQN 内部或边界时,矩形OMQN 是点M ,N ,P 的最佳外延矩形,且面积最小.∵S 矩形OMQN =OM·ON =6×8=48, ∴点M ,N ,P 的最佳外延矩形面积的最小值为48. 抛物线与轴交于点T (0,5). 令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质. 4.(1)4;(2)2;(3)6002+1). 【解析】【分析】(1)如图①中,证明△EOB≌△FOC即可解决问题;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=(2+1)BD,当BD最大时,AB+BC+BD的值最大.【详解】解:(1)如图①中,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四边形OEBF=S△OBC=14•S正方形ABCD=4,故答案为:4;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=22BQ=52.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三点共线,∵DE=DB,∠EDB=90°,∴BE2BD,∴AB+BC=AB+AE=BE2BD,∴BC+BC+BD2+1)BD,∴当BD最大时,AB+BC+BD的值最大,∵A,B,C,D四点共圆,∴当BD为直径时,BD的值最大,∵∠ADC=90°,∴AC是直径,∴BD=AC时,AB+BC+BD的值最大,最大值=6002+1).【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.5.(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH3﹣13+1.【解析】【分析】(1)在AC上截取AG=BC,连接FA,FG,FB,FC,证明△FAG≌△FBC,根据全等三角形的性质得到FG=FC,根据等腰三角形的性质得到EG=EC,即可证明.(2)在CA上截取CG=CB,连接FA,FB,FC,证明△FCG≌△FCB,根据全等三角形的性质得到FG=FB,得到FA=FG,根据等腰三角形的性质得到AE=GE,即可证明.(3)分点P在弦AB上方和点P在弦AB下方两种情况进行讨论.【详解】解:(1)如图2,在AC上截取AG=BC,连接FA,FG,FB,FC,∵点F是AFB的中点,FA=FB,在△FAG和△FBC中,,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩∴△FAG≌△FBC(SAS),∴FG=FC,∵FE⊥AC,∴EG=EC,∴AE=AG+EG=BC+CE;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,理由:如图3,在CA上截取CG=CB,连接FA,FB,FC,∵点F是AFB的中点,∴FA=FB,FA FB=,∴∠FCG=∠FCB,在△FCG和△FCB中,,CG CBFCG FCBFC FC=⎧⎪∠=∠⎨⎪=⎩∴△FCG≌△FCB(SAS),∴FG=FB,∴FA=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴12232BC AB AC===,,当点P在弦AB上方时,如图4,在CA上截取CG=CB,连接PA,PB,PG,∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,∠PCG=∠PCB,在△PCG和△PCB中,,CG CBPCG PCBPC PC=⎧⎪∠=∠⎨⎪=⎩∴△PCG≌△PCB(SAS),∴PG=PB,∴PA=PG,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2322AH=+,∴31AH =-,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG ∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH ,∴2322CH ,=+ ∴31CH =-,∴()233131AH AC CH =-=--=+, 即:当∠PAB =45°时,AH 的长为31- 或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.6.(1)PA 13O 392)见解析;(3)⊙O 的半径为2或4757 【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=1AB=2,AH=AB•sin60°=2∴HP=BP﹣BH=1,∴在Rt△AHP中,AP∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM=AP,sin60︒2∴⊙O的半径为,3;即PA⊙O的半径为3(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF,在Rt△BFE中,BE5,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ=DN=设QE=x,则PE=x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴PEDN =BPBN,∴2323x -=BP 10, ∴BP =10﹣533x , 在Rt △ABE 与Rt △BPE 中,AB 2+AE 2=BP 2+PE 2,∴16+4x 2=(10﹣533x )2+(23﹣x )2, 解得,x 1=63(舍),x 2=3,∴AE =23,∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或475或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.7.(1)15°;(2)见解析;(3)16【解析】【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=.【详解】(1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠=453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .AN BN =AON BON ∴∠=∠,ON AB ⊥//OD AB90DON ︒∴∠=OM ON =OMN ONM ∴∠=∠180OMN ONM MOD DON ︒∠+∠+∠+∠= 290MOD DMO ︒∴∠+∠=(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E. 设AM a =,BM b =.四边形AMBN 是圆内接四边形180A MBN ︒∴∠+∠=180NBM MBN '︒∠+∠=A NBM '∴∠=∠AN BN =AN BN ∴=(SAS)AMN BM N '∴≅MN NM '∴=,BM AM a '==, NE MM '⊥于点E.11()22ME EM MM a b ''∴===+, ()2222ME BN BE MN +-=22211()()1622a b BN b a ⎡⎤⎡⎤∴++--=⎢⎥⎢⎥⎣⎦⎣⎦化简得216ab NB +=, 16AM MB AN NB ∴⋅+⋅=【点睛】本题考查了圆的综合题,涉及的知识点有圆周角定理和垂径定理以及圆内接四边形的性质,综合性质较强,能够做出相应的辅助线是解题的关键.8.(1)2y x 2x 3=-++;(2)点D 的坐标为(14),或(2)3,;(3)点P 的坐标为:(14),或17()24-,或13209()24--,或. 【解析】【分析】(1)由3OB OC ==及图像可得B 、C 两点坐标,然后利用待定系数法直接进行求解即可;(2)由题意易得35COF COD S S =,进而得到点D 、F 横坐标之间的关系为53D F x x =,设F 点横坐标为3t ,则D 点横坐标为5t ,则有直线BC 的解析式为3y x =-+,然后可直接求解;(3)分∠PBE 或∠PEB 等于2∠OBE 两种情况分别进行求解即可.【详解】解:(1)3OB OC ==,则:()()3003B C ,,,, 把B C 、坐标代入抛物线方程,解得抛物线方程为:2y x 2x 3=-++①;(2)∵32COF CDF S S =△△::, ∴35COF COD S S =,即:53D F x x =, 设F 点横坐标为3t ,则D 点横坐标为5t , 点F 在直线BC 上,而BC 所在的直线表达式为:3y x =-+,则33(3)F t t -,, 则直线OF 所在的直线表达式为:3313t t y x x t t--==, 则点55(5)D t t -,, 把D 点坐标代入抛物线解析式,解得:15t =或2 5, 则点D 的坐标为(14),或(2)3,; (3)①当2PBE OBE ∠=∠时,当BP 在x 轴上方时,如图2,设1BP 交y 轴于点E ', ∴12PBE OBE ∠=∠ , ∴E BO EBO ∠'=∠ ,又60E OB EBO BO BO ∠'=∠=︒=, ,∴()E BO EBO AAS '≌ ,∴32EO EO ==, ∴点3(20)E ',,直线1BP 过点BE '、,则其直线方程为:1322y x =-+②, 联立①②并解得:12x =- , 故点P 1的坐标为17()24-,;当BP 在x 轴下方时, 如图2,过点E 作//EF BE '交2BP 于点F ,则FEB EBE ∠=∠',∴222E BE OBE EBP OBE ∠'=∠∠=∠, ,∴FEB EBF ∠=∠ ,∴FE BF = ,直线EF 可以看成直线BE '平移而得,其k 值为12-, 则其直线表达式为:1322y x =-- ,设点13()22F m m --,,过点F 作FH y ⊥轴交于点H ,作BK HF ⊥于点K , 则点13()202H m --,,13()232K m --,, ∵EF BF =,则22FE BF =, 即:()2222331313()()22222m m m m +-++=-++, 解得:52m =, 则点511()24F -,, 则直线BF 表达式为:113322y x =-…③, 联立①③并解得:132x =-或3(舍去3), 则点213209()24P --,; ②当2PEB OBE ∠=∠时,当EP 在BE 上方时,如图3,点E '为图2所求,设BE '交3EP 于点F ,∵2EBE OBE ∠'=∠,∴3EBE P EB ∠'=∠ ,∴FE BF = ,由①知,直线BE '的表达式为:1322y x =-+, 设点13()22F n n -+,,13()232K n -+,, 由FE BF =,同理可得:12n =, 故点15()24F ,,则直线EF 的表达式为:11322y x =-④, 联立①④并解得:1n =或92- (舍去负值), ∴34(1)P , ; 当EP 在BE 下方时,同理可得:x =舍去负值),故点458(417P +-+,.