圆柱凸轮分度机构的设计计算及运动仿真
- 格式:docx
- 大小:33.78 KB
- 文档页数:29
凸轮机构的设计和计算凸轮机构是机械传动中常用的一种机构,它可以将旋转运动转化为直线或者非圆轨迹运动。
在机械设计中,凸轮机构的设计和计算是一个重要的环节,下面将从凸轮的选择、轮廓线的设计、凸轮刚度的计算以及凸轮与连接杆的配合等方面进行详细探讨。
一、凸轮的选择凸轮的选择主要考虑两个因素,一是工作台速度要求,二是工作台运动规律要求。
根据工作台速度要求,可以确定凸轮直径或转速,并结合工作台的惯性力矩计算,选取合适的凸轮惯量。
根据工作台运动规律要求,可以确定凸轮的轮廓线类型,如简单凸轮、非圆滚子凸轮等。
二、凸轮轮廓线的设计凸轮的轮廓线设计可以按照几何法或图形法进行。
几何法常用于简单凸轮的设计,通过几何学原理计算得到凸轮的轮廓线。
图形法常用于复杂凸轮的设计,通过图形法绘制凸轮的轮廓线。
对于简单凸轮的设计,可以先确定凸轮的中心轴线,然后根据工作台的运动规律要求,计算得到凸轮相对于中心轴的偏置量。
根据几何关系,可以发现工作台特定点的运动与该点到凸轮中心轴的距离成正比关系,因此可以画出凸轮轮廓线。
对于复杂凸轮的设计,可以根据工作台的运动规律要求,通过图形法绘制凸轮的轮廓线。
首先,在平面上绘制凸轮的中心轴线和工作台的运动轨迹,然后根据几何关系,绘制工作台各点与凸轮中心轴的距离曲线,最后得到凸轮的轮廓线。
三、凸轮刚度的计算凸轮机构在工作过程中会受到惯性力矩的作用,因此需要进行凸轮刚度的计算。
凸轮刚度可以通过应力分析的方法进行计算,可以分为弹性刚度和塑性刚度。
弹性刚度计算可以根据凸轮的材料及几何尺寸进行,通过几何学和材料力学的知识,可以得到凸轮的弹性变形及应力分布。
而塑性刚度计算则需要根据凸轮的材料本构关系及极限变形条件,通过材料损伤理论及极限分析法进行计算。
四、凸轮与连接杆的配合凸轮与连接杆的配合是凸轮机构中的关键问题。
凸轮与连接杆之间要保持一定的配合间隙,以确保运动的精度。
配合间隙的大小应根据凸轮的制造及组装精度、工作台的运动精度要求等因素进行综合考虑。
基于Creo的凸轮机构三维参数化设计及运动仿真刘鹏冯立艳李静卢家宣蔡保杰冷腾飞苗伟晨(华北理工大学以升创新基地河北·唐山063210)摘要本文主要介绍用Creo对凸轮机构进行参数化设计并以圆柱槽状凸轮机构为例进行运动仿真,再通过C#软件完成人机交互,即操作人只需在程序界面输入槽状凸轮相应参数即可完成凸轮的三维建模,从而绘制出相应的位移、速度、加速度曲线进入仿真和分析环节。
这样即缩短了凸轮的设计周期提高了设计质量,并且解决了凸轮教学课程存在的设备成本高、设备数量少、实验时间和空间受限等难题。
关键词凸轮Creo参数化仿真中图分类号:TP391.9文献标识码:A1基于Creo软件下的凸轮三维建模1.1Creo环境下槽状凸轮机构三维参数化造型基本思路(1)参数化过程需准备可变参数包括行程、推程角、远休角、回程角、近休角、外径、壁厚、基底高度、凸轮高度、槽深、槽宽,以上变量成为参数组。
(2)通过根据凸轮不同运动规律编写推程、远休止、回程、近休止段凸轮轮廓线方程,本例应用的凸轮推程回程为正弦加速度运动规律。
(3)分段绘制出理论轮廓曲线,将各段曲线首尾相连封闭,即为完整的凸轮理论廓线。
(4)生成凸轮实体;加入参变量,实现参数化。
1.2三维建模具体步骤Creo是如今今应用最广的三维绘图软件之一,主要用于参数化实体设计,它所提供的功能包括实体设计、曲面设计、零件装配、建立工程图、模具设计、、电路设计、装配管件设计、加工制造和逆向工程等。
其系统特性主要包含单一数据库、全参数化、全相关、基于特征的实体建模等,不仅能实现零件的参数化设计,也可以方便地建立各零部件的通用件库和标准件库,从而提高设计的效率和质量。
1.2.1槽状凸轮机构的三位参数化建模自行设定初步参数组,注意推程角、远休角、回程角、近休角之和为360,(2)运行creo软件,新建零件,进入界面。
(3)选择【工具:程序】,出现菜单管理器,选择编辑设计,出现记事本,在IN PUT和END PUT语句中间输入语句,然后存盘,确认将所做的修改体现到模型中,最后在菜单管理器中输入设定的初步参数值。
