大功率变频器的拓扑结构及其谐波抑制技术
- 格式:doc
- 大小:459.00 KB
- 文档页数:11
高压大功率变频器主电路拓扑和控制策略摘要:本文对高压大功率变频器的拓扑结构和控制策略进行了分析和介绍,并给出了一些仿真和实验波形。
英文摘要:The topology and control strategy are introduced and analyzed in this paper, some simulation and experiment waveform are given, too.关键词:高压大功率变频器拓扑控制策略1 引言高压大功率变频器是近年来电力电子行业的研究热点,经过20多年的发展,其理论研究和拓扑结构出现了多个分支,下面将对高压大功率变频器的拓扑和控制策略进行综述。
2 高压大功率变频器主电路拓扑近年来,各种高压变频器不断出现,可是到目前为止,高压变频器还没有像低压变频器那样近乎统一的拓扑结构。
根据高压组成方式,可分为直接高压型和高-低-高型;根据有无中间直流环节,可以分为交-交变频器和交-直-交变频器。
在交-直-交变频器中,根据中间直流滤波环节的不同,又可分为电压源型(也称电压型)和电流源型(也称电流型)。
高-低-高型变频器采用变压器实行输入降压、输出升压的方式,其实质上还是低压变频器,只不过从电网和电动机两端来看是高压的,这是受到功率器件电压等级技术条件的限制而采取的变通办法,需要输入、输出变压器,存在中间低压环节电流大、效率低下、可靠性下降、占地面积大等;缺点:只用于一些小容量高压电动机的简单调速。
常规的交-交变频器由于受到输出最高频率的限制,只用在一些低速、大容量的特殊场合。
顺便指出,国习惯称作的高压变频器,实际上电压一般为2.3~10kV,国主要为3.6kV和10kV,和电网电压相比,只能算作中压,故国外常称为中压变频器[1][2]。
2.1 高-低-高结构该种结构将输入高压经降压变压器变成380V的低电压,然后用普通变频器进行变频,再由升压变压器将电压变回高压。
变频器拓扑结构变频器是一种能够改变电源频率、调节电机转速的电气设备。
它在工业领域中得到广泛应用,有效提高了工作效率和能源利用率。
而变频器的拓扑结构则是其核心组成部分之一,决定着其性能和工作方式。
本文将介绍几种常见的变频器拓扑结构,并分析其特点和适用场景。
一、PWM变频器PWM(脉宽调制)变频器是一种常见的变频器拓扑结构。
它通过改变电源电压的脉冲宽度来控制电机的输出频率。
1. 单桥全控式PWM变频器这种变频器采用单桥全控整流器,实现对直流电压的调节。
其优点是结构简单、控制方便,适用于小功率的驱动系统。
然而,由于整流器需要大的滤波电容,导致了体积较大、效率较低的问题。
2. 双向全控式PWM变频器双向全控式PWM变频器通过两个继电器和两个反向并联的单桥全控整流器构成,使得电流能够在正、负两个方向上流动。
这种拓扑结构适用于需要正向和反向运转的驱动系统,如卷取机和电梯。
二、逆变器变频器逆变器变频器是采用逆变器将直流电转换为变频交流电的方式来控制电机。
1. 单相逆变器变频器单相逆变器变频器采用单相桥式逆变器,将直流电转换为单相交流电。
它适用于小功率的家用电器,如空调、风扇等。
2. 三相逆变器变频器三相逆变器变频器采用三相桥式逆变器,将直流电转换为三相交流电。
它适用于大功率的工业电机驱动系统,如水泵、风机等。
三、多电平逆变器变频器多电平逆变器变频器是一种通过增加逆变器的电平数来改善输出波形质量的拓扑结构。
1. 二电平逆变器变频器二电平逆变器变频器采用两个桥式逆变器,将直流电转换为两个不同电平的交流电。
它具有较高的输出电压质量,适用于对输出波形要求较高的应用,如电梯、电动汽车等。
2. 多电平逆变器变频器多电平逆变器变频器采用多个桥式逆变器,将直流电转换为多个不同电平的交流电。
它具有更加平滑的输出电压波形,降低了谐波含量,适用于对电压质量要求极高的应用,如光伏发电系统和电网接入系统。
总结本文介绍了几种常见的变频器拓扑结构,包括PWM变频器、逆变器变频器和多电平逆变器变频器。