故点P 的坐标为:(14),或17()24-,或13209()24--,或(54178+-+,. 【点睛】 本题主要考查二次函数的综合,关键是熟练掌握二次函数的性质与一次函数的性质,利用数形结合及分类讨论思想进行求解.9.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++ 【解析】【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标; ②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解.【详解】解:(1)因为直线交抛物线于B 、C 两点,∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2);当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B、C 的坐标分别代入抛物线,得:2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上, ∴∠PMC 为固定角且不等于90,∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴,∴点P 的纵坐标为﹣2, 将y p =-2,代入抛物线方程可得: 2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去),∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°,∴∠OBC=∠OCD ,又∵∠BOC=∠COD=90°,∴BOC ∽COD (AAA ),∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4,∴OD=1,又∵D 点在X 的负半轴∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数),将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2, 联立直线PC 和抛物线方程,得:22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10,点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10);②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++. 【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等. 10.(1)点D 的坐标为(3,12),抛物线的解析式为24 3?1?3y x x =-++;(2)①31n m =+;②2334S m m =-+,S 的最大值为93 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得3m =时,2n FB ==,23m =时,3n FD ==,代入n km b =+,即可求解;②求得NA 333m =-,过N 作NQ ⊥EA ,得到NQ=12NA=3326m -,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,OA=2222AB OB 213-=-=,∠ABO=60︒,∴点A 的坐标为(3,0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB 为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD 交OA 于H ,则CH ⊥OA ,∴DH=12OD=12,OH=2,CH=CD+DH=32, ∴点D 的坐标为12),点C 的坐标为32), 将A0) , C 的坐标为32)代入抛物线的解析式y = ax 2 + bx + 1,得:31033142a a ⎧+=⎪⎨+=⎪⎩,解得:43a b ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为24 ?1?3y x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴m =3n FD ==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:13n m =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴213333224S m m m m ⎛⎫=-=-+ ⎪ ⎪⎝⎭, ∵30-<, 当333432m =-=⎛⎫⨯- ⎪⎝⎭时,在023m ≤≤范围内,∴133********S ⎛⎫=⨯⨯-⨯= ⎪ ⎪⎝⎭最大. 【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.11.(1)t =3;(2)P (35t +2,45t ﹣4);(3)t 的值为209秒或4秒或16秒或1609秒 【解析】【分析】(1)如图1,过点C 作CP ⊥OA ,交x 轴于点P .就可以求出OP 的值,由勾股定理就可以求出的OP 值,进而求出结论;(2)t <10时,P 在OA 或AB 上运动,所以分两种情况:①当0≤t≤5时,如图1,点P 在OA 上,OP=t ,可得P 的坐标;②当5<t <10时,如图2,点P 在AB 上,构建直角三角形,根据三角函数定义可得P 的坐标;(3)设切点为G ,连接PG ,分⊙P 与四边相切,其中P 在AB 和BC 时,与各边都不相切,所以分两种情况:①当P 在OA 上时,根据三角函数列式可得t 的值;②当P 在OC 上时,同理可得结论.【详解】(1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC==,4455CP CP 即=,=, 在Rt △OPC 中,OC =5,PC =4,则OP =3, ∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上, ∴P (t ,0);当5<t <10时,如图2,点P 在AB 上, 过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P 与直线AB 相切,∵OC ∥AB ,∴∠AOC =∠OAG ,∴sin ∠AOC =sin ∠OA 45PG G AP==,5-t5∴209t=;⊙P与BC相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG⊥BC,∵BC∥AO,∴∠AOC=∠GCP,∴sin∠AOC=sin∠GC45PGPPC==,∵OP=PG=20﹣t,∴42051tt-=-,9综上所述,t 的值2016041699为秒或秒或秒或秒 【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.12.(1)12;(2)tan EAD ∠=13;(3)51DE CD -=. 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,DF=5x ,得到DP=25x ,求出PF=35x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,OC=5x ,可得PC=OC-OP=5x x -,根据△DPO ∽△FPC ,得到514OD FC +=,进而得到5151CF CD -==+,即可得到结论. 【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =,AF OD ∴=,AD DC =,90FAD ODC ∠=∠=︒,FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒, 90CPD ∴∠=︒,90FAO FPO ∠=∠=︒,∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 5OP ∴=,25PD =, 5DF a =,35PF ∴=,1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=, ∴ 15y x +=15x -(舍弃), ∴ 15y x +=, ∴ 551235DE y CD x y ===++.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.。
期末考试化学冲刺压轴题目(一) 班级: 姓名: 评价:单项选择( )1、右图是A 、B 、C 三种物质的溶解度曲线。
下列叙述错误的是A .t 1℃时,三种物质的溶解度大小顺序为A<B<CB .t 2℃时,A 、B 两种物质溶液的溶质的质量分数一定相等C .t 3℃时C 的饱和溶液降温到t 1℃,变成不饱和溶液D .若要将组成在N 点的A 溶液转变为M 点的A 溶液,可以采取恒温蒸发溶剂的方法 ( )2、某发电厂废气处理的新工艺反应原理为:CH 4十2NO 2= N 2+X +2H 2O ,则X 的化学式为A .COB .CO 2C .O 2D .C( )3、“低碳生活”是指生活作息时所耗用的能量要尽量少,减低二氧化碳排放量,保护环境。