凸轮机构廓线精确设计与运动仿真凸轮机构是一种广泛应用于机械领域的机械传动结构,它将圆周运动转化为直线运动或者非圆周运动,实现了复杂的工程问题。
在凸轮机构的设计过程中,廓线精确设计与运动仿真是非常重要的步骤,下面将对这两个方面进行详细介绍。
凸轮机构的廓线精确设计是指根据可行性分析、动力学分析、结构强度分析等多方面的因素,综合设计出符合机械系统要求的凸轮机构结构。
具体来说,主要有如下几个步骤:第一步,确定机械系统要求,包括传动功率、转速、加速度、负载、耐久性等因素。
第二步,进行可行性分析,包括选择凸轮的形状、尺寸、角度等条件,以确保凸轮满足运动要求。
同时,考虑到凸轮的加工难度、成本等因素,也需要进行制造工艺可行性分析。
第三步,进行动力学分析,包括利用运动学公式计算凸轮与从动件的相对位置、速度、加速度等参数,确定凸轮运动过程中从动件的运动特性。
第四步,进行结构强度分析,包括利用有限元分析等工具对凸轮、从动件等部件进行应力分析,确保结构在工作过程中的强度和稳定性。
第五步,进行凸轮机构整体设计,包括选用凸轮轴、从动轴、摩擦轮、压力轮、传动带等部件,确定凸轮轴、从动轴的轴承结构、固定方式等。
以上五个步骤的精确设计,可以确保凸轮机构在机械领域能够稳定可靠地工作,满足机械系统要求,实现有效的运动传递。
同时,为了更直观地了解凸轮机构的运动特性,还需要进行运动仿真。
凸轮机构的运动仿真,主要是对凸轮轮廓、从动件运动轨迹、运动速度、加速度等参数进行模拟和分析。
在进行运动仿真时,需要用到相应的仿真软件,如ADAMS,SIEMENS NX等。
具体来说,主要有如下几个步骤:第一步,通过CAD软件,绘制凸轮轮廓图,并将图形导入仿真软件中。
第二步,模拟凸轮的运动过程,将凸轮的运动参数输入到仿真软件中,包括凸轮角速度、位移、角度等。
第三步,设定从动件的初始位置及在凸轮运动过程中的运动方式,并进行仿真计算。
第四步,观察仿真结果,分析凸轮机构的稳定性、精度、寿命等参数,进行运动特性分析。
凸轮机构的虚拟设计与运动仿真
首先,在进行凸轮机构的虚拟设计和运动仿真之前,需要对机构的物
理特性以及设计要求进行分析和确认。
这包括凸轮轴的几何形状、凸轮与
被控件的运动规律和传动比等。
接下来,可以使用CAD软件绘制凸轮轴和被控件的几何形状。
在绘制
凸轮轴时,可以使用CAD软件提供的几何图形工具创建具有不同形状的凸
轮剖面。
在绘制被控件时,可以创建其对应的几何模型,并与凸轮轴进行
连接。
完成几何模型的绘制后,可以使用CAD软件中的运动仿真工具来模拟
凸轮机构的运动。
首先,可以为凸轮轴设置一个恒定速度的输入条件。
然后,可以通过设置凸轮轴与被控件之间的运动关系(例如凸轮与被控件的
接触点位置)来实现凸轮机构的运动仿真。
在进行运动仿真时,可以观察凸轮机构的各个部分的运动情况,并分
析其运动特性,以评估机构的性能。
例如,可以观察被控件的运动轨迹和
速度曲线,以确定被控件是否能够按照要求进行精确的运动。
如果发现机
构存在问题,可以通过调整凸轮轴的几何形状或修改运动关系来进行优化。
除了CAD软件,还可以使用专业的凸轮机构仿真软件来进行虚拟设计
和运动仿真。
这些软件通常具有更强大的仿真功能,可以提供更准确的分
析和评估结果。
通过使用这些软件,可以更好地理解和优化凸轮机构的运
动特性,并减少实际试验的次数和费用。
总之,凸轮机构的虚拟设计与运动仿真可以通过CAD软件或专业仿真
软件来实现。
通过这种方法,可以在设计早期阶段对机构进行分析和优化,从而减少实验和测试的时间和成本,提高设计效率。
用proe做机构仿真---凸轮机构使用proe做一个凸轮机构本文介绍用proe做机构的方法。
做一个最简单的凸轮机构需要三个实体(如图一)。
凸轮cam、滑块block,承载板base。
如果不想画这三个part,可下载。
开始制作:1、设置工作目录。
2、新建一个asm组合件。
3、安装基板base:Component-Assemble-从弹出的对话框中选择base.prt-open,从图二所示的装配面板中选择-选OK。
即完成第一个另件base的装配。
