测试技术第6章(振动测试)
- 格式:ppt
- 大小:683.50 KB
- 文档页数:43
一、简谐振动有时域测试参数简谐振动中常用的参数为位移、速度、加速度、激振力、振幅和振动频率,其中前五个参数属于时域测试参数。
二、振动测试及信号分析的任务振动测试及信号分析主要有以下五个方面的任务:(1)验证振动理论和计算结果的准确性,也被称为实验验证或工程振动测试中的正问题。
(2)为改进结构优化设计提供充分的实验依据。
(3)查清外界干扰力的激振水平和规律,以便采取措施来减少或控制振动。
(4)检测诊断设备故障。
(5)振动控制。
三、压电式、涡流式及磁电式传感器的机电变化原理。
1、压电式传感器的机电变换原理某些晶体(如人工极化陶瓷、压电石英晶体等)在一定的方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生。
这种从机械能(力或变形)到电能(电荷或电场)的变换称为正压电效应。
而从电能(电场或电压)到机械能(变形或力)的变换称为逆压电效应。
因此利用晶体的压电效应,可以制成测力传感器。
在振动测量中,由于F=ma,所以压电式传感器是加速度传感器。
2、电涡流传感器的机电变换原理电涡流传感器是一种相对式的非接触传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的,主要应用于静位移的测量、振动位移的测量、旋转机械中检测转轴的振动测量。
3、电动式(磁电式)传感器的机电变换原理电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感应出电动势,因此利用这一原理而产生的传感器称之为电动式(磁电式)传感器。
它实际上是速度传感器。
四、选择振动传感器的原则选择拾振器类型时,要根据测试的要求(如要求测位移、或测速度、加速度、力等)及被测物体的振动特性(如待测的频率范围,估计的振幅范围等),应用环境情况(如环境温度、湿度、电磁场干扰情况等)结合各类拾振器本身的各项特性指标来考虑。
下列情况可用位移拾振器:(1)位移幅值特别重要时(例如,不允许某振动部件在振动时碰到别的物体,即要求振幅时)。
第六章振动光谱分析(红色的为选做,有下划线的为重点名词或术语或概念)1.名词、术语、概念:波数,分子振动,伸缩振动,变形振动(或弯曲振动、变角振动),运动自由度,振动自由度,简并,分裂,倍频峰,组频峰,泛音峰,振动耦合,费米共振,特征振动频率与特征振动吸收带,内振动,外振动(晶格振动),红外活性与非活性,拉曼效应,拉曼散射,斯托克斯线,反斯托克斯线,拉曼位移,偏振度(或退偏度、退偏比)。
2.光谱工作者常常把红外区分成三个区域,即()、()和()。
3.若一个分子是由N个原子组成,则线性分子的运动自由度为(),振动自由度为(),转动自由度为(),平移自由度为()。
4.若一个分子是由N个原子组成,则非线性分子的运动自由度为(),振动自由度为(),转动自由度为(),平移自由度为()。
5.水分子(H2O)的振动自由度为(),转动自由度为(),平移自由度为()。
6.二氧化碳分子(CO2)的振动自由度为(),转动自由度为(),平移自由度为()。
7.氯化氢分子(HCl)的振动自由度为(),转动自由度为(),平移自由度为()。
8.红外辐射与物质相互作用产生红外吸收光谱,必须有分子偶极矩的变化。
只有发生偶极矩变化的分子振动,才能引起可观测到的红外吸收光谱带,称这种分子振动为(),反之则称为()。
9.按分光原理,红外光谱仪可分为两大类:即()和()红外光谱仪。
10.色散型红外光谱仪,按分光元件不同,可分为()和()红外分光光度计;按光束可为分()和()红外分光光度计。
11.干涉型红外光谱仪又称为()红外光谱仪,其英文缩写是()。
12.红外光谱的实验方法有透射法和反射法,反射法主要有()、()和()。
13.某一键或基团的振动频率有其特定值,它虽然受周围环境的影响,但不随分子构型作过大的改变,这一频率称为某一键或基团的(),而其吸收带称为()。
14.中红外光谱不仅包括振动能级的跃迁,也包括转动能级的跃迁,故又称为振转光谱。