下列做法符合“低碳生活”理念的是A .节约用电B .大量砍伐森林C .提倡使用一次性木筷D .尽量使用私家车等交通工具( )4、配制一定溶质质量分数的氯化钠溶液,下列操作错误..的是A .B .C .D .不定项选择( )5、下列关于化学现象的描述,错误..的是 A .木炭在空气中燃烧,发出白光 B .B 将紫色石蕊试液滴入稀盐酸中,变成红色C .红磷在空气中燃烧产生大量白烟D .铁和硫酸反应,溶液变为蓝色( )6、下图是某化学反应的微观模拟示意图,下列说法不正确...的是 A .反应前物质的组成是混合物 B .反应后生成两种物质C .该化学反应是置换反应D .该反应的本质是原子的重新组合 /g 0A BC N M t t( )7、右图为甲乙两物质的溶解度曲线,下列说法不.正确..的是 A .甲的溶解度大于乙的溶解度B .t 1℃时,甲、乙两物质饱和溶液中溶质质量分数相等C .t 2℃时,甲物质饱和溶液中溶质为30gD .提纯甲乙混合物(甲多)中的甲,可用冷却热饱和溶液结晶 8、SiO 2作为牙膏的高档摩擦剂具有洁齿能力强、理化性能好等特点,适于生产高档透明牙膏。
九年级数学上册数学压轴题练习(Word 版 含答案)一、压轴题1.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.2.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点 (1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.3.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.4.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,连结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 5.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.6.如图,已知在矩形ABCD 中,AB =2,BC =3P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ 3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.7.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由. 8.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).9.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.10.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.11.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.12.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】 【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可. (2) 连接OA , OB ,OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证. 【详解】 解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=, o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ , 在☉0中,AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C 在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴ 【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)b=3;(2)点M 坐标为7(1,)3;(3)93(,)42-或3654(,)1313【解析】 【分析】(1)首先在一次函数的解析式中令x=0,即可求得D 的坐标,则OD=b ,则E 的坐标即可利用b 表示出来,然后代入一次函数解析式即可得到关于b 的方程,求得b 的值;(2)首先求得四边形OAED 的面积,则△ODM 的面积即可求得,设出M 的横坐标,根据三角形的面积公式即可求得M 的横坐标,进而求得M 的坐标;(3)分两种情况进行讨论,①四边形OMDN 是菱形时,M 是OD 的中垂线与DE 的交点,M 关于OD 的对称点就是N ;②四边形OMND 是菱形,OM=OD ,M 在直线DE 上,设出M 的坐标,根据OM=OD 即可求得M 的坐标,则根据OD ∥MN,且OD=MN 即可求得N 的坐标. 【详解】(1)在23y x b =-+中,令x=0,解得y=b , 则D 的坐标是(0,b),OD=b , ∵OD=BE ,∴BE=b ,则点E 坐标为(3,4-b ),将点E 代入23y x b =-+中,得:4-b=2+b,解得:b=3; (2)如图,∵OAED S 四边形=11()(31)3622OD AE OA +=⨯+⨯=, ∵三角形ODM 的面积与四边形OAEM 的面积之比为1:3, ∴13=42ODM OAED S S ∆=四边形 设M 的横坐标是a ,则13322a ⨯=, 解得:1a =, 将1x a ==代入233y x =-+中,得: 27333y =-⨯+=则点M 坐标为7(1,)3;(3)依题意,有两种情况:①当四边形OMDN 是菱形时,如图(1),M 的纵坐标是32,把32y =代入233y x =-+中,得: 23332x -+=,解得:94x =, ∴点M 坐标为93(,)42, 点N 坐标为93(,)42-;②当四边形OMND 是菱形时,如图(2),OM =OD =3, 设M 的坐标2(,3)3m m -+, 由OM=OD 得:222(3)93m m +-+=, 解得:3613m =或m=0(舍去), 则点M 坐标为3615(,)1313, 又MN ∥OD ,MN=OD=3, ∴点N 的坐标为3654(,)1313, 综上,满足条件的点N 坐标为93(,)42-或3654(,)1313.【点睛】本题考查一次函数与几何图形的综合,涉及待定系数法、图形的面积计算、菱形的性质、方程等知识,解答的关键是认真审题,找出相关知识的联系点,运用待定系数法、数形结合法、分类讨论法等解题方法确定解题思路,进而推理、探究、发现和计算.3.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】 【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP . 【详解】解:(1)∵:3:4AQ AB =,3AQ x = ∴4AB x =∴在Rt ABQ △中,5BQ x ==∵OD m ⊥,m l ⊥ ∴//OD l ∵OB OQ = ∴122AH BH AB x === ∴2CD x = ∴332FD CD x == (2)∵点P 关于点A 的对称点为Q ∴3AP AQ x == ∵4PC = ∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒∴//OM AB∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形∴13x =,25x =-(不合题意,舍去)∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9.(3)若矩形DEGF 是正方形,则DE DF =①点P 在A 点的右侧时,如图:∴243x x +=∴4x =∴312AP x ==②点P 在A 点的左侧时I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x =∴473x x -=∴25x = ∴635AP x x ==ii.当4273x ≤<时,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =(不合题意,舍去)II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.4.(1)30°;(2)EF=;(3)CO 的长为或时,△PEB 为等腰三角形.【解析】试题分析:(1)利用圆周角定理以及三角形内角和定理得出即可;(2)首先证明△HBO ≌△COD (AAS ),进而利用△COD ∽△CBF ,得出比例式求出EF 的长;(3)分别利用①当PB=PE ,不合题意舍去;②当BE=EP ,③当BE=BP ,求出即可. 试题解析:(1)如图1,连接EO ,∵∴∠BOE=∠EOD ,∵DO ∥BF ,∴∠DOE=∠BEO ,∵BO=EO,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)如图1,作HO⊥BE,垂足为H,∵在△HBO和△COD中,∴△HBO≌△COD(AAS),∴CO=BH=a,∴BE=2a,∵DO∥BF,∴△COD∽△CBF,∴∴,∴EF=;(3)∵∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,∴∠COD=∠DOE,∴C关于直线OD的对称点为P在线段OE上,若△PEB为等腰三角形,设CO=x,∴OP=OC=x,则PE=EO-OP=4-x,由(2)得:BE=2x,①当PB=PE,不合题意舍去;②当BE=EP,2x=4-x,解得:x=,③当BE=BP,作BM⊥EO,垂足为M,∴EM=PE=,∴∠OEB=∠COD,∠BME=∠DCO=90°,∴△BEM∽△DOC,∴,∴,整理得:x2+x-4=0,解得:x=(负数舍去),综上所述:当CO的长为或时,△PEB为等腰三角形.考点:圆的综合题.5.(1)45°+α;(2)证明见解析;(3)2BF+CF.