4、安装凸轮:Component-Assemble-从弹出的对话框中选择cam.prt-open,从图二所示的装配面板中点选Connections出现连接面板(图三)。
(图三)5、接上一步做销钉Pin连接:从绘图区点选凸轮上的圆柱体的圆柱面、接着点选base上10mm孔的圆柱机,紧接着分别点选凸轮与基板的两个接触平面,在连接面板输入值为0。
应该象下图这个样子后先OK完成销钉的连接。
好了,到这一步我们终于做完了第一个机构了。
事实上用这两个part就可做动画了。
下面先试一下一个关键帧动画。
proe提供两种方式做动画,一个是纯动画,好象Flash那样使用关键帧。
另一种是使用驱动方法,下面先介绍一下纯动画的制作方法。
我们要做的事情是使这个凸轮转动。
a、从菜单上选Applications,从下拉菜单中选择Animation(注:如果没有出现Animation,是因为没有安装动画模块,那么这一步做不成,请先安装好动画模块),出现如图动画控制工具箱。
b、点选动画工具箱中的拖拽工具,出现Drag面板如下图。
在Drag面板中点选照相机按钮,这样就创建好了第一个原始位置的关键帧照片。
再拍一次,作为最后一帧。
c、在绘图区直接拖拽凸轮,使其顺时针旋转90度左右,然后点相机按钮拍一次照。
d、重复第上一步分别在180度270度拍一次照。
e、在Drag面板中将Snapshot2改为Snapshot6.-close。
圆柱凸轮机构_设计_结构计算————————————————————————————————作者:————————————————————————————————日期:本章介绍凸轮机构的类型、特点、应用及盘形凸轮的设计。
凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从动件的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。
在第4章介绍中,我们已经看到.凸轮机构在各种机械中有大量的应用。
即使在现代化程度很高的自动机械中,凸轮机构的作用也是不可替代的。
凸轮机构由凸轮、从动件和机架三部分组成,结构简单、紧凑,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任意的运动规律.在自动机械中,凸轮机构常与其它机构组合使用,充分发挥各自的优势,扬长避短。
由于凸轮机构是高副机构,易于磨损;磨损后会影响运动规律的准确性,因此只适用于传递动力不大的场合.图12-1为自动机床中的横向进给机构,当凸轮等速回转一周时,凸轮的曲线外廓推动从动件带动刀架完成以下动作:车刀快速接近工件,等速进刀切削,切削结束刀具快速退回,停留一段时间再进行下一个运动循环。
图12—1图12—2 图12-2为糖果包装剪切机构,它采用了凸轮—连杆机构,槽凸轮1绕定轴B转动,摇杆2与机架铰接于A点.构件5和6与构件2组成转动副D和C,与构件3和4(剪刀)组成转动副E和F。
构件3和4绕定轴K转动.凸轮1转动时,通过构件2、5、和6,使剪刀打开或关闭。
图12-3为机械手及进出糖机构.送糖盘7从输送带10上取得糖块,并与钳糖机械手反向同步放置至进料工位Ⅰ,经顶糖、折边后,产品被机械手送至工位Ⅱ后落下或由拨糖杆推下。
机械手开闭由机械手开合凸轮(图中虚线)1控制,该凸轮的轮廓线是由两个半径不同的圆弧组成,机械手的夹紧主要靠弹簧力。
图12—6图12—4所示为由两个凸轮组合的顶糖、接糖机构,通过平面槽凸轮机构将糖顶起,由圆柱凸轮机构控制接糖杆的动作,完成接糖工作。
面向数控加工的圆柱分度凸轮刀具轨迹计算与模拟*摘要:介绍圆柱分度凸轮数控加工的方法,建立圆柱分度凸轮的刀具运动轨迹方程,给出在AutoCAD上实现圆柱凸轮NC加工的动态模拟和三维几何造型的过程。
结果表明:能够提高加工精度和效率,并可直接应用于生产实际。