振动测试技术实验报告2020-11-17目录实验一机械振动基本参数测量 (2)一、实验目的 (2)二、实验内容 (2)三、实验系统框图 (2)四、实验原理 (2)五、测量过程 (4)六、实验结果与分析 (4)实验二用自由衰减法测量单自由度系统固有频率和阻尼比 (6)一、实验目的 (6)二、实验系统框图 (6)三、实验原理 (6)四、实验方法 (8)实验三用共振法测简支梁的固有频率、阻尼比和振型 (10)一、实验目的 (10)二、实验系统框图 (10)三、实验原理 (10)四、仪器参数设置 (12)五、实验步骤 (13)六、实验结果与分析 (13)七、思考题 (15)实验四用正弦扫频、随机和敲击激励测简支梁的频率响应函数 (16)一、实验目的 (16)二、实验系统框图 (16)三、实验原理 (16)四、实验方法 (19)五、实验结果记录与分析 (20)六、思考题 (21)实验五用锤击法测量简支梁的模态参数 (23)一、实验目的 (23)二、实验系统框图 (23)三、实验原理 (23)四、实验步骤 (26)五、实验结果和分析 (29)实验六用不测力模态分析法测量简支梁的模态参数 (31)一、实验目的 (31)二、实验系统框图 (31)三、实验原理 (31)四、实验步骤 (32)五、实验结果和分析 (33)实验一 机械振动基本参数测量一、实验目的1、掌握位移、速度和加速度传感器工作原理及其配套仪器的使用方法。
2、掌握电动式激振器的工作原理、使用方法和特点。
3、熟悉简谐振动各基本参数的测量及其相互关系。
二、实验内容1、用位移传感器测量振动位移。
2、用压电加速度传感器测量振动加速度。
3、用电动式速度传感器测量振动速度。
三、实验系统框图实验设备及接线如图所示四、实验原理在振动测量中,振动信号的位移、速度、加速度幅值可用位移传感器、速度传感器或加速度传感器来进行测量。
图1-2-1 测试系统框图动态信号采集器简支梁激振器信号发生器功率放大器电荷放大器变换器计算机速度传感器位移传感器加速度传感器设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为B 、V 、A ,当sin()x B t ωϕ=-时,有sin()2v x B t πωωϕ==-+2sin()a x B t ωωϕπ==-+式中:ω — 振动角频率, ϕ — 初相角, 则位移、速度、加速度的幅值关系为V B ω= 2A B ω=由上式可知,振动信号的位移、速度、加速度的幅值之间有确定的关系,根据这种关系,只要用位移、速度或加速度传感器测出其中一种物理量的幅值,在测出振动频率后,就可计算出其它两个物理量的幅值,或者利用测试仪或动态信号分析仪中的微分、积分功能来进行测量。
第一章测试1.测试技术是测量和试验技术的统称。
()A:对B:错答案:A2.工程测量可分为静态测量和动态测量。
()A:错B:对答案:B第二章测试1.所有周期信号都是功率信号。
()A:对B:错答案:A2.各态历经随机过程是平稳随机过程。
()A:错B:对答案:B3.瞬态非周期信号的幅值谱表示的是幅值谱密度与频率的函数关系。
()A:错B:对答案:B4.信号在时域上波形有所变化,必然引起频谱的相应变化。
()A:对B:错答案:A5.周期方波是简单周期信号。
()A:错B:对答案:A第三章测试1.一个幅频特性为常数的线性系统,一定是不失真测量系统。
()A:对B:错答案:B2.测量装置的灵敏度越高,其测量范围就越大。
()A:对B:错答案:B3.一阶低通测试装置适宜于测量缓变的信号。
()A:对B:错答案:A4.测试装置传递函数H ( s )的分母与()有关。
A:输出量y(t)B:输入点的位置C:装置结构D:输入量x(t)答案:C5.测试装置的频率响应函数H ( jω ) 是装置动态特性在()中的描述。
A:幅值域B:时域C:复数域D:频域答案:D第四章测试1.压电式传感器的前置放大电路采用()时,传感器的连接电缆可以达到百米以上,也不会影响其灵敏度。
A:比例运算放大器B:电荷放大器C:电桥D:电压放大器答案:B2.如果用电容传感器测电影胶片的厚度,那么可能是电容传感器的()参数发生变化。
A:极距B:变化参数不定C:面积D:介质答案:D3.可以进行转速测量的传感器是()。
A:光电式或霍尔式B:压电式或涡流式C:电阻式或霍尔式D:电阻式或涡流式答案:A4.在电容传感器的比例运算放大器电路中,传感器电容应接在()回路中。