【解析】【分析】(1)过点A作AG⊥DF于G,由轴对称性质和正方形的性质可得AE=AD,∠BAP=∠EAF,根据等腰三角形“三线合一”的性质可得∠EAG=∠DAG,即可得∠FAG=12∠BAD=45°,∠DAG+∠BAP=45°,根据直角三角形两锐角互余的性质即可得答案;(2)由(1)可得∠FAG=12∠BAD=45°,由AG⊥PD可得∠APG=45°,根据轴对称的性质可得∠BPA=∠APG=45°,可得∠BFD=90°,即可证明BF⊥DF;(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,由∠BFD=∠BCD=90°可得B、F、C、D四点共圆,根据圆周角定理可得∠FBC=∠FDC,∠DFC=∠DBC=45°,根据平行线的性质可得∠FDC=∠DCH,根据角的和差关系可得∠ABF=∠BCH,由轴对称性质可得BF=EF,可得△BEF是等腰直角三角形,即可得∠BEF=45°,2BF,即可证明∠BEF=∠DFC,可得BH//FC,即可证明四边形EFCH是平行四边形,可得EH=FC,EF=CH,利用等量代换可得CH=BF,利用SAS可证明△ABF≌△BCH,可得AF=BH,即可得AF、BF、CF的数量关系.【详解】(1)过点A作AG⊥DF于G,∵点B关于直线AF的对称点为E,四边形ABCD是正方形,∴AE=AB,AB=AD=DC=BC,∠BAF=∠EAF,∴AE=AD,∵AG⊥FD,∴∠EAG=∠DAG,∴∠BAF+∠DAG=∠EAF+∠EAG,∵∠BAF+∠DAG+∠EAF+∠EAG=∠BAD=90°,∴∠BAF+∠DAG=∠GAF=45°,∴∠DAG=45°-α,∴∠ADF=90°-∠DAG=45°+α.(2)由(1)得∠GAF=45°,∵AG⊥FD,∴∠AFG=45°,∵点E、B关于直线AF对称,∴∠AFB=∠AFE=45°,∴∠BFG=90°,∴BF⊥DF.(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,∵∠BFD=∠BCD=90°,∴B、F、C、D四点共圆,∴∠FDC=∠FBC,∠DFC=∠DBC=45°,∵CH//FD,∴∠DCH=∠FDC,∴∠FBC=∠DCH,∵∠ABC=∠BCD=90°,∴∠ABC+∠FBC=∠BCD+∠DCH,即∠ABF=∠BCH,∵点E、B关于直线AF对称,∴BF=EF,∵∠BFE=90°,∴△BEF是等腰直角三角形,∴∠BEF=45°,2BF,∴∠BEF=∠DFC,∴FC//BH,∴四边形EFCH是平行四边形,∴EH=FC,CH=BF,在△ABF和△BCH中,AB BCABF BCH BF CH=⎧⎪∠=∠⎨⎪=⎩,∴2BF+CF.【点睛】本题考查正方形的性质、等腰三角形的性质、轴对称的性质、圆周角定理、四点共圆的判定及全等三角形的判定与性质,正确得出B、F、C、D四点共圆并熟练掌握圆周角定理及轴对称的性质是解题关键.6.(1)637;(2)BE=433;菱形与圆重叠部分的面积为833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即∴BT=33 7,∴BE=2BT=637.(2)设菱形BPDQ的边长为x,则AQ=23﹣x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(23﹣x)2=x2,解得x=43 3.∵四边形BPDQ为菱形,∴BP=DP=43 3,又CP=BC-BP=233,即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E、Q重合,∴BE 43 3∴菱形与圆重叠部分面积即为菱形的面积,∴S菱形833.【点睛】本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识.7.(1)y=﹣14x2+x+3,顶点B的坐标为(2,4);(2)(i)点E的坐标为(85,3)或(125,3);(ii)存在;当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【解析】【分析】(1)由题意得出21441,43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩,解得1,3,bc=⎧⎨=⎩,得出抛物线的函数表达式为:y=﹣14x2+x+3=﹣14(x﹣2)2+4,即可得出顶点B的坐标为(2,4);(2)(i)求出C(0,3),设点E的坐标为(m,3),求出直线BE的函数表达式为:y=12m--x+462mm--,则点M的坐标为(4m﹣6,0),由题意得出OC=3,AC=4,OM=4m﹣6,CE=m,则S矩形ACOD=12,S梯形ECOM=15182m-,分两种情况求出m的值即可;(ii)过点F作FN⊥AC于N,则NF∥CG,设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,证△EFN≌△DGO(ASA),得出NE=OD=AC=4,则AE=NC=﹣a,证△ENF∽△DAE,得出NF NEAE AD=,求出a=﹣43或0,当a=0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【详解】(1)∵抛物线y=﹣14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴21441, 43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩解得1,3, bc=⎧⎨=⎩∴抛物线的函数表达式为:y=﹣14x2+x+3,∵y=﹣14x2+x+3=﹣14(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣14x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则24,3, k nmk n+=⎧⎨+=⎩解得:1,246,2kmmnm-⎧=⎪⎪-⎨-⎪=⎪-⎩,∴直线BE的函数表达式为:y=12m--x+462mm--,令:y=12m--x+462mm--=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S矩形ACOD=OC•AC=3×4=12,S梯形ECOM=12(OM+EC)•OC=12(4m﹣6+m)×3=15182m-,分两种情况:①S ECOMS ACOD梯形矩形=14,即1518212m-=14,解得:m=85,∴点E的坐标为:(85,3);②S ECOMS ACOD梯形矩形=34,即1518212m-=34,解得:m=125,∴点E的坐标为:(125,3);综上所述,点E的坐标为:(85,3)或(125,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,∠NEF=∠ODG,EF=DG,∠EFN=∠DGO,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴NE NFAD AE=,即43=214a aa--,整理得:34a2+a=0,解得:a=﹣43或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE =NC =﹣a =43, ∴当点G 落在y 轴上的同时点F 恰好落在抛物线上,此时AE 的长为43.【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型.8.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++ 【解析】【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标;②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解.【详解】解:(1)因为直线交抛物线于B 、C 两点,∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2);当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得: 2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上,∴∠PMC 为固定角且不等于90,∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴,∴点P 的纵坐标为﹣2,将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去),∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°,∴∠OBC=∠OCD ,又∵∠BOC=∠COD=90°,∴BOC ∽COD (AAA ),∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4,∴OD=1,又∵D 点在X 的负半轴∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数),将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2,联立直线PC 和抛物线方程,得:22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10,点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10); ②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++.【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等.9.(1)214y x x =-;(2)①122y x =-+,②1,见解析,定值为1 【解析】【分析】(1)利用待定系数法把点(4,0)、(2,3)-代入解析式,再结合抛物线对称轴方程得到三元一次方程组,解方程组即可.(2)①先求出平移后的抛物线解析式,设出直线MA 的解析式1y kx =-,再联立抛物线解析式2114y kx y x =-⎧⎪⎨=⎪⎩,得到21104x kx -+=,令210k ∆=-=,求出k 的值,得出APM ∆为等腰直角三角形,运用APM ∆与BQO ∆相似得出90BQO APM ∠=∠=,故AB :y mx n =+,则2144m n m n +=⎧⎨-+=⎩即可求出AB 函数关系式. ②当M 在y 轴上时,m=0,再根据图像对称性可得A 、B 两点关于y 轴对称,得出a ,b 的关系,即可求出答案;当M 不在与轴上时,设MA :111y k x k m =--,联立抛物线解析式112114y k x k m y x =--⎧⎪⎨=⎪⎩,得出2114440x k x k m -++=,令212=16(1)0k k m ∆--=,同理设出MB ,令22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,得出12k k m +=,即可求出答案.