关键词:圆柱分度凸轮; 刀具运动轨迹; 动态模拟中图分类号:TH132.47 文献标识码:ATool-path calculation and simulation of cylindrical index camfaced to NC machiningAbstract: A method of NC machining for cylindrical index cams is introduced, some equations of moving tool path to mill cams profile are established, processes to dynamically simulate of machining and to obtain 3D modeling of cylindrical index cams are presented on AutoCAD. The results indicate that the method can promote precision and efficiency of profile machining, and it can be directly applied to practice.Keywords:Cylindrical index cam; Moving tool path; Dynamic simulation圆柱分度凸轮是通过凸轮廓面与滚子啮合实现分度运动的。
凸轮呈圆柱状,凸轮轴线与分度盘轴线互相垂直交错,滚子轴线与分度盘轴线平行。
该机构的分度数大,且从动盘运动规律可任意选取,因此具有良好的运动特性和动力特性,振动、冲击、噪音比较小,这是其它机构所不能胜任的,广泛应用于各种自动机械的间歇转位分度以及自动生产线的步进输送中,凸轮分度机构是轻工、包装、电子、制药、烟草及化工等行业中,实现自动化、高效化生产的首选核心部件[1]。
圆柱凸轮分度机构的设计计算及运动仿真圆柱凸轮分度机构是一种常见的传动机构,用于将连续运动转换为间断运动。
它由凸轮、凸轮轴、旋转体、均衡轮、从动件和驱动件等部分组成。
设计计算和运动仿真是圆柱凸轮分度机构设计过程中的重要步骤,下面将对其进行详细介绍。
设计计算是圆柱凸轮分度机构设计的关键步骤之一、首先需要确定驱动件和从动件的构型。
通常,驱动件为凸轮轴,从动件为旋转体。
然后,需要根据要求的间断角度和转速计算凸轮的几何参数,如凸轮半径、凸轮高度和凸轮轴位置。
凸轮的几何参数决定了从动件的运动特性,如加速度和速度。
计算凸轮的几何参数时,可采用凸轮的设计曲线。
设计曲线可以通过将所需的运动规律与给定凹模曲线相叠加得到。
凹模曲线是一个以分度运动为基础的曲线,其参数对凸轮的运动特性有重要影响。
凹模曲线的形状和尺寸决定了从动件在分度运动过程中的加速度和速度的变化规律。
在完成设计计算后,需要进行运动仿真来验证设计的准确性和可行性。
运动仿真可以通过使用专业的仿真软件,如ADAMS(Automatic Dynamic Analysis of Mechanical Systems)来实现。
通过建立凸轮、凸轮轴、旋转体、均衡轮、从动件和驱动件的几何模型,并设置运动和约束条件,可以模拟圆柱凸轮分度机构的运动过程。
运动仿真可以得到从动件的运动规律和性能参数,例如位置、速度和加速度的变化规律。
通过对仿真结果的分析和评估,可以判断设计的合理性,并根据需要对凸轮的几何参数进行调整和优化,以满足运动要求。
综上所述,圆柱凸轮分度机构的设计计算和运动仿真是设计过程中不可或缺的步骤。
通过设计计算和运动仿真,可以确定凸轮的几何参数,并验证设计的准确性和可行性。
这为圆柱凸轮分度机构的制造和应用提供了重要的参考依据。
% 圆柱分度凸轮机构设计计算和运动分析% 函数文件1:绘制凸轮机构运动曲线(zxjs_ydxt.m)% 函数文件2:整理圆柱分度凸轮轮廓曲面三维坐标数据(zxjs_3Dzb.m)disp ' 用键盘输入已知条件:'n=input(' 凸轮转速(r/min) n = ');disp ' * 机构中心距C:凸轮轴线z1到转盘轴线z2的距离'C=input(' 机构中心距(mm) C = ');disp ' * 机构基距A:凸轮轴线z1到转盘基准端面O2x2y2的距离'A=input(' 机构基距(mm) A = ');disp ' * 选择凸轮头数H=1、2、3、4:'H=input(' 凸轮头数H = ');disp ' * 选择凸轮分度期转角theta_f=120~240度:'theta_f=input(' 