高频_小位移加速度传感器标定方法研究
- 格式:pdf
- 大小:122.81 KB
- 文档页数:3
压电加速度传感器的灵敏度标定
(1-1)绝对标定(干涉法)
加速度传感器的灵敏度是以1g 的输出电压即mV/g 来表示的。
进行绝对标定时,需要对加振器产生的加速度(g)进行准确测量。
加振频率一定的情况下,通过测量加振台的位移来求出当时的加速度。
加振频率以及传感器的输出电压可以比较精确的测得,但是加振台的位移由于是数μ m 的程度,即使使用显微镜也难免会有人为的误差产生,所以无法得到精确值。
因此为了精确测量微小振幅,使用激光的迈克耳孙干涉仪。
图 1 是通过激光干涉法对加速度传感器进行绝对标定的框图。
图1. 利用激光干涉法的绝对标定
首先激光发振器发出的光通过光束分离器分为2个方向。
一方通过光束分离器的光被固定镜反射到受光器里。
另一方通过振动台上的振动镜反射到受光器,此时两者之间发生干涉。
由于这个干涉光最大为每束激光波长的 1/2,因此干涉环的频率和加振台的振幅,可以通过台面每周期运动时所包含的干涉环数量,即干涉环频率与加振台频率之比求得。
另外,作为光源的激光一般使用氦氖激光器(λ=0.6328μm)。
(1-2)比较法
比较标定法是把通过绝对标定后的加速度传感器作为标准传感器,其输出与被测传感器的输出进行比较。
因为操作简易一般的加速度传感器都用这个方法标定。
使用此方法需要特别注意是,如果标准传感器和被测传感器没有同时运动的话,就不能保证标定值的精确度。
因此,需要将两个传感器固定好。
图 2 是比较标定法的框图。
图2. 比较标定法。
加速度传感器的使用方法加速度传感器是一种常见的传感器,它可以检测和测量物体的加速度。
在很多领域中,加速度传感器都被广泛应用,例如智能手机、汽车、工业设备等。
本文将介绍加速度传感器的使用方法。
使用加速度传感器前需要了解其工作原理。
加速度传感器基于微机电系统(MEMS)技术,内部包含微小的质量和弹簧系统。
当物体加速度发生变化时,质量会受到力的作用而发生位移,传感器可以测量这个位移并转换成电信号输出。
接下来,我们来讨论加速度传感器的安装和连接。
通常情况下,加速度传感器会通过引脚连接到主控制器或数据采集设备。
在安装时,需要注意将传感器的引脚正确连接到相应的接口上,确保传感器与主控制器的通信正常。
在实际应用中,加速度传感器通常需要进行校准。
校准可以提高传感器的准确性和稳定性。
校准的过程包括确定传感器的零点偏移和灵敏度。
零点偏移是指在没有加速度作用下传感器输出的值,需要将其调整到零位。
灵敏度是指单位加速度变化引起的传感器输出变化,可以通过标定和校准来确定。
在使用加速度传感器时,还需要注意传感器的安装位置和方向。
传感器应尽可能与物体的加速度方向垂直安装,这样可以获得最准确的测量结果。
此外,传感器还需要避免受到外界干扰,如震动、温度变化等,这些干扰可能会影响传感器的测量结果。
在进行数据采集和处理时,可以使用相应的软件或编程语言来读取和解析传感器输出的数据。
通过分析传感器输出的数据,可以获取物体的加速度信息。
在某些应用中,还可以通过进一步处理和计算,获取物体的速度和位移等相关信息。
需要注意的是,在实际应用中,加速度传感器的测量范围和精度是很重要的指标。
不同的应用场景可能需要不同范围和精度的传感器。
在选择传感器时,需要根据具体需求来确定合适的型号和规格。
总结一下,加速度传感器是一种常用的传感器,可以用于测量物体的加速度。