【详解】解:(1)设2y=ax +bx+c a (≠0),把点(4,0)、(2,3)-代入 ∵对称轴为x=2 ∴164042322a b c a b c b a ⎧⎪++=⎪-+=⎨⎪⎪-=⎩解得1410a b c ⎧=⎪⎪=-⎨⎪=⎪⎩∴抛物线解析式214y x x =-. (2)①(0,1)M -,平移后抛物线214y x =设MA :1y kx =- 则联立2114y kx y x =-⎧⎪⎨=⎪⎩,21104x kx -+= 210k ∆=-=1k ∴=±又由图,A 在y 轴右侧故1k =,(2,1)A2AP PM ∴==,APM ∆为等腰直角三角形又APM ∆与BQO ∆相似∴△BQO 为等腰直角三角形,设B (﹣x ,x ),带入抛物线解析式得:214x x = 解得x=4或x=0(舍去)∴B (﹣4,4)设AB :y mx n =+,把(2,1)A ,B (﹣4,4)带入得: 则2144m n m n +=⎧⎨-+=⎩,122m n ⎧=-⎪⎨⎪=⎩ ∴AB 解析式为:122y x =-+. ②(i )∵214y x =关于y 轴对称,M 在y 轴上,且MA ,MB 与抛物线只有一个交点 ∴A 、B 两点关于y 轴对称,∴a=﹣b ∴m a m b --=0+b 0b-=1, 故答案是:1;(ii )设MA :111y k x k m =--, 则联立112114y k x k m y x =--⎧⎪⎨=⎪⎩, 2114440x k x k m -++=,此方程仅一个根,故11422k a k ==, 且212=16(1)0k k m ∆--=,同理设MB :221y k x k m =--,亦有22b k =,22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,12k k m +=,()111122122m k m k m a m b m m k k m---∴===----, 即m a m b --为一定值1, ∴当点M 不在y 轴上时,m a m b--为一个定值1. 【点睛】 本题考查的是二次函数综合题型,二次函数待定系数法求函数解析式,二次函数与一元二次方程的综合应用,二次函数与相似三角形的综合应用,解题关键在于理解题意,正确分析题目,运用数形结合思想进行解题.10.(1) 见解析;(2) 2,2 ;(3)0或222-或222x <<.【解析】【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个;()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=, 综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(1)证明见解析;(2)①215(3)21029y x =【解析】【分析】 ()1由圆内接四边形性质知ABC CDE ∠∠=,由AB AC =知ABC ACB ∠∠=,从而得ADB ACB ABC CDE ∠∠∠∠===;()2①由BAD DCE ∠∠=,ADB CDE ∠∠=可证ADB ∽CDE.从而得AD DB CD DE =; ②连接AO 并延长交BD 于点M ,连接CM ,证MAF ≌DAF 得MF DF =,据此知BM CM CD 3===,MF DF 2==,求得22CF CD DF 5=-=定义可得答案;()3证ABD ∽AEB 得2AB AD AE.=⋅证ABD ∽CED 得BD CD AD DE.⋅=⋅从而得2ABC BCD 111S S AB AC sin BAC BD CD sin BDC x sin BAC 222∠∠∠-=⋅⋅-⋅⋅=,再由5tan ABC tan CDE 2∠∠==,可设BM 2a =,知AM 5a =,AB 29a =,由面积法可得BN a 29=,即20sin BAC 29∠=,据此得出答案. 【详解】解:()1四边形ABCD 是圆O 的内接四边形, ABC 180ADC CDE ∠∠∠∴=-=.AB AC =,ABC ACB ∠∠∴=.ADB ACB ABC CDE ∠∠∠∠∴===;()2①四边形ABCD 内接于圆,BAD 180BCD DCE ∠∠∠∴=-=.又ADB CDE ∠∠=,ADB ∴∽CDE .AD DB CD DE∴=, AD DE BD CD 7321∴⋅=⋅=⨯=;②连接AO 并延长交BD 于点M ,连接CM ,AM 平分BAC ∠,AM BC ∴⊥,CAD CBD 90ACB MAF ∠∠∠∠∴==-=. MAF ∴≌()DAF ASA .MF DF ∴=,即AC 是线段MD 的中垂线.BM CM CD 3∴===,MF DF 2∴==,在Rt CDF 中,2222CF CD DF 325=--=, BF tan ACB 5CF 5∠∴===()3BAD EAB ∠∠=,ADB ACB ABE ∠∠∠==,ABD ∴∽AEB ,AB AD AE AB∴=,即2AB AD AE =⋅. CDE ADB ∠∠=,DCE BAD ∠∠=ABD ∴∽CED , BD AD DE CD∴=,即BD CD AD DE ⋅=⋅. ABC BCD 11S S AB AC sin BAC BD CD sin BDC 22∠∠-=⋅⋅-⋅⋅, ()1sin BAC AD AE AD DE 2∠=⋅-⋅. 21x sin BAC 2∠=,又5tan ABC tan CDE 2∠∠==, 如图2,设BM 2a =,则AM 5a =,AB 29a =, 由面积法可得BN 29=,即20sin BAC 29∠=, 22ABC BCD 12010S S x x 22929y ∴-==⨯=. 【点睛】本题是圆的综合问题,解题的关键是掌握圆内接四边形的性质、圆周角定理、相似三角形和全等三角形的判定与性质、等腰三角形的性质及三角函数的应用等知识点.12.(1)详见解析;(2)详见解析;【解析】【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论;()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥,BD CD ∴=,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=,90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠, 190902DFE AOD ∴-∠=-∠, 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=,OA OD =,ADO OAD ∴∠=∠,PA 切O 于点A ,90PAO ∴∠=, 90OAD DAP ∴∠+∠=, PFA DFE ∠=∠,90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠,PA PF ∴=.【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.。
初三上册数学压轴题
一、在直角三角形ABC中,角C为直角,若AC=3,BC=4,则AB的长度为:
A. 5
B. 6
C. 7
D. 8(答案)A
二、已知二次函数y=ax2+bx+c的图像经过点(1,0),(0,3),且对称轴为x=2,则a的值为:
A. 1
B. -1
C. 2
D. -2(答案)B
三、圆O的半径为5,点P到圆心O的距离为3,则过点P的弦长不可能是:
A. 4
B. 6
C. 7
D. 8(答案)D
四、若一元二次方程x2-4x+m=0有两个相等的实数根,则m的值为:
A. 2
B. 3
C. 4
D. 5(答案)C
五、在平行四边形ABCD中,AB=5,AD=8,角A的平分线交BC于点E,则BE的长为:
A. 3
B. 4
C. 5
D. 6(答案)A
六、已知反比例函数y=k/x的图像经过点(2,3),则当x=-3时,y的值为:
A. -2
B. -1
C. 1
D. 2(答案)A
七、若正比例函数y=kx与反比例函数y=1/x的图像有交点,则k的取值范围为:
A. k>0
B. k<0
C. k≠0
D. k=0(答案)C
八、在梯形ABCD中,AD平行BC,AB=DC,AD=3,BC=7,点E、F分别在AD、BC上,且EF 平行AB,若四边形ABFE的面积与四边形CDFE的面积之比为3:4,则EF的长为:
A. 3
B. 3.5
C. 4
D. 4.5(答案)C。
比例线段(四大题型总结)(压轴题专项讲练)【题型一:比例的性质】1.(24-25九年级上·上海·阶段练习)已知线段a 、b 、c 、d 、m ,如果ab =cd ,m ≠0,那么下列各式中成立的是( )A =B .a―m b=c―m dC .a+m b+m =cdD .a 2b =c 2d2.(23-24九年级上·河南郑州·期末)已知2ab+c =2ba+c =2ca+b =k ,则k =( )A .1B .±1C .1或―2D .23.(23-24九年级上·辽宁丹东·阶段练习)已知ab =cd =ef =5,且b +d +f ≠0,若a +c +e =30,则b +d +f =.4.(2024·四川南充·模拟预测)已知实数a 、b 、c 满足1a+1=2b+2=3c―3,则a ―2b +c 的值为 .5.(24-25九年级上·全国·单元测试)根据下列条件求x:y:z 的值.(1)x:y =3:7,y:z =4:7;(2)x:y =13:12,x:z =0.3:0.2.【题型二:比例线段】6.(23-24九年级上·广东佛山·阶段练习)下列各组中的四条线段a ,b ,c ,d 是成比例线段的是( )A .a =1,b =1,c =1,d =5B .a =1,b =c =d =8C .a =2,b =c =d =D .a =b =3,c =2,d =87.(23-24九年级上·四川成都·阶段练习)线段a 、b 、c 、d 成比例,其中b =3cm ,c =2cm ,d =6cm ,则a =cm .8.(24-25九年级上·全国·单元测试)已知线段a=0.3m,b=60cm,c=12dm.