变频器高次谐波抑制措施前言变频器是现代工业中普遍应用的电力调节和转换设备,尤其是在运动控制领域。
然而,使用变频器会导致高次谐波的产生,这些谐波将对设备、电网和其他设备造成负面影响,应该引起足够的重视。
因此,本文将讨论变频器高次谐波的产生及其对设备和系统的影响,并介绍抑制高次谐波的措施。
变频器高次谐波的产生变频器将交流电源转换成可调节的直流电源,然后通过逆变器将直流电源转换为可调节的交流电源。
然而,在逆变器输出的脉冲宽度调制 (PWM) 信号中,会产生频率高于基波频率的谐波。
这些谐波对设备和电网会产生不良影响,特别是在高功率和高速应用中。
变频器可能产生 5 至 40 倍于基波频率的高次谐波,这取决于 PWM 与逆变器拓扑、输出滤波器和负载的特性。
每个谐波序列可以进一步分为不同的模式,如交叉模式和共模模式。
高次谐波的不良影响高次谐波的存在将导致以下问题:1.会增加系统的噪声水平并降低通信系统的可靠性;2.在某些情况下,可能引起震动和噪声问题,从而影响系统的机械稳定性;3.可以降低电力传输系统的效率并导致能量损失;4.会纠缠和干扰其他电气设备,导致它们的失效。
因此,必须采取措施来抑制变频器产生的高次谐波。
抑制高次谐波的措施以下是抑制变频器高次谐波的措施:1. 增加输出滤波器适当的输出滤波器可以在一定程度上抑制高次谐波。
通常使用 LC 滤波器作为输出滤波器,可以削减高次谐波的幅值,最大限度地保护负载和电源。
需要注意的是,滤波器的设计需要考虑到负载的电流和逆变器的交叉模式与共模模式。
2. 采用多电平逆变器多电平逆变器是在逆变器输出增加多级电平的电源转换器。
这种拓扑结构可以有效地抑制高次谐波,使输出波形更接近正弦波,从而提高电气设备的运行效率和可靠性。
3. 采用多电平 PWM多电平 PWM 是一种抑制高次谐波的有效方法。
通过增加多个级联输出电平,可以有效消除谐波分量。
此外,使用多电平 PWM 还可以减小逆变器谐波产生的发热量,减少设备的故障率。
1 引言当系统容量较大时,输入谐波问题是大容量变频器旳一种突出问题。
对交一直一交变频调速系统而言,常用旳整流器均采用晶闸管相控整流电路或二极管整流电路,直流侧采用电容滤波,这使交流侧旳电流呈尖峰性而非正弦波。
大量使用由这些电路构成旳装置已成为电力系统中旳重要谐波源,且消耗大量旳无功功率。
变频器输出旳谐波电流也会使电动机损耗增长,因而发热增长,电机出力下降。
对于上述技术问题,国内外学者在减少输入谐波与输出谐波为目旳,对大功率变频器旳拓朴构造开展了比较深入旳研究。
本文对目前几种有代表性旳高压变频器主电路拓朴构造以及谐波克制技术进行了分析和简介。
2 采用多重移相叠加技术旳变频器多重移相叠加技术是由a.kernick等人早在1962年提出旳。
多重移相叠加技术是指把两个或两个以上输出频率相似,输出波形也相似(幅值可以不一样)旳整流电路或逆变电路,按一定旳相位差叠加起来,使它们旳交流输入或交流输出波形旳低次谐波相位相差180°而互相抵消,以得到谐波含量较少旳准正弦阶梯波旳一种技术。
多重叠加可以是等幅波形旳叠加,也可以是变幅波形旳叠加。
从改善叠加后波形旳角度来看,变幅叠加效果要优于等幅叠加。
多重叠加还可以是串联叠加和并联叠加,串联叠加可以处理大功率变频器高电压旳实现问题;并联叠加可以处理大功率变频器大电流旳实现问题。
2.1 多重化整流多重化整流是按一定旳规律将两个或更多种相似构造旳整流电路进行组合,得到多脉动整流系统,将整流电路进行移相多重联结可以减少交流侧输入电流谐波。
对于变频器网侧交流输入电流来说,采用并联多重联结和采用串联多重联结旳效果是相似旳。
采用多重联结不仅可以减少交流输入电流旳谐波,同步,也可以减小直流输出电压中旳谐波幅值和脉动。
采用脉动宽度为60°旳6脉动三相全波整流电路作为基本单元,使m组整流电路旳交流侧电压依次移相α=60°/m,则可构成脉动数为p=6m旳多脉动整流。
变频器的谐波及常用解决方法摘要:随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。