A:反馈B:电源C:输出D:输入答案:A5.在用涡电流传感器进行探伤时,是根据()的变化。
A:物体的材质B:传感器线圈的激磁频率C:传感器与物体之间的间隙D:物体的磁导率答案:D第五章测试1.在使用电阻应变仪的时候,发现灵敏度不够,于是试图在工作电桥上增加电阻应变片以提高灵敏度,下列方法()可以提高电桥灵敏度。
第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 信号 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 时间 为独立变量;而信号的频域描述,以 频率 为独立变量。
3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛性 。
4、 非周期信号包括 准周期 信号和 瞬变周期 信号。
5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 关于Y 轴 (偶) 对称,虚频谱(相频谱)总是 关于原点(奇) 对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( √ )2、 信号的时域描述与频域描述包含相同的信息量。
( √ )3、 非周期信号的频谱一定是连续的。
( × )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( × )5、 随机信号的频域描述为功率谱。
( √ )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
4、求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。
5、求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。
第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
任务4 振动测试技术铁路工程结构的振动试验中,常有大量的物理量如应力(应变)、位移、速度、加速度等,需要进行量测、记录和分析。
由于结构的动应变与静应变的测量元件、测量方法基本相同,不同之处在于需要采用动态应变仪进行量测。
振动参量可用不同类型的传感器予以感受拾起,并从被测量对象中引出,形成测量信号,将能量通过测量线路发送出去,再通过仪器仪表将振动过程中的物理量进行测量并记录下来。
传感器是振动测试系统中的一个重要组成部分,它具有独立的结构形式。
按照被测物理量来分类,传感器可以分为位移传感器、速度传感器和加速度传感器;按照工作原理来分类,传感器可以分为机械式传感器和电测传感器(包括磁电式、压电式、电感式、应变式)两大类。
在本节中,主要介绍各类振动参量测试仪器及传感器的基本原理、构造与使用方法。
一、惯性式传感器惯性式传感器有位移、速度及加速度传感器三种。
它的特点是直接对机械量(位移速度、加速度)进行测量,故输入、输出均为机械量。
常用的惯性式位移传感器有:机械式测振仪、地震仪等。
惯性式传感器的工作原理及其特性曲线在振动传感果中最具有代表性,其他类型传感器大都是在此基础上发展而得到的。
在惯性式传感器中,质量弹簧系统将振动参数转换成了质量块相对于仪器壳体的位移,使传感器可以正确反映振动体的位移、速度和加速度。
但由于测试工作的需要,传感器除应正确反映振动体的振动外,还应不失真地将位移、速度和加速度等振动参量转换为电量,以便用电量进行量测。
一般地,桥梁结构、厂房、民用建筑的一阶自振频率在零点几到十几赫兹之间,这就要求传感器具有很低的自振频率。
为降低an,必须加大质量块m。
因此一般惯性式位移传感器的体积较大也较重,使用时对被测系统有一定影响,特别对于一些质量较小的振动体就不太适用。
当被测对象振动频率与惯性式传感器的固有频率之比变化时,可以测量不同的振动参量。
更接近于物此时,测得的壳体位移接近于物体的位移。
若选用较大的阻尼系数,δ体位移,此时惯性式传感器可用于动位移的测量,故称为位移传感器。