(1)求线段a与线段b的比和线段b与线段c的比;(2)如果线段a、b、c、d成比例,求线段d的长.(3)在比例式a:b=b:c或b2=ac中,我们把b称为a、c的比例中项,那么本题中b是a和c的比例中项吗?为什么?9.(23-24九年级上·山西晋中·阶段练习)如图,一块矩形绸布的长AB=a m,宽AD=2m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AE AD =ADAB,那么a的值应当是多少?10.(23-24九年级上·江苏无锡·阶段练习)如图,已知点D ,E 分别在边AB ,AC 上,BE ,CD 交于点O ,ADAB =DE BC =DOCO,AB =7,DB =4,BC =9,CD =10.(1)求DE ,CO 的长;(2)若△ABC 的面积为70,求△BOC 的面积.【题型三:黄金分割】11.(24-25九年级上·河北秦皇岛·阶段练习)若点C 是线段AB 的黄金分割点,且AB =2,则AC =( )A 1B .3―CD 1或312.(23-24九年级上·上海长宁·期末)已知点C 在线段AB 上,且满足AC 2=BC ⋅AB ,那么下列式子成立的是( )A .ACBC =B .ACAB =C .BCAB =D .BCAC =13.(23-24九年级上·四川成都·阶段练习)在欧几里得的《几何原本》中给出一个找线段的黄金分割点的方法.如图所示,以线段AB 为边作正方形ABCD ,取AD 的中点E ,连接BE ,延长DA 至F ,使得EF =BE ,以AF 为边作正方形AFGH ,则点H 即是线段AB 的黄金分割点.若AD =20,记正方形AFGH 的面积为S 1,矩形BCIH 的面积为S 2,则S 1与S 2的和为.14.(2024·四川乐山·一模)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MGMN =GNMG =“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为 .15.(23-24八年级下·湖北武汉·0.618)的矩形称为黄金矩形.黄金矩形给我们以协调、匀称的美感.世界上很多著名建筑,为了取得最佳的视觉效果,都采用了黄金矩形的设计,如希腊帕特农神庙等.(1)如图,经测量,帕特农神庙的面宽约为31米,那么它的高度大约是______米.(结果取整数)实验操作:折一个黄金矩形第一步,在矩形纸片的一端利用图1的方法折出一个正方形MNCB ,然后把纸片展平;第二步:如图2,将正方形折成两个相等的矩形,再将其展平;第三步:折出内侧矩形的对角线AB ,并将AB 折到图3所示的AD 处;第四步,展平纸片,按照所得的点D 折出DF ,矩形BCDF 就是黄金矩形(如图4).问题思考:(2)图4中是否还存在其它黄金矩形,请判断并说明理由;(3)以图3中的折痕AQ 为边,构造黄金矩形,若MN =2,则这个矩形的面积是______(直接写出结果).【题型四:平行线分线段成比例】16.(2023·黑龙江哈尔滨·模拟预测)如图,在△ABC 中,DE∥BC ,DF∥AC ,则下列比例式中正确的是( )A .BDAD =DF FCB .DE FB =AEACC .BF FC =CEAED .ADFC =AB AC17.(23-24九年级下·江苏南京·自主招生)如图,在梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 中点,试判断BA 、NM 、CD 延长线是否交于一点,并证明.18.(24-25九年级上·上海·假期作业)已知如图,点D 是ΔABC 边BC 上一点,且BD:DC =2:3,过点C 任作一条直线与AB 、AD 分别交于点F 和E ,求证:AEED =5AF3BF .19.(23-24九年级下·广东深圳·开学考试)如图,将正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P ,过点P 作MN∥BC ,交BF 于点Q .若QP =12BC ,则FQQB =.20.(23-24九年级上·山西太原·阶段练习)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.将小正方形对角线EF 双向延长,分别交边AB ,和边BC 的延长线于点G ,H .若大正方形与小正方形的面积之比为5,GH =,则大正方形的边长为.。
初三九年级上册上册数学压轴题专题练习(解析版)一、压轴题1.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.2.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围. 3.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).4.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.5.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得DAC AED∠=∠.(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,①求证: CA CF=;②若⊙O的半径为3,BF=2,求AC的长.6.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.7.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q 的纵坐标;(用含m 的代数式表示) ②若点P 是⊙A 上一动点,求PQ 的最小值;(2)若点A 从原点O 出发,以1个单位/秒的速度沿折线OBC 运动,到点C 运动停止,⊙A 随着点A 的运动而移动.①点A 从O→B 的运动的过程中,若⊙A 与直线BC 相切,求t 的值;②在⊙A 整个运动过程中,当⊙A 与线段BC 有两个公共点时,直接写出t 满足的条件. 8.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.9.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).10.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值. 11.如图,扇形OMN 的半径为1,圆心角为90°,点B 是上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q . (1)当点B 移动到使AB :OA=:3时,求的长;(2)当点B 移动到使四边形EPGQ 为矩形时,求AM 的长. (3)连接PQ ,试说明3PQ 2+OA 2是定值.12.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】 【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可. (2) 连接OA , OB ,OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证. 【详解】 解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=, o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ , 在☉0中,AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C 在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴ 【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)22+;(2)63103t ≤≤-或103165-≤≤-3)325m ≤-或0m ≥ 【解析】 【分析】(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,根据只有一个交点可求出b ,再联立求出P 的坐标,从而判断出PQ 平分∠AOB ,再利用直线1l 表达式求A 、B 坐标证明OA=OB ,从而证出PQ 即为最小距离,最后利用勾股定理计算即可;(2)过点T 作TH ⊥直线2l ,可判断出T 上的点到直线2l的最大距离为TH +后根据最大距离的范围求出TH 的范围,从而得到FT 的范围,根据范围建立不等式组求解即可;(3)把点P 坐标带入表达式,化简得到关于a 、b 的等式,从而推出直线3l 的表达式,根据点E 的坐标可确定点E 所在直线表达式,再根据最小距离为0,推出直线3l 一定与图形K 相交,从而分两种情况画图求解即可. 