本文从谐波的概念入手,结合变频器内部相关知识,分析谐波的产生及其危害,并在此基础上结合本人多年工作实践提出抑制谐波的几种常用方法。
关键词:变频器;谐波;抑制;干扰由于变频器逆变电路的开关特性,对于其供电电源形成了一个典型的非线性负载,变频器输出侧电压、电流、非正弦或非完全正弦波含有丰富的谐波。
由于变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其它邻近电气设备。
1 谐波的含义谐波产生的根本原因是由于非线性负载所致,当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。
谐波频率是基波频率的整数倍。
2 变频器谐波产生机理变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥式不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。
输入侧产生谐波机理:在整流回路中,输出电压,电流都将产生因其非线性引起的谐波。
以三相桥式整流回路为例,交流电网电压为正弦波,交流输入电流的波形为矩形波,对于此方波,按傅立叶级数可分解为基波和各次谐波,通常含有6x+1(x=l,2,3….)次谐波。
其中的高次谐波将干扰输入供电系统,单个基波和几个高次谐波组合在一起称作畸波。
输出侧产生谐波机理:在逆变输出回路中,输出电压和电流均有谐波。
对于PWM控制的变频器,只要是电压型变频器,不管是何种PWM控制,其输出电压波形为矩形波。
其中谐波频率的高低是与变频器调制频率有关,调制频率低(如1~2KHz),人耳听得见高次谐波频率产生的电磁噪声(尖叫声)。
若调制频率高(如IGBT变频器可达20KHz),人耳听不见,但高频信号是客观存在。
从电压方波及电流正弦锯齿波,用傅立叶级数不难分析出各次谐波的含量。
浅析变频器谐波产生原因与抑制方法摘要:采用变频器驱动的电动机系统因其节能效果明显,调节方便维护简单,网络化等优点,而被越来越多的应用,但它的非线性,冲击性用电的工作方式,带来的谐波问题亦倍受关注。
因此,分析变频器谐波产生的原因和危害,并针对这一问题提出相应的对策就显得相当重要。
本文就是从变频器的内部结构入手,就抑制谐波的问题展开论述。
关键词:变频器;谐波的产生;危害;抑制一、变频器的优势当今变频器产业得到飞速发展,变频器产品的产业化规模日趋壮大。
从20 世纪90 年代以来,随着人们节能环保意识的加强,变频器的应用越来越普及。
其优势主要体现在以下几个方面:(1)控制电机的起动电流当电机通过工频直接起动时,它将会产生7 到8 倍的电机额定电流。
这个电流值将大大增加电机绕组的电应力,并产生热量,从而降低电机的寿命。
而变频调速则可以在零速零电压起动(当然可以适当加转矩提升),一旦频率和电压的关系建立,变频器就可以按照V/F或矢量控制方式带动负载进行工作。
使用变频调速能充分降低起动电流提高绕组承受力。
用户最直接的好处就是电机的维护成本将进一步降低,电机的寿命则相应增加。
(2)降低电力线路电压波动在电机工频起动时电流剧增的同时,电压也会大幅度波动。
电压下降的幅度将取决于起动电机的功率大小和配电网的容量。
电压下降将会导致同一供电网络中的电压敏感设备故障跳闸或工作异常,如PC 机传感器接近开关和接触器等,均会动作出错。
而采用变频调速后,由于能在零频零压时逐步起动,则能最大程度上消除电压下降。
(3)可调的运行速度运用变频调速,能优化工艺过程,还能通过远控 PLC 或其他控制器来实现速度变化。
变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。
当三相交流异步电动机在定子绕组上接入三相交流电时,在定子与转子之间的空气隙内产生一个旋转磁场,它与转子绕组产生相对运动,使转子绕组产生感应电势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩,使电动机转动起来。