在使用加速度传感器时,需要了解其工作原理,并正确安装和连接传感器。
校准和安装位置也是使用加速度传感器时需要注意的问题。
加速度传感器频响的自动标定0 引言在振动分析和测试中所用的加速度计在研制过程中需要对其频响进行测试。
根据频响曲线来标定其动态性能。
这方面的性能标定有比较法和绝对法两种。
传统的比较法标定过程中,正弦激励要手动调频,响应特性的测试也是人为逐点记录,整个过程不仅工作量大,而且因人为因素较多而产生较大误差[1]。
近年来,国内外市场上出现的频响分析仪解决了上述问题,可以自动测量信号频响特性,存储有效数据,以供绘图仪绘制响应曲线。
这类仪器虽然性能优良,但由于价格昂贵,未能在实际工作中得到广泛使用。
随着计算机的普及,各种测试和分析技术已向微机化、数字化发展,利用一台微机可完成多项工作。
1 系统的工作原理及组成加速度传感器动态标定的方法通常有绝对校准法和比较校准法。
绝对法常用于标定高精度传感器或标准传感器,比较法是工程中常用的校准方法。
比较法是将两只加速度传感器背靠背地安装在一起(或同一刚性支架上),其中一只为参考标准加速度传感器,它的全部技术性能是已知的;另一只为被校传感器,采用同样加速度a激励它们,则通过两只传感器的输出之间的关系求出被校传感器的技术性能。
这个系统就是基于比较法以486微机为主机,外配一块a/d、d/a接口板,用以采集传感器输出模拟信号。
接口板是北京华远公司生产的hy8011接口板。
该板有12位16通道a/d并有d/a输出,50hz采集通过率,程控增益及8253定时器等,其它的外围设备还有功率放大器,振动台以及打印机等,硬件组成框图如图1[2]。
标准加速度计与被校加速度传感器“背靠背”地安装在振动台上,振动台的正弦激励由微机控制接口板上d/a输出,通过功率放大器将小信号放大以推动振动台。
同时标准加速度计输出的信号分成两路,一路用于反馈回振动台控制系统,控制振动台台面加速度使之保持恒定;另一路与被校传感器的信号一道送入计算机[3]。
图1系统构成框图系统工作时选通微机中的定时中断,取出计算好的按正弦规律变换的数据,编程d/a口,经d/a口变换成模拟量,从而得到正弦信号。
用于微振动测量的高精度加速度传感器标定方法马功泊;李栋;岳志勇;冯国松【期刊名称】《航天器环境工程》【年(卷),期】2018(035)002【摘要】微振动试验中所用的加速度传感器简称高精度加速度传感器,其相比于常规加速度传感器测量量级很低,可以达到10-5g量级甚至更低,用常规的加速度动态标定技术无法实现该量级水平的标定,也无从验证其测量精度的准确性.针对高精度加速度传感器测试精度的标定难题,文章提出在气浮台上设置比对梁的方法,通过激光测振仪和高精度加速度传感器对同一测点进行测量,并将两者的测量结果进行比对分析,以标定高精度加速度传感器的低量级测试精度.同时设计试验对手头现有的微振动加速度传感器进行标定以验证该方法的有效性,试验结果表明:利用激光测振仪标定现有高精度加速度传感器得到的比对结果符合预期;高精度加速度传感器测得的时域波形及频域波形与激光测振仪测得的基本一致,比对偏差在10%左右,满足标定方法要求.【总页数】8页(P170-177)【作者】马功泊;李栋;岳志勇;冯国松【作者单位】北京卫星环境工程研究所,北京 100094;北京卫星环境工程研究所,北京 100094;北京卫星环境工程研究所,北京 100094;北京卫星环境工程研究所,北京100094【正文语种】中文【中图分类】TH824【相关文献】1.