【详解】解:(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,∵ 直线:y x b =-+与H 相交于点P , ∴2x b x-+=,即220x bx -+=,只有一个解, ∴24120b ∆=-⨯⨯=,解得b =∴y x =-+联立2y x y x ⎧=-+⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩P ,∴PM OM ==P 在第一、三象限夹角的角平分线上,即PQ 平分∠AOB ,∴Rt POM 为等腰直角三角形,且OP=2, ∵直线1l :2y x =--,∴当0y =时,2x =-,当0x =时,2y =-, ∴A(-2,0),B(0,-2), ∴OA=OB=2, 又∵OQ 平分∠AOB , ∴OQ ⊥AB ,即PQ ⊥AB ,∴PQ 即为H 上的点到直线1l 的最小距离, ∵OA=OB ,∴45OAB OBA AOQ ∠=∠=∠=︒, ∴AQ=OQ ,∴在Rt AOQ 中,OA=2,则,∴2PQ OP OQ =+=+()1,2min D H l =(2)由题过点T 作TH ⊥直线2l ,则T 上的点到直线2l 的最大距离为3TH + ∵()max 243,63ABC l D V ≤≤ 即43363TH ≤ ∴3353TH ≤≤ 由题60HFO ∠=︒,则3FT =, ∴610FT ≤≤, 又∵3FT t =, ∴6310t ≤≤,解得63103t ≤≤103165-≤≤-; (3)∵直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,∴把点P 代入得:2111211184184k k a b c a b c k k --⎛⎫+-+=++ ⎪--⎝⎭, 整理得:()()2416828162828a b c k a b c a b c k a b c +-+--+-=++---,∴2416828281628a b c a b c a b c a b c +-+=++⎧⎨--+-=---⎩,化简得224801a b c c +-+=⎧⎨=⎩,∴182b a =-+,又∵点(),D a b 恒在直线3l 上, ∴直线3l 的表达式为:182y x =-+, ∵()min 3,0D K l =,∴直线3l 一定与以点E 为顶点,原点为对角线交点的正方形图形相交, ∵(),28E m m +,∴点E 一定在直线28y x =+上运动,情形一:如图,当点E 运动到所对顶点F 在直线3l 上时,由题可知E 、F 关于原点对称, ∵(),28E m m +, ∴(),28m m F ---,把点F 代入182y x =-+得:18282m m +=--,解得:325m =-, ∵当点E 沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E 要沿直线向下运动,即325m ≤-;情形二:如图,当点E 运动到直线3l 上时, 把点E 代入182y x =-+得:18282m m -+=+,解得:0m =, ∵当点E 沿直线向下运动时,对角线变短,正方形变小,无交点, ∴点E 要沿直线向上运动,即0m ≥,综上所述,325m ≤-或0m ≥. 【点睛】 本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.3.(1)证明见解析;(2)213;(3)2330a 【解析】【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明;(2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BG EF EB=,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D ,∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6, ∴BG=11322BC AC ==, ∴在Rt △ABG 中,333AG BG ==,∵BF ⊥EC , ∴BF ∥AG ,∴AF BG EF EB=, ∵AF :EF=3:2, ∴BE=23BG=2, ∴EG=BE+BG=3+2=5,在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=, ∴EC=CG+BG+BE=11142233a a a a ++=, ∴EM=12EC =23a , ∴BM=EM-BE=211333a a a -=, ∵BF ∥AG ,∴△EBF ∽△EGA ,∴123=11532a BF BE AG EG a a ==+,∵2AG a ==,∴25BF ==, ∴△OFB的面积=211223BF BM a a ⋅=⨯=. 【点睛】本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.4.(1)AP +PQ 的最小值为4;(2)存在,M 点坐标为(﹣12,﹣4)或(12,8).【解析】【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC 可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标. 【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC ,∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒,∴∠ACK =∠CBE在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△AKC ≌△CEB (AAS )∴AK =CE ,CK =BE ,∵四边形AOEK 是矩形,∴AO =EK =BE ,由直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,可知A点坐标为(0,2),B(6,0)∴E点坐标为(4,0),C点坐标为(4,4),∵∠CDB=∠CEB=90︒,∴B、C、D、E四点共圆,∵CD CD=,∠CBA=45︒,∴∠CED=45︒,∴FE平分∠CEO,过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.∴PH=PQ,∵PA+PQ=PA+PH≥AK=OE,∴OE=4,∴AP+PQ≥4,∴AP+PQ的最小值为4.(2)∵A点坐标为(0,2),C点坐标为(4,4),设直线AC解析式为:y=kx+b把(0,2),(4,4)代入得244bk b=⎧⎨=+⎩解得122 kb⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.5.(1)详见解析;(2)①详见解析;②8【解析】【分析】(1)先得到90ADB∠=︒,利用圆周角定理得到DBA DAC∠=∠,即可证明AC是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度.【详解】(1)证明: ∵AB 是⊙O 的直径,∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠,∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒,∴90CAB ∠=︒,∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点,∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠,∴CFA CAF ∠=∠∴CA CF =;② 设CA CF x ==,在Rt ABC ∆中,2BC x =+,CA x =,6AB =,由勾股定理可得222(2)6x x +=+,解得:8x =,∴8AC =.【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.6.(1)见解析;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,见解析;(3)AH ﹣1+1.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明.(3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG=FB,∴FA=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴12232BC AB AC===,,当点P在弦AB上方时,如图4,在CA上截取CG=CB,连接PA,PB,PG,∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,∠PCG=∠PCB,在△PCG和△PCB中,,CG CBPCG PCBPC PC=⎧⎪∠=∠⎨⎪=⎩∴△PCG≌△PCB(SAS),∴PG=PB,∴PA=PG,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2322AH=+,∴31AH=,当点P在弦AB下方时,如图5,在AC上截取AG=BC,连接PA,PB,PC,PG∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB ,在△PAG和△PBC中,,AG BCPAG PBCPA PB=⎧⎪∠=∠⎨⎪=⎩∴△PAG≌△PBC(SAS),∴PG=PC,∵PH⊥AC,∴CH=GH,∴AC=AG+GH+CH=BC+2CH,∴2322CH,=+∴31CH=-,∴()233131AH AC CH=-=--=+,即:当∠PAB=45°时,AH的长为31-或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.7.(1)①﹣m+8;②PQ最小=OQ最小﹣1=3.8;(2)①t=时,⊙A与直线BC相切;②<t≤5或7≤t≤15时,⊙A与线段BC有两个公共点.【解析】试题分析:(1)①根据正切的概念求出BC=10,OC=8,运用待定系数法求出直线BC的解析式,根据函数图象上点的坐标特征解得即可;②作OQ⊥AB交⊙A于P,则此时PQ最小,根据三角形面积公式计算即可;(2)①根据切线的性质和相似三角形的性质计算即可;②结合图形、运用直线与圆的位置关系定理解答.解:(1)①∵点B的坐标为(6,0),tan∠OCB=,∴BC=10,OC=8,设直线BC的解析式为y=kx+b,,解得,∵点Q的横坐标为m,∴点Q的纵坐标为﹣m+8;②如图1,作OQ⊥AB交⊙A于P,则此时PQ最小,×AB×OQ=×BO×CO,解得,OQ=4.8,∴PQ最小=OQ最小﹣1=3.8;(2)①如图2,⊙A与直线BC相切于H,则AH⊥BC,又∠BOC=90°,∴△BHA∽△BOC,∴=,即=,解得,BA=,则OA=6﹣=,∴t=时,⊙A与直线BC相切;②由(2)①得,t=时,⊙A与直线BC相切,当t=5时,⊙A经过点B,当t=7时,⊙A经过点B,当t=15时,⊙A经过点C,故<t≤5或7≤t≤15时,⊙A与线段BC有两个公共点.考点:圆的综合题. 8.(1)2114y x =-;(2)点P 37(,)216-;(3)(222,222M --+ 【解析】 【分析】(1)根据题意得到AB=4,根据函数对称轴x=0,得到OA=OB=2,得到A 、B 坐标,代入函数解析式即可求解;(2)首先求得直线OD 解析式,然后设P (21,14t t -),得到PQ 关于t 的解析式,然后求出顶点式即可求解; (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,然后求得直线CM 的解析式,得到EM 的表达式,然后根据CMNCNEMNESSS=+即可求解.