拱桥振动测试姓名:刘*学号:*******班级:研14-1班课程:振动测试技术年月:2015年7月18日目录一振动测试概述 (1)1 振动分类及描述 (1)2 振动基本参量表示方法 (1)3 振动测试仪器分类及配套使用 (3)4 窗函数的分类及用途 (4)5 信号采集及分析过程中出现的问题,怎样解决? (7)二、惯性式速度型与加速度型传感器 (8)1 惯性式速度传感器的分类 (8)2 压电式加速度传感器 (9)三振动特性参数的常用量测方法 (12)1 振动基本参数的量测 (12)2 简谐振动频率的量测 (12)3 机械系统固有频率的测量 (12)4 简谐振动幅值的测量: (12)5衰减系数的测量: (13)6结构动力特性参数量测 (13)7 稳态正弦激振及测试 (13)8 瞬态激振及测试 (14)9 随机激振及测试 (15)四题目(结构设计) (16)1 结构设计资料及试验要求 (16)2.试验目的 (18)3.试验方法 (18)4 结果分析 (20)五概念 (22)1 功率谱 (22)2 自相关函数 (22)3 互相关函数 (23)4 相干函数 (23)5 传递函数 (24)六模态分析 (26)1 概念 (26)2 方法分类及理解 (26)一振动测试概述1 振动分类及描述按照运动的表现形式,振动可以分为确定性和非确定性振动(即随机振动)。
确定性振动又分为周期性和非周期性振动。
周期性振动分为简谐振动和复杂周期振动。
非周期运动又分为准周期和瞬态振动。
非确定性振动分为平稳随机和非平稳随机,平稳随机又分为各态历经和非各态历经。
按振动激励类型分类,振动可分为随机自由振动和随机强迫振动。
按振动位移的特征分类,振动可分为:横向振动(振动体上的质点在垂直于轴线的方向产生位移的振动)、纵向振动(振动体的质点沿轴线方向产生位移的振动)和扭转振动(振动体上的质点沿轴线方向产生位移的振动)。
周期运动的最简单形式是简谐振动。
振动测试技术方案振动测试技术方案1. 背景介绍振动测试技术是工程领域中的一项重要技术。
振动测试可用于检测设备或结构的自然振动频率、结构的弹性属性、应力及损伤状态等。
识别设备或结构的振动特征,能够帮助人们更准确地评估设备或结构的健康状况,进而有效地进行预防性维护和故障诊断。
2. 技术方案2.1 设备准备在进行振动测试之前,首先需要准备必要的设备。
主要包括振动测量仪器、传感器、电缆、电源等。
振动测量仪器可选择三维振动计或光学测量仪器等。
传感器主要包括加速度计、速度计和位移计等。
为了保证测量结果的准确性,选择合适的传感器至关重要。
电缆和电源用于连接和供电。
2.2 测量方法振动测试方法通常包括自由振动测试和受控振动测试。
自由振动测试是指在设备或结构自然振动条件下进行测试,而受控振动测试是指通过施加外部控制力激发设备或结构的振动来进行测试。
根据实际情况选择合适的测试方法。
2.3 测量步骤具体的振动测试步骤如下:步骤一:选择合适的测量点根据设备或结构的特性和需要测量的参数,选择合适的测量点。
对于一些比较大的结构,需要选定多个测量点进行测试,以便全面地了解结构的振动情况。
步骤二:安装传感器将传感器安装在测量点上,并通过电缆与测量仪器连接。
安装传感器时应注意传感器的位置和方向,以免影响测试结果。
步骤三:进行测量在进行测量之前,应保证设备或结构处于正常工作状态。
启动测试仪器,记录测量数据。
在自由振动测试中,测量数据通常包括振动频率、振幅和阻尼等参数。
在受控振动测试中,还需记录激振频率、激振幅值以及相位等参数。
步骤四:数据分析对测量数据进行分析,根据实际情况选择合适的分析方法。
常用的分析方法包括频谱分析、时域分析、相位分析等。
通过分析得到的结果,可以了解设备或结构的振动特性,有助于下一步的预防性维护或故障诊断工作。
3. 注意事项在进行振动测试时,需要注意以下事项:3.1 选取合适的测量点和传感器,以保证测量结果的准确性。
各章节习题(后附答案)第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 为独立变量;而信号的频域描述,以 为独立变量。
3、 周期信号的频谱具有三个特点: , , 。
4、 非周期信号包括 信号和 信号。
5、 描述随机信号的时域特征参数有 、 、 。