凸轮分度期转角(度) theta_f = ');disp ' * 选择转盘分度数(按照工作机械工位要求)'I=input(' 转盘分度数I = ');disp ' * 选择凸轮分度廓线旋向(左旋L、右旋R):'LXX=input(' 凸轮分度廓线旋向LXX = ','s');% 1-圆柱分度凸轮机构运动分析% 凸轮角速度omega_1=pi*n/30;% 转盘滚子数z=H*I;% 凸轮停歇期转角theta_d=360-theta_f;% 转盘分度期转位角phi_f=360/I;% 机构分度期时间t_f和停歇期时间t_dhd=pi/180.0; % 角度转换为弧度的系数t_f=theta_f*hd/omega_1;t_d=theta_d*hd/omega_1;% 机构动停比k和运动系数tauk=t_f/t_d;tau=t_f/(t_f+t_d);% 凸轮分度廓线旋向系数if LXX=='L'p=1;elseif LXX=='R'p=-1;enddisp '======== 圆柱分度凸轮机构基本数据========'fprintf(' 凸轮转速n = %3.4f r/min \n',n)fprintf(' 机构中心距 C = %3.4f mm \n',C)fprintf(' 机构基距 A = %3.4f mm \n',A)fprintf(' 凸轮头数H = %3.0f \n',H)fprintf(' 凸轮分度廓线旋向LXX = %s \n',LXX)fprintf(' 转盘分度数I = %3.0f \n',I)fprintf(' 转盘滚子数z = %3.0f \n',z)fprintf(' 凸轮角速度omega_1 = %3.4f 1/s \n',omega_1)fprintf(' 凸轮分度期转角theta_f = %3.4f 度\n',theta_f)fprintf(' 凸轮停歇期转角theta_d = %3.4f 度\n',theta_d)fprintf(' 转盘分度期转角phi_f = %3.4f 度\n',phi_f)fprintf(' 机构分度期时间t_f = %3.4f s \n',t_f)fprintf(' 机构停歇期时间t_d = %3.4f s \n',t_d)fprintf(' 机构动停比k = %3.4f \n',k)fprintf(' 机构运动系数tau = %3.4f \n',tau)% 计算凸轮机构运动参数bc_theta=1; % 转角分度步长1~2度% 转盘分度期采用正弦加速运动规律i_zxjs=0;for theta=0:bc_theta:theta_fi_zxjs=i_zxjs+1;phi_2=phi_f*hd*(theta/theta_f-sin(2*pi*theta/theta_f)/(2*pi));omega_2=omega_1*phi_f/theta_f*(1-cos(2*pi*theta/theta_f));epsilon_2=omega_1^2*2*pi*phi_f/theta_f^2*sin(2*pi*theta/theta_f);zeta_2=omega_1^3*4*pi^2*phi_f/theta_f^3*cos(2*pi*theta/theta_f);omega_2_1=omega_2/omega_1;epsilon_2_1=epsilon_2/omega_1^2;zxjs(i_zxjs,:)=[theta phi_2 omega_2 epsilon_2 zeta_2 omega_2_1 epsilon_2_1];endfprintf(' 正弦加速运动参数数组行数i_zxjs = %3.0f \n',i_zxjs)% 输出圆柱分度凸轮机构运动参数[' 凸轮转角',' 转盘角位移',' 角速度',' 角加速度',' 跃度',' 角速度比',' 角加速度比'][zxjs(:,1),zxjs(:,2)/hd,zxjs(:,3),zxjs(:,4),zxjs(:,5),zxjs(:,6),zxjs(:,7)]disp ' 圆柱分度凸轮机构运动参数的最大值'Vm=2.00;Am=6.28;Jm=39.5; % 