石英挠性加速度计测量航天器微振动的方法 [J], 赵伟;高青松;王海明;景春妍;孙迎萍2.基于石英挠性加速度计的卫星微振动测量控制单元的设计 [J], 高青松;赵伟;景春妍;李云鹏3.一种高精度转轴角加速度的测量方法 [J], 任云鹏;胡天友;刘鑫4.伺服加速度计用于高精度倾角测量的研究 [J], 王有隆;陈福深5.基于FPGA的高精度石英振梁加速度计频率测量方法研究 [J], 刘珑珑;孟俊芳因版权原因,仅展示原文概要,查看原文内容请购买。
一种基于六姿态模型的加速度计校准方法研究张文瑞;张丕状;翟子雄【摘要】MEMS加速度计和陀螺仪是惯性导航系统的重要测量组件.为提高惯性导航系统的测量精度,在使用加速度计前需要对其各项参数进行标定.在构建了一种理想的三轴MEMS加速度传感器输出与重力加速度值、零偏、标度因子之间的模型基础上,根据加速度计在静止状态下重力加速度在各轴分量的模值与重力加速度的关系,提出了一种零偏和标度因子的六姿态校准方法,并建立了标定方程.以MPU6050加速度陀螺仪为例,通过实验验证了该方法的正确性.结果表明:通过该校准方法可以有效地提高加速度传感器的零偏和标度因子技术指标精度.【期刊名称】《传感器与微系统》【年(卷),期】2016(035)003【总页数】4页(P37-39,48)【关键词】MEMS加速度计;零偏;标度因子;姿态校准【作者】张文瑞;张丕状;翟子雄【作者单位】中北大学仪器科学与动态测试教育部重点实验室,山西太原030051;中北大学仪器科学与动态测试教育部重点实验室,山西太原030051;中北大学仪器科学与动态测试教育部重点实验室,山西太原030051【正文语种】中文【中图分类】V249MEMS惯性器件以其结构简单、低成本、小体积等优势在太空、工业机器人及汽车领域取得了广泛的应用。
但是MEMS惯性器件的精度指标与其他同类传感器的精度相比要低得多,制约了它的进一步的应用。
目前,对三轴零偏和标度因子进行校准已经成为一个研究热点[1,2]。
MEMS加速度计的主要技术指标有零偏和标度因子。
由于批量生产工艺等方面的原因,产品的一致性不易精确控制,厂家给出的技术指标较低,难以满足一些高精度测量的需要,故对加速度计的各项系数进行标定非常重要。
目前普遍采用三轴转台上进行标定陀螺和加速度计[3],大量的研究集中在标定算法的解算上[4]。
这些方法以精密转台为实验平台,进行翻滚获取被标定传感器的实验数据,利用转台上的参考加速度计的姿态指向等信息,通过各种解算算法完成传感器标定。
用加速度传感器测量振动位移的方法
用加速度传感器测量振动位移的方法:
1、电涡流式振动传感器
电涡流式振动传感器是涡流效应为工作原理的振动式传感器,它属于非接触式传感器。
电涡流式振动传感器是通过传感器的端部和被测对象之间距离上的变化,来测量物体振动参数的。
电涡流式振动传感器主要用于振动位移的测量
2,电感式振动传感器
电感式振动传感器是依据电磁感应原理设计的一种振动传感器。
电感式振动传感器设置有磁铁和导磁体,对物体进行振动测量时,能将机械振动参数转化为电参量信号。
电感式振动传感器能应用于振动速度、加速度等参数的测量。
3、电容式振动传感器
电容式振动传感器是通过间隙或公共面积的改变来获得可变电容,再对电容量进行测定而后得到机械振动参数的。
电容式振动传感器可以分为可变间隙式和可变公共面积式两种,前者可以用来测量直线振动位移,后者可用于扭转振动的角位移测定。
4、压电式振动传感器.