变频器谐波抑制方法变频器是一种用于控制电动机转速的设备,能够改变电源频率,实现电机的速度调节。
然而,变频器在使用过程中会产生谐波,这些谐波会对电网和其他设备造成不良影响。
为了解决变频器谐波问题,人们提出了以下几种抑制谐波的方法。
1.有源滤波技术:有源滤波是一种通过在变频器输出端配置主动滤波器来消除谐波的方法。
主动滤波器通过监测变频器输出电流,产生等幅反向相位电流,以抵消谐波电流,实现谐波抑制。
这种方法可以有效地去除谐波,但成本较高。
2.无源滤波技术:无源滤波是一种通过电感、电容和电阻等元件构成的无源滤波器来消除谐波的方法。
无源滤波器能够通过选择不同的滤波器参数来抑制不同谐波频率,从而减少谐波对电源和其他设备的干扰。
这种方法成本较低,但只能抑制特定谐波频率。
3.直流耦合技术:直流耦合技术又称为谐波电流恢复技术,是一种将变频器输出电流通过电感等元件耦合到直流电路的技术。
直流电路通过整流滤波器将输出电流转化为直流电,然后再由逆变器将直流电转化为交流电,从而实现谐波电流的恢复。
这种方法可以有效地消除谐波,但对系统稳定性要求较高。
4.直接耦合技术:直接耦合技术是一种将变频器输出电压通过电容等元件耦合到电源网的技术。
电容通过对电流的调制和滤波,可以降低谐波电流对电网和其他设备的干扰。
这种方法成本较低,但对电容参数要求较高。
5.多电平逆变技术:多电平逆变技术是一种将变频器输出电压分解为多个不同电平的交流电压,从而抑制谐波的方法。
多电平逆变技术能够减少电压谐波含量,降低谐波对电网和其他设备的影响。
这种方法适用于大功率变频器,但成本较高。
6.软开关技术:软开关技术是一种利用电路元件的能量储存和释放特性,实现谐波抑制的方法。
软开关技术通过控制开关管的开关时间和频率,减少谐波电流的产生和传输,从而降低谐波对电网和其他设备的干扰。
这种方法成本适中,但对开关管的选择和控制要求较高。
总之,变频器谐波抑制方法有很多种,每种方法都有各自的优缺点,选择合适的方法需要考虑谐波频率、成本和实施难度等因素。
变频器谐波产生原因与抑制方法的分析变频器(VFD)是一种用于控制电动机转速的装置,通过调整电源频率和电压来改变电机运行速度。
然而,变频器在使用过程中常常会产生谐波,导致电网负载不稳定,影响其他电气设备的正常运行。
本文将分析变频器谐波产生的原因,并介绍一些抑制谐波的方法。
1.变频器本身结构特点:变频器通过高频开关器件(如IGBT、MOSFET等)将直流电源转化为交流电源,在电流开关过程中会产生高频脉冲,这些脉冲会引起电压和电流的谐波。
2.非线性负载:变频器供电的电机通常是非线性负载,即电流与电压不成正比。
非线性负载会引起电流谐波的产生,进而导致电压谐波扩大。
3.电源系统结构:由于电源系统结构及其参数的限制,电源系统的阻抗不匹配可能导致变频器谐波产生。
例如,电容器、滤波器等元件的阻抗变化会引起电源谐波问题。
4.电源负载波动:当电源系统中的其他负载发生波动时,变频器的谐波也会受到影响。
电源负载波动会引起电压波动,进而导致变频器谐波的产生。
针对变频器谐波问题,可以采取以下几种抑制方法:1.安装滤波器:滤波器是一种能够滤除谐波信号的装置,通过调整滤波器的参数(如电容、电感等),可以有效地消除变频器产生的谐波。
2.采用三级变频器:三级变频器是一种设计更为复杂的变频器,通过增加线性输入级、非线性级和滤波级的结构,可以大大减小谐波的产生。
3.提高电压/电流质量监测和控制:通过使用高效的电源和电流控制技术,可以减小电压和电流的波动,从而减小谐波的产生。
4.加强电网监测和保护:定期检查电网的参数,确保电源系统的稳定运行,减小电压波动,从根本上减少变频器谐波产生。
5.优化变频器设计:改进变频器的硬件和软件设计,减小开关脉冲和非线性负载对谐波产生的影响。
总之,变频器谐波的产生主要是由于变频器本身结构特点、非线性负载、电源系统结构和电源负载波动等原因导致的。
为了抑制变频器谐波,可以采取安装滤波器、采用三级变频器、提高电压/电流质量监测和控制、加强电网监测和保护、优化变频器设计等方法。