正弦加速运动加速运动部分的特征值omega_2_1_max=Vm*phi_f/theta_f;omega_2_max=Vm*phi_f/theta_f*omega_1;epsilon_2_max=Am*phi_f/theta_f^2*omega_1^2;zeta_2_max=Jm*phi_f/theta_f^3*omega_1^3;fprintf(' 最大角速度比omega_2_1_max = %3.4f \n',omega_2_1_max);fprintf(' 最大角速度omega_2_max = %3.4f \n',omega_2_max);fprintf(' 最大角加速度epsilon_2_max = %3.4f \n',epsilon_2_max);fprintf(' 最大跃度zeta_2_max = %3.4f \n',zeta_2_max);% 绘制凸轮机构运动曲线(调用正弦加速绘图M文件:zxjs_ydxt.m)zxjs_ydxt(zxjs,hd,theta_f)% 导出fig图形命令:openfig('YZ200-H1-I16-R_ydxt');% 2-圆柱分度凸轮机构几何尺寸计算disp ' 圆柱分度凸轮机构许用压力角一般为30~40度'alpha_p=input(' 确定许用压力角(度) alpha_p = ');% 转盘节圆半径Rp_2j=2*C/(1+cos(phi_f*hd/2)); % 转盘节圆半径计算值Rp_2=round(Rp_2j+0.5); % 对转盘节圆半径计算值四舍五入圆整% 凸轮节圆半径Rp_1j=Vm*Rp_2*phi_f/theta_f/tan(alpha_p*hd); % 凸轮节圆半径计算值fprintf(' 凸轮节圆半径计算值Rp_1j = %3.4f mm \n',Rp_1j);Rp_1=input(' 确定凸轮节圆半径(mm) Rp_1 = ');% 转盘滚子中心角phi_z=360/z;% 转盘滚子半径(fix是朝0方向取整函数)fprintf(' 转盘滚子半径最小值Rrmin = %3.4f mm \n',fix(0.4*Rp_2*sin(pi/z)));fprintf(' 转盘滚子半径最大值Rrmax = %3.4f mm \n',fix(0.6*Rp_2*sin(pi/z)));Rr=input(' 确定滚子半径(mm) Rr = ');% 转盘滚子宽度fprintf(' 转盘滚子宽度最小值bmin = %3.4f mm \n',fix(Rr));fprintf(' 转盘滚子宽度最大值bmax = %3.4f mm \n',fix(1.4*Rr));b=input(' 确定滚子宽度(mm) b = ');% 转盘滚子与凸轮槽底之间的间隙fprintf(' 转盘滚子与凸轮槽底间隙的最小值emin = %3.4f mm \n',fix(0.2*b));fprintf(' 转盘滚子与凸轮槽底间隙的最大值emax = %3.4f mm \n',fix(0.4*b));disp ' 转盘滚子与凸轮槽底至少取间隙值 e = 5~10 mm'e=input(' 确定滚子与凸轮槽底的间隙(mm) e = ');% 凸轮定位环面的径向深度h=b+e;% 凸轮定位环面的外圆直径Do=2*Rp_1+b;% 凸轮定位环面的内圆直径Di=Do-2*h;% 凸轮宽度fprintf(' 凸轮宽度的最小值Lmin = %3.4f mm \n',fix(2*Rp_2*sin(phi_f*hd/2)));fprintf(' 凸轮宽度的最大值Lmax = %3.4f mm \n',fix(2*Rp_2*sin(phi_f*hd/2)+2*Rr)); L=input(' 确定凸轮宽度(mm) L = ');% 转盘的外圆直径fprintf(' 转盘外圆直径的最小值D_2min = %3.4f mm \n',2*(Rp_2+Rr));D_2=input(' 确定转盘外圆直径(mm) D_2 = ');% 转盘基准端面到滚子宽度中点的轴向距离rG=A-Rp_1;% 转盘基准端面到滚子上端面的轴向距离rO=rG-b/2;% 转盘基准端面到滚子下端面的轴向距离re=rG+b/2;% 