压电式振动传感器是利用晶体的压电效应来完成振动测量的,当被测物体的振动对压电式振动传感器形成压力后,晶体元件就会产生相应的电荷,电荷数即可换算为振动参数。
压电式振动传感器还可以分为压电式加速度传感器、压电式力传感器和阻抗头,
5、电阻应变式振动传感器
电阻应变式振动传感器是以电阻变化量来表达被测物体机械振动量的一种振动传感器。
电阻应变式振动传感器的实现方式很多,可以应用各种传感元件,其中较为常见的是电阻应变片。
加速度传感器原理结构使用说明校准和参数解释加速度传感器(Accelerometer)是一种用于测量物体加速度的传感器。
它的原理基于牛顿力学中的惯性原理,即物体的加速度与作用在物体上的力成正比,反向与物体的质量成反比。
下面将详细介绍加速度传感器的原理、结构、使用说明、校准和参数解释。
一、原理:加速度传感器的原理基于微机电系统(MEMS)技术或压电效应。
在MEMS加速度传感器中,通常使用微小的质量(如悬臂梁、微弹簧等)和微型电容或电阻来测量物体的加速度。
当物体加速度改变时,微小的质量会相对于传感器的壳体发生位移,从而改变传感器内部的电容或电阻值。
通过测量电容或电阻值的变化,就可以计算出物体的加速度。
在压电式加速度传感器中,传感器内部包含压电材料,当物体加速度改变时,压电材料会产生电荷,通过测量电荷的大小,可以计算出物体的加速度。
二、结构:加速度传感器的结构通常包括感应质量(Mass)、感应结构(Spring)、感应电容或电阻、壳体等部分。
感应质量是传感器内部的微小质量,感应结构用于支撑感应质量并产生位移,感应电容或电阻用于测量感应质量的位移,壳体则用于保护传感器内部的结构。
三、使用说明:1.安装:将加速度传感器固定在需要测量加速度的物体上,确保传感器与物体之间的接触良好,并且传感器的测量轴与物体的加速度方向一致。
2.供电:连接传感器的供电电源,通常为直流电源或电池。
3.输出:连接传感器的输出接口,获取传感器的加速度数据。
常见的输出接口包括模拟电压输出、数字串行接口(如I2C、SPI等)等。
4.数据处理:将传感器输出的原始数据进行处理,根据传感器的校准参数将原始数据转换为实际的加速度值。
5.数据分析:根据需要对加速度数据进行分析,如计算速度、位移、碰撞检测等。
四、校准:1.静态校准:将传感器放置在水平平稳的表面上,采集传感器输出的静态加速度数据,并与真实的重力加速度(9.8m/s²)进行比较,通过调整传感器的校准参数,使得传感器输出的静态加速度数据接近真实的重力加速度。
加速度计标定方法(一)加速度计标定标定是指校准传感器以确保其准确度和可靠性的过程。
在加速度计(accelerometer)使用过程中,进行加速度计标定是非常重要的一步,它能够提高测量结果的准确性。
本文将介绍几种常见的加速度计标定方法,以帮助读者更好地理解和应用加速度计。
方法一:零偏标定(Zero Offset Calibration)零偏标定主要是通过采集静态状态下的数据进行校准,步骤如下:1.将加速度计放置在稳定的平面上,确保不发生位移。
2.采集一段时间的数据,通常在几秒钟到一分钟之间。
3.计算采集到的数据的平均值,并将其作为零偏值。
方法二:尺度因子标定(Scale Factor Calibration)尺度因子标定方法可以校准加速度计的感受性(sensitivity),即加速度计输出和实际加速度之间的比例关系。
下面是一种常见的尺度因子标定方法:1.加速度计放置在重力加速度已知的平面上。
2.测量加速度计输出的数值,并将其除以已知的重力加速度,得到尺度因子。
3.重复上述步骤多次,并计算尺度因子的平均值。
方法三:轴对齐标定(Axis Alignment Calibration)轴对齐标定用于校准加速度计的坐标轴与参考坐标系之间的偏移。
通常,加速度计的坐标轴与参考坐标系的三个轴并不完全对齐,因此需要进行轴对齐标定。
以下是一种常用的轴对齐标定方法:1.放置加速度计在一个固定的平面上,该平面的方向与参考坐标系的一个轴尽可能保持一致。
2.通过施加静态的加速度(例如,旋转平面)或应用静态的力对加速度计进行刺激。
3.记录加速度计的输出并分析数据,计算出与参考坐标系的轴对齐的偏移量。
方法四:温度补偿标定(Temperature Compensation Calibration)温度补偿标定用于校准加速度计在不同温度下的输出变化。
由于温度会对加速度计的性能产生影响,因此温度补偿标定是非常重要的。
以下是一种常用的温度补偿标定方法:1.在不同温度下,分别对加速度计进行静态状态下的测量。