1 引言
当系统容量较大时,输入谐波问题是大容量变频器的一个突出问题。
对交一直一交变频调速系统而言,常用的整流器均采用晶闸管相控整流电路或二极管整流电路,直流侧采用电容滤波,这使交流侧的电流呈尖峰性而非正弦波。
大量使用由这些电路构成的装置已成为电力系统中的主要谐波源,且消耗大量的无功功率。
变频器输出的谐波电流也会使电动机损耗增加,因而发热增加,电机出力下降。
对于上述技术问题,国内外学者在降低输入谐波与输出谐波为目标,对大功率变频器的拓朴结构开展了比较深入的研究。
本文对目前几种有代表性的高压变频器主电路拓朴结构以及谐波抑制技术进行了分析和介绍。
2 采用多重移相叠加技术的变频器
多重移相叠加技术是由a.kernick等人早在1962年提出的。
多重移相叠加技术是指把两个或两个以上输出频率相同,输出波形也相同(幅值可以不同)的整流电路或逆变电路,按一定的相位差叠加起来,使它们的交流输入或交流输出波形的低次谐波相位相差180°而相互抵消,以得到谐波含量较少的准正弦阶梯波的一种技术。
多重叠加可以是等幅波形的叠加,也可以是变幅波形的叠加。
从改善叠加后波形的角度来看,变幅叠加效果要优于等幅叠加。
多重叠加还可以是串联叠加和并联叠加,串联叠加可以解决大功率变频器高电压的实现问题;并联叠加可以解决大功率变频器大电流的实现问题。
2.1 多重化整流
多重化整流是按一定的规律将两个或更多个相同结构的整流电路进行组合,得到多脉动整流系统,将整流电路进行移相多重联结可以减少交流侧输入电流谐波。
对于变频器网侧交流输入电流来说,采用并联多重联结和采用串联多重联结的效果是相同的。
采用多重联结不仅可以减少交流输入电流的谐波,同时,也可以减小直流输出电压中的谐波幅值和脉动。
采用脉动宽度为60°的6脉动三相全波整流电路作为基本单元,使m组整流电路的交流侧
电压依次移相α=60°/m,则可组成脉动数为p=6m的多脉动整流。
对于p=12脉动整流,可采用整流变压器为常规接线的y/y-12(或δ/δ-12)和y/δ-11或(δ/y-1)的两组6脉动整流,两者交流侧副方电压互相移相30°,直流侧并联(或串联)后组成1 2脉动整流。
对于p=18脉动及以上的移相角α,通过整流变压器一次绕组采用曲折接线(z接线)实现,各整流单元互相并联或串联,共同向直流负载供电。
只要满足m组6脉动整流交流侧的电压u2(n)(n=1,2,……,m)大小相等(整流变压器的变比相同),依次移相α=60°/m,即可得到p=6m脉动对称平衡的多相整流。
下面以图1所示的并联多重联结系统为例,分析其谐波电流特性。
图1 并联多重联结系统结构原理图
以原方系统电压u1为参考,各整流单元的副方电压为:
令最小移相角为,则其它单元的移相角依次增大为:
多脉动整流系统原方产生的h次谐波电流为:
联结重数m、移相角α及对应的电流谐波次数h如表1所示。
表1 几种移相串联多重联结整流电路的性能指标
2.2 逆变器的多重联结
与多重化整流相似,可将多重移相联结技术用于逆变器,以减小变频器输出谐波。
目前,从大功率变频器输出端来看,逆变器的多重联结有两种主流结构:一种是直接叠加输出,即单元串联多重化;另一种是变压器耦合叠加输出,其原理分别如图2(a)和图2(b)所示。
图2 逆变器的多重联结示意图
单元串联多重化变频器的特点是:
(1) 可以通过串联单元的个数的选择适应不同的输出电压要求;
(2) 具有完美的输入输出波形,能适应任何场合及电机使用;
(3) 由于各功率单元具有相同的结构及参数,便于将功率单元模块化,实现冗余设计;
(4) 使用的功率单元及功率器件数量多,装置的体积和重量较大;
(5) 无法实现能量回馈及四象限运行。
变压器耦合式单元串联高压变频器主电路拓扑结构是由cengelci.e等人于1999年提出的。
其主要思想是用变压器将多个常规二电平三相逆变器单元的输出叠加起来,实现更高电压输
出,并且常规逆变器可采用普通低压变频器的控制方法,使得变频器的电路结构及控制方法都大大简化。