6、 对信号的双边谱而b ,实频谱(幅频谱)总是 对称,虚频谱(相频谱)总是 对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( )2、 信号的时域描述与频域描述包含相同的信息量。
( )3、 非周期信号的频谱一定是连续的。
( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( )5、 随机信号的频域描述为功率谱。
( )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at的频谱。
4、 求被截断的余弦函数⎩⎨⎧≥<=Tt T t t t x ||0||cos )(0ω的傅立叶变换。
5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x atω的频谱。
第二章测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin)(tt x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141nn n s s ωωω++的两个环节串联后组成的系统的总灵敏度。
3、 为了获得测试信号的频谱,常用的信号分析方法有 、和 。
振动测试技术振动测试技术孙利民编郑州⼤学2004.6振动测试技术⽬录第1 章振动测试技术概论 (1)1.1振动试验的⽬的和意义 (1)1.2试验⽅法和内容 (3)1.3⼯程振动中的被测参数 (6)1.4⼯程振动测试及信号分析的任务 (13)1.5⼯程振动测试⽅法及分类…………………………………………15 第2 章机械式传感器⼯作原理 (17)2.1传感器的作⽤ (17)2.2相对式机械接收原理 (18)2.3惯性式机械接收原理 (18)2.4⾮简谐振动测量时的技术问题……………………………………26 第3 章机电式传感器⼯作原理 (29)3.1振动传感器的分类 (29)3.2电动式传感器 (30)3.3压电式传感器 (32)3.5 参量型传感器………………………………………………………41 第4 章振动测量系统………………………………………………………I474.1微积分放⼤器 (47)4.2滤波器………………………………………………………………544.3压电加速度传感器测量系统 (60)4.4电涡流式传感器的测量系统 (65)4.5动态电阻应变仪 (67)4.6参量型传感器测量系统...................................................73 第5 章激振设备 (77)5.1激振器……………………………………………………………775.2振动台……………………………………………………………805.3液压式振动台 (82)5.4其它激振⽅法............................................................84 第6 章基本振动参数的测量及仪器设备 (87) I6.1简谐振动频率的测量 (87)6.2机械系统固有频率的测量 (92)6.3简谐振动幅值的测量 (96)6.4同频简谐振动相位差的测6.5衰减系数的测量…………………………………………………103 第7 章模拟平稳信号分析 (109)7.1波形分析的简单⽅法 (109)7.2模拟式频率分析 (114)7.3 模拟式实时频谱分析简介................................................120 第8 章振动测试仪器的校准 (123)8.1分部校准与系统校准 (123)8.2静态校准法 (125)8.3绝对校准法 (126)8.4相对校准法…………………………………………………………127 第9章数字信号分析 (131)9.1基本知识……………………………………………………………1319.2离散傅⾥叶变换 (134)9.3快速傅⾥叶变换II(F F T) (137)9.4泄漏与窗函数 (141)9.5噪声与平均技术 (145)9.6数字信号分析仪的⼯作原理及简介....................................148 第10 章实验模态分析简介 (154)10.1基本概念 (154)10.2多⾃由度系统的传递函数矩阵和频响函数矩阵………………10.3传递函数的物理意义 (162)10.4多⾃由度系统的模态参数识别 (164)10.5模态分析中的⼏种激振⽅法 (170)10.6模态分析的实验过程 (172)II第1 章概述1.1 振动试验的⽬的和意义唯物史观认为,世界上的⼀切都在运动着,运动是物质存在的形式。