输出圆柱分度凸轮机构几何尺寸计算结果disp ' ======== 圆柱分度凸轮机构几何尺寸========'fprintf(' 许用压力角alpha_p = %3.4f 度\n',alpha_p); fprintf(' 凸轮节圆半径Rp_1 = %3.4f mm \n',Rp_1); fprintf(' 转盘节圆半径Rp_2 = %3.4f mm \n',Rp_2); fprintf(' 转盘滚子中心角phi_z = %3.4f 度\n',phi_z); fprintf(' 滚子半径Rr = %3.4f mm \n',Rr);fprintf(' 滚子宽度 b = %3.4f mm \n',b);fprintf(' 转盘滚子与凸轮槽底间隙 e = %3.4f mm \n',e);fprintf(' 凸轮定位环面的径向深度h = %3.4f mm \n',h);fprintf(' 凸轮定位环面的外圆直径Do = %3.4f mm \n',Do); fprintf(' 凸轮定位环面的内圆直径Di = %3.4f mm \n',Di); fprintf(' 凸轮宽度L = %3.4f mm \n',L);fprintf(' 转盘外圆直径D_2 = %3.4f mm \n',D_2); fprintf(' 转盘基准端面到滚子上端面的轴向距离rO = %3.4f mm \n',rO); fprintf(' 转盘基准端面到滚子宽度中点轴向距离rG = %3.4f mm \n',rG); fprintf(' 转盘基准端面到滚子上端面的轴向距离re = %3.4f mm \n',re);% 3-圆柱分度凸轮机构压力角的计算% 1#、2#、3#滚子的起始位置角(单位:度)phi0_1=-p*0.5*phi_z;phi0_2=p*0.5*phi_z;phi0_3=p*1.5*phi_z;% 计算1#、2#、3#滚子位置角(单位:度)phi=zeros(i_zxjs,3); % 变量初始化phi1=phi0_1-p.*zxjs(:,2); % zxjs(:,2)存储转盘角位移phi_2 phi2=phi0_2-p.*zxjs(:,2);phi3=phi0_3-p.*zxjs(:,2);phi=[phi1 phi2 phi3]; % 行-theta,列-滚子位置角% 转盘节圆半径处的压力角% 机构的角速度比(omega_2/omega_1)—数组zxjs(:,6)alpha_fz=Rp_2.*zxjs(:,6); % 计算压力角的分子数组alpha_fm_1=C-Rp_2.*cos(phi(:,1)); % 计算1#滚子压力角的分母数组alpha_1=atan2(alpha_fz,alpha_fm_1);alpha_fm_2=C-Rp_2.*cos(phi(:,2)); % 计算2#滚子压力角的分母数组alpha_2=atan2(alpha_fz,alpha_fm_2);alpha_fm_3=C-Rp_2.*cos(phi(:,3)); % 计算3#滚子压力角的分母数组alpha_3=atan2(alpha_fz,alpha_fm_3);% 绘制转盘节圆半径处与1#、2#、3#滚子相啮合的压力角变化线图figure(2);subplot(3,1,1);plot(zxjs(:,1),alpha_1/hd);title('转盘节圆半径处与1号滚子相啮合的压力角变化线图');grid;xlabel('凸轮转角\theta (^。
圆柱凸轮分度机构的设计计算及运动仿真摘要:圆柱凸轮分度机构主要用于两垂直轴间的运动。
当主动轴连续旋转运动时,从动件是装有多个滚子的转盘,可按设计要求作间歇步进分度转位运动,从而把连续旋转地输入运动形式转化为具有停歇区的分度运动输出形式。
本文主要介绍了圆柱凸轮分度机构方案的选择,理论廓线和工作廓线的计算方法。
利用c语言程序编写圆柱凸轮轨道的计算程序及利用matlab绘出凸轮轮廓曲线,同时利用三维造型软件完成主要零部件建模及利用Pro/E完成零部件装配及运动仿真。
本文还介绍了凸轮分度机构常用运动规律的主要特性比较及其使用场合,以及在设计过程中遇到的一些问题及解决方法。