输出变压器起着十分重要的作用,也可能是系统的薄弱环节,因为太大容量的变压器会限制其应用。
这种高压变频器具有如下突出的优点:
以多个常规的变频器为核心可构成高压变频器;
多个常规变频器平衡对称运行,各自平均分担总输出功率;
整个变频器的输出可等效为优于普通三电平变频器多电平pwm输出波形,总谐波畸变率t hd<0.3%,dv/dt也较低;
网侧谐波小,功率因数高。
2.3 串联多重叠加电压型变频器
图3所示为6kv变频器的主电路拓扑图,每组由5个额定电压为690v的功率单元串联,每个功率单元由输入隔离变压器的15个二次绕组分别供电,15个二次绕组分成5组,每组之间存在一个12°的相位差。
图3中以中间△接法为参考(0°),上下方各有两套分别超前(+12°、+24°)和滞后(-12°、-24°)的4组绕组,所需相差角度可通过变压器的不同联接组别来实现。
其输入功率因数可达0.95以上,总谐波畸变率thd<1%。
2.4 整流变压器组别优化接法的交交变频器
在轧钢工艺中,热连轧机的主传动采用大功率变频调速,需要多套系统联合运行。
交交变频调速装置网侧的功率因数相对较低,谐波含量大,如果对整流变压器联接组别的进行优化选择,在n套系统参数、运行条件完全相同时,使n台整流变压器副边线电压相位互差(60/n)°,可以使连轧机系统网侧电流总谐波畸变率thd最小。
多套交-交变频系统联合运行时,整流变压器最优连接组别及网侧合成电流谐波如表2和表3所示。
表2 多套系统整流变压器最优连接组别
表3 多套系统联合运行网侧合成电流谐波
3 采用多电平技术的变频器
多电平逆变器的思想最早是20世纪80年代初由a.nabae提出的。
与传统的两电平逆变器相比,多电平逆变器由于输出电平数增加,使得输出波形具有更好的谐波频谱和较小的dv/ dt,且每个开关器件承受的电压应力较小,特别适合于高压大功率场合,如电力系统静止无功发生器、电力有源滤波器、upfc、新型直流输电及高压交流调速等。
多电平逆变器主要有三种基本结构:二极管箝位式、飞跨电容式和级联式。
其中二极管箝位式多电平逆变器由于不要求相互独立的直流电源来维持每个电平电压,不需要变压器就可以与电网直接相连,因而比其他结构具有更广范的应用领域。
将多电平逆变器的拓朴结构和基本控制策略(例如空间电压矢量控制)用于变频器的整流输入侧,可以构成高功率因数整流器,同时可以大大减小网侧谐波电流。
3.1 “多重化不控整流+多电平逆变”结构的变频器
图4 “多重化不控整流+多电平逆变”结构的变频器
图4是以二重化整流器与二极管箝位式三电平逆变器结构的变频器结构原理图,以及逆变器输出电压、电流和电动机电压、电流波形图。
3.2 “多电平整流+多电平逆变”结构的变频器
图5和图6给出了采用中点箝位式整流器和逆变器的三电平pwm电压型变频器的主电路拓朴。
采用有源前端afe(active front end)技术可使传动系统实现四象限运行,而且整流器输入电流基本上是正弦的。
图5是由igct组成的变频器的拓朴结构,直流环节中h型结构的
箝位电路的作用是限制电流上升率和变频器内部电流冲击。
图6是由igbt元件串联组成的
变频器的拓朴结构,电路中没有采用无源箝位或缓冲电路。
对于有源前端整流器,特定谐波消去法(she)是一种有效的消除谐波的控制算法。
图7表示的是采用she算法消除11和13次谐波时,afe整流器输入电压频谱图。
图7中,调制比m 分别取m1=0.872,m2=0.891,m3=0.897,m4=0.910,m5=0.940。
图5 由igct组成的3l-npc 电压型变频器的主电路拓朴结构图
图6 由igbt组成的3l-npc 电压型变频器的主电路拓朴结构图
图7 采用消除11和13次谐波的she策略的afe输入电压频谱图
4 结束语
随着用电容量的不断增加,为了减少线路损耗,我国以及欧美发达国家,都将配电电压等级向更高方向发展,国内将会逐步形成l0kv主配电回路并相应配置10kv高压电机的主流趋势。
因此,高压大容量变频器主电路的拓朴结构以及输入输出谐波抑制技术仍然是当前世界各国相关行业竞相关注的热点问题。