《机械工程测试技术基础》知识点总结引言机械工程测试技术是机械工程领域中的重要组成部分,它涉及到对机械系统的性能、参数和状态进行测量、分析和评估。
随着科技的发展,测试技术在提高产品质量、优化设计、降低成本和保障安全等方面发挥着越来越重要的作用。
第一部分:测试技术概述1.1 测试技术的定义测试技术是指利用各种仪器和方法对机械系统进行定量或定性的测量,以获取系统的性能参数和状态信息。
1.2 测试技术的重要性质量控制:确保产品符合设计标准和用户需求。
故障诊断:及时发现并解决机械故障,延长设备使用寿命。
性能优化:通过测试数据对机械系统进行优化设计。
第二部分:测试技术基础2.1 测量的基本概念测量单位:国际单位制(SI)和常用单位。
测量误差:系统误差、随机误差和测量不确定度。
2.2 传感器原理电阻式传感器:利用电阻变化来测量物理量。
电容式传感器:基于电容变化来测量。
电感式传感器:基于电感变化来测量。
光电传感器:利用光电效应来测量。
2.3 信号处理技术模拟信号处理:滤波、放大、模数转换。
数字信号处理:FFT、数字滤波、谱分析。
2.4 数据采集系统硬件组成:数据采集卡、接口、传感器。
软件功能:数据采集、处理、存储和分析。
第三部分:机械性能测试3.1 力和扭矩测试力测试:静力测试和动力测试。
扭矩测试:静态扭矩和动态扭矩的测量。
3.2 振动测试振动类型:随机振动、谐波振动、冲击振动。
振动测量:加速度计、速度计和位移计的使用。
3.3 温度测试接触式温度测量:热电偶、热电阻。
非接触式温度测量:红外测温技术。
3.4 流体特性测试压力测试:压力传感器的应用。
流量测试:流量计的选择和使用。
3.5 材料特性测试硬度测试:布氏硬度、洛氏硬度和维氏硬度。
疲劳测试:循环加载下的应力-应变关系。
第四部分:测试技术的应用4.1 机械系统的故障诊断故障信号的采集:振动、声音、温度等。
故障特征的提取:频域分析、时域分析。
故障诊断方法:专家系统、神经网络、模糊逻辑。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( )2、 信号的时域描述与频域描述包含相同的信息量。
( )3、 非周期信号的频谱一定是连续的。
( )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( )5、 随机信号的频域描述为功率谱。
( ) (二)、√。
、√。
、╳。
、╳。
、√。
1、 一线性系统不满足“不失真测试”条件,若用它传输一个的正弦信号,则必然导致输出波形失真。
()2、 在线性时不变系统中,当初始条件为零时,系统的输出量与输入量之比的拉氏变换称为传递函数。
()3、 当输入信号)(t x 一定时,系统的输出)(t y 将完全取决于传递函数)(s H ,而与该系统的物理模型无关。
()4、 传递函数相同的各种装置,其动态特性均相同。
()5、 测量装置的灵敏度越高,其测量范围就越大。
()6、 幅频特性是指响应与激励信号的振幅比与频率的关系。
() (三)╳√√√╳╳(三)判断对错题(用√或×表示)1、 滑线变阻器式传感器不适于微小位移量测量。
( )2、 涡流式传感器属于能量控制型传感器( )3、 压电加速度计的灵敏度越高,其工作频率越宽。
( )4、 磁电式速度拾振器的上限工作频率取决于其固有频率。
( ) (三)√√╳╳(二)选择题1、 不属于测试系统的静特性。
()灵敏度()线性度()回程误差()阻尼系数 2、 从时域上看,系统的输出是输入与该系统响应的卷积。
()正弦()阶跃()脉冲()斜坡3、 两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性为。