关键词:圆柱凸轮分度机构,设计计算,实体建模,运动仿真1 总述1.1前言凸轮机构是使从动件作预期规律运动的高副机构。
其主要优缺点如下。
优点:○1从动件的运动规律可以任意拟定,凸轮机构可用于对从动件要求严格的地方,也可以用于要求从动件作间歇运动的地方,其运动时间与停歇时间比例以及次数都可以任意拟定。
可以高速启动,动作准确可靠。
○2只要设计相应的凸轮轮廓,就可以使从动件按拟定的规律运动。
一般中、低速凸轮的运动设计比较简单。
○3由于数控机床及计算机的广泛应用,特别是近些年来可以实现计算机辅助设计与制造使凸轮轮廓的加工并不十分困难。
缺点:○1在高副接触处难以保证良好的润滑,又因其压力较大,故容易磨损,为了保持必要的寿命,传递动力不能过大。
○2高速凸轮机构中,其高副接触处的动力学特性比较复杂,精确分析与设计都比较困难。
而在许多机械设备中,特别是自动化半自动化机械设计中,由于生产工艺的要求,往往需要机构来实现周期性的转位,分度动作以及带有瞬间停顿或停歇区的断续性运动。
这种输出曲线呈现周期性的机构称为间歇运动机构。
间歇运动机构广泛应用于机床、化工、轻工、印刷、电子、包装、食品机械、计量器具等行业。
机械运动机构种类繁多,随着科学技术的发展,加工效率的提高,高速、精密的间歇运动机构越来越多的得到使用。
毕业设计(论文)任务及指导书
、毕业设计(论文)任务(包括对工程图纸的具体要求)及设计参数
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2012年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字:
毕业设计(论文)任务及指导书
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字:
毕业设计(论文)任务及指导书
4•仔细整理设计思路,并写出答辩提纲。
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字:
毕业设计(论文)任务及指导书
金属切削机床、金属工艺学、机械制造技术基础等。
七、答辩之前学生应作的准备工作提要
1.逐项检查毕业设计(论文)所要求材料的完整性。
2.设计说明书按要求书写或打印在设计说明书用纸上,并装订成册,认真校对图纸有无错误。
3.认真消化说明书、图纸所表达的容,特别是重点、难点部分。
4.仔细整理设计思路,并写出答辩提纲。
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字: 毕业设计(论文)任务及指导书
题目来源实际工程项目□科研课题□教学模拟题目V其它
题目类型V工程设计型□科学研究型调研综述型□其它类型
一、毕业设计(论文)任务(包括对工程图纸的具体要求)及设计参数
(一)、需完成的任务
1•切断机的分类
2.工作原理
3.锯切运动系统设计
4.进给系统设计
5.夹具设计
二、专题部分要求
1、完成与设计相关的外文翻译一篇(不少于5000印刷字符)。
2、完成与设计相关的专题小论文一篇(不少于3000字)。
三、本题目的重点和难点以及与同组其它学生所做题目的关系
难点:新题目,资料缺乏。
重点:液压系统的设计
联系:一人一题,独自完成设计
四、指导方式和工作进度要求
指导方式:设计教室定点指导和通讯工具、网上指导。
进度:1--3周毕业实习、资料整理,提交实习报告,完成5000以上(含外文印刷符号)翻译工作及与设计题目相关的专题小论文的构思起草工作。
4 —16周完成毕业设计任务书规定的容
17周反复检查、提出问题、整理资料、准备答辩。
六、与本设计题目相关的理论知识(包括新知识)提要
金属切削机床、液压传动、机械制造技术基础等。
七、答辩之前学生应作的准备工作提要
1.逐项检查毕业设计(论文)所要求材料的完整性。
2.设计说明书按要求书写或打印在设计说明书用纸上,并装订成册,认真校对图纸有无错误。
3.认真消化说明书、图纸所表达的容,特别是重点、难点部分。
4.仔细整理设计思路,并写出答辩提纲。
注:本表容可根据题目特点和要求选取,表格可续页
指导教师签字:钟金豹任务下达时间2013年2月1日学生签字:。