【详解】(1)∵AB =4OC ,且C (0,-1) ∴AB=4∴OA=OB=2,即A 点坐标()2,0-,B 点坐标()2,0 代入A 点坐标得2021a =- 解得14a =∴G 的解析式为2114y x =- 故答案为2114y x =-(2)当1x =-时,34y =-,即:点D 为(31,4--)∴直线OD 为:34y x = 设P (21,14t t -),则Q 为(22141,1334t t --),则: 22214141325()()33333212PQ t t t t t =--=-++=--+∴当32t =时,PQ 取得最大值2512,此时点P 位37(,)216- (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,则N ()214,414m m ⎛⎫++- ⎪⎝⎭∵C 点坐标为(0,1)-∴可设直线CM 为1y kx =-,带入M 点坐标得:14k m = ∴直线CM 为114y mx =- 过点N 作NE y ∥轴交CM 于点E ,则E 点为()14,414m m m ⎛⎫++- ⎪⎝⎭∴4EN m =-- ∵()()12CMNCNE MNEC N N M S SSx x x x EN ⎡⎤=+=-+-•⎣⎦ ∴()()104=22m m ---∴2440m m +-=解得:12m =--,22m =-+(舍去) ∴M (2--+ 【点睛】本题考查了待定系数法求函数解析式,二次函数综合应用,是二次函数部分的压轴题,题目较难,应画出示意图,然后进行讨论分析. 9.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++【解析】 【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标;②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解. 【详解】解:(1)因为直线交抛物线于B 、C 两点, ∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2); 当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得:2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上, ∴∠PMC 为固定角且不等于90,∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴, ∴点P 的纵坐标为﹣2, 将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去), ∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D , ∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°, ∴∠OBC=∠OCD , 又∵∠BOC=∠COD=90°, ∴BOC ∽COD (AAA ),∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4, ∴OD=1,又∵D 点在X 的负半轴 ∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数), 将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2, 联立直线PC 和抛物线方程,得: 22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10, 点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10);②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++. 【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等. 10.(1) 见解析;(2) 2,2 ;(3)0或222或222x << 【解析】 【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个; ()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=-,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=,综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(1)证明见解析(2)当AM的长为(1﹣)时,四边形EPGQ是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM 的长为(1﹣)时,四边形EPGQ 是矩形;(3)如图③,连接GE 交PQ 于O′, ∵四边形EPGQ 是平行四边形, ∴O′P=O′Q ,O′G=O′E .过点P 作OC 的平行线分别交BC 、GE 于点B′、A′. 由△PCF ∽△PEG 得,=2,∴PA′=A′B′=AB ,GA′=GE=OA , ∴A′O′=GE ﹣GA′=OA . 在Rt △PA′O′中,PO′2=PA′2+A′O′2, 即=+,又 AB 2+OA 2=1, ∴3PQ 2=AB 2+,∴OA 2+3PQ 2=OA 2+(AB 2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用. 12.(1)详见解析;(2)详见解析; 【解析】 【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论. 【详解】()1证明:OD BC ⊥,BD CD ∴=,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=, 90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠,190902DFE AOD ∴-∠=-∠,12DEF AOD ∴∠=∠,DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠;()2解:OD BC ⊥,BE CE ∴=,BD CD =, BD CD ∴=, OA OD =,ADO OAD ∴∠=∠, PA 切O 于点A ,90PAO ∴∠=, 90OAD DAP ∴∠+∠=,PFA DFE ∠=∠, 90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠, PA PF ∴=. 【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.。
25.(Y)(13分)在△ABC中,∠C=90°,AC=6cm,BC=8cm.
(1)求AB的长;
(2)如图1,点P从A点出发以每秒2cm的速度沿AB方向匀速运动,同时点Q从C点出发以每秒1cm的速度沿CA方向匀速运动.连接PQ,若设运动的时间为t秒(0<t<5).
①当t为何值时,以A、P、Q为顶点的三角形和以A、B、C为顶点的三角形相似;
②设四边形BCQP的面积为y,求y的最小值;
③如图2,把△APQ沿AP翻折,得到四边形AQPQ′,当t为何值时,四边形AQPQ′为平行四边形.
25、(S)如图,已知:AD∥BC,AB⊥BC,AB=3cm,AD=2cm.点P是线段AB上的一个动点,连接PD,过点D作CD⊥PD,交射线BC于点C,再过点C作CE⊥AD,交AD的延长线于点E.(1)填空:当AP=2cm时,PD=_________cm;
(2)求的值;
(3)当△APD与△DPC相似时,求线段BC的长.
26.(S)(13分)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/秒的速度沿FG方向移动,移动开始前点A与点F重合.已知正方形ABCD的边长为1cm,FG=4cm,GH=3cm,设正方形移动的时间为x秒,且0≤x≤2.5.
(1)直接填空:DG=_________cm(用含x的代数式表示);
(2)连结CG,过点A作AP∥CG交GH于点P,连结PD.
①若△DGP的面积记为S1,△CDG的面积记为S2,则S1﹣S2的值会发生变化吗?请说明理由;
②当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
25.(N)(13分)已知点A(0,2)、B(2,2)、C(0,4).
(1)如图1,连接BO、BC、AB.
①填空:AC的长为_________,AB的长为_________;
②试判断△OBC的形状,并说明理由;
(2)如图2,过点C向右作平行于x轴的射线,点P是射线上的动点,连接BP,以BP为一边在△ABP外侧作等边△BPQ,当四边形ABQP为梯形时,求点P的横坐标.
26.(N)(13分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上运动,且形状和大小保持不变,其中AB=4,BC=3.
(1)当∠OAB=45°时,OA的长为_________;
(2)连接AC,当AC∥ON时,求OA的长;
(3)设AB边的中点为E,分别求出OA、OB、OC、OD、OE在运动过程中的长度变化范围.
26.(L)(13分)如图,在△ABC中AB=AC=6cm,BC=8cm.点E是线段BC边上的一动点(不含B、C两端点),连结AE,作∠AED=∠B,交线段AB于点D.
(1)求证:△BDE∽△CEA;
(2)设BE=x,AD=y,请写y与x之间的函数关系式,并求y的最小值.
(3)E点在运动的过程中,△ADE能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.
25.(F)(13分)如图,在△ABC中,AB=AC=5,BC=6,点D是线段BC上的一动点,过点D 作DE⊥AB,DF⊥AC,垂足分别是E、F.
(1)当点D运动到BC的中点时,DE+DF=_________;
(2)设BD=x,四边形AEDF的面积为y.
①求y与x的函数关系式;
②问线段DE+DF的长是否随着D的移动而变化?如果变化,请说明理由;如果不变,请求出这一定值.。