())()(21ωωQ Q ())()(21ωωQ Q +())()()()(2121ωωωωQ Q Q Q +())()(21ωωQ Q -4、 一阶系统的阶跃响应中,超调量。
()存在,但<%()存在,但<()在时间常数很小时存在()不存在 5、 忽略质量的单自由度振动系统是系统。
简支梁振动系统动态特性测试姓名:汪亚彬学号:0214134班级:土木工程(3)班课程:振动测试技术2015年7月21日一、振动测试概述1、振动的分类及描述答: 1、在振动理论中,把物体的振动按自由度分,可分为:单自由度振动、多自由度振动、无限自由度振动;2、按激励类型分,可分为:自由振动、受迫振动、自激振动、固有振动、参数振动;3、从振动特性看,可分为:线性振动和非线性振动;4、按信息与数据的形式分,可分为:确定性振动及随机振动两大类。
其中 确定性振动按响应持续时间,又可分为:瞬态振动、稳态振动;按响应的周期性可分为:周期振动及非周期振动两类;周期振动可用数学表达式 )((nT t y t y +=) 表示,它还可以进一步分为简谐振动及复杂周期振动两类;非周期振动又可分为准周期振动及瞬变振动两类。
一、确定性振动1、简谐振动简谐振动是一种最简单、最基本的振动形式,其时变函数为sin()(A t y =)2sin()00ϕπϕ+=+ft A wt式中:A ----振幅;w ----圆频率,单位:弧度/秒(rad/s );f ----频率,单位:赫兹(Hz );0ϕ----相对于时间原点的初相角,单位:弧度(rad );)(t y ----为t 时刻的瞬时幅值。
2、复杂周期振动复杂周期振动可用如下的周期性时变函数表示),()(nT t y t y ±= =n 1,2,3···,它由与基波成为整倍数的波形所组成。
或者,复杂周期振动是由静态分量0y 项与无穷多个振幅、初相角不相同、频率与基频称整数倍的间谐波分量叠加而成,当然其中有些项的幅值可以为零。
3、准周期振动如果若干个频率不成比例关系的简谐振动叠加在一起,合成后的振动不呈现周期性,称为准周期振动。
例如:)7s i n ()5s i n ()s i n ()(332211ϕϕϕ+++++=t y t y t y t y所表示的振动,表现在时程曲线不呈现周期性。
振动测试方法简介工程振动量值的物理参数常用位移、速度和加速度来表示。
由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。
常用单位为:米/秒2 (m/s2),或重力加速度(g)。
描述振动信号的另一重要参数是信号的频率。
绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。
对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。
最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。
压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。
工程振动测试方法在工程振动测试领域中,测试手段与方法多种多样,但是按各种参数的测量方法及测量过程的物理性质来分,可以分成三类。
1、机械式测量方法振动传感器将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录,常用的仪器有杠杆式测振仪和盖格尔测振仪,它能测量的频率较低,精度也较差。
但在现场测试时较为简单方便。
2、光学式测量方法将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。
如读数显微镜和激光测振仪等。
3、电测方法将工程振动的参量转换成电信号,经电子线路放大后显示和记录。
电测法的要点在于先将机械振动量转换为电量(电动势、电荷、及其它电量),然后再对电量进行测量,从而得到所要测量的机械量。
这是目前应用得最广泛的测量方法。
上述三种测量方法的物理性质虽然各不相同,但是,组成的测量系统基本相同,它们都包含拾振、测量放大线路和显示记录三个环节。
1、拾振环节。
把被测的机械振动量转换为机械的、光学的或电的信号,完成这项转换工作的器件叫传感器。
2、测量线路。
测量线路的种类甚多,它们都是针对各种传感器的变换原理而设计的。