高考排列组合、概率知识点总结及典型例题(教师版)
- 格式:doc
- 大小:1.78 MB
- 文档页数:42
高考数学专题七:排列、组合、二项式定理一、高考考试说明计数原理(1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.(2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.(3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.(4)会用二项式定理解决与二项展开式有关的简单问题.二、核心知识点归纳:一、分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.注意:1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.二、排列与组合1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m 个元素的排列数,记作A错误!.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m 个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C错误!.3.排列数、组合数的公式及性质注意:1.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.2.计算A错误!时易错算为n(n—1)(n—2)…(n—m).3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数.4.排列问题与组合问题的识别方法:!转化为计算C错误!.二是列等式,由C错误!=C错误!可得x=y或x+y=n.性质(3)主要用于恒等变形简化运算.三、二项式定理1.二项式定理(1)定理:公式(a+b)n=C错误!a n+C错误!a n—1b+…+C错误!a n—k b k+…+C错误!b n(n∈N*)叫做二项式定理.(2)通项:T k+1=C错误!a n—k b k为展开式的第k+1项.2.二项式系数与项的系数(1)二项式系数:二项展开式中各项的系数C错误!(k∈{0,1,…,n})叫做二项式系数.(2)项的系数:项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念.3.二项式系数的性质4.各二项式系数的和(a+b)n的展开式的各个二项式系数的和等于2n,即C错误!+C错误!+C错误!+…+C错误!+…+C错误!=2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C错误!+C错误!+C错误!+…=C错误!+C错误!+C错误!+…=2n—1.注意1.二项式的通项易误认为是第k项实质上是第k+1项.2.(a+b)n与(b+a)n虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a与第二个量b的位置不能颠倒.3.易混淆二项式中的“项”,“项的系数”、“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C错误!(k=0,1,…,n).三、典型例题讲解:一、计数原理考点一:分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数共有()A.50个B.45个C.36个D.35个解析:选C 利用分类加法计数原理:8+7+6+5+4+3+2+1=36(个).2.五名篮球运动员比赛前将外衣放在休息室,比赛后都回到休息室取衣服.由于灯光暗淡,看不清自己的外衣,则至少有两人拿对自己的外衣的情况有()A.30种B.31种C.35种D.40种解析:选B 分类:第一类,两人拿对:2×C错误!=20种;第二类,三人拿对:C错误!=10种;第三类,四人拿对与五人拿对一样,所以有1种.故共有20+10+1=31种.3.(2013·三门峡模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:选B 设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).考点二:分布乘法计数原理[典例](2014·本溪模拟)如图所示的几何体是由一个正三棱锥PABC与正三棱柱ABCA1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.[解析] 先涂三棱锥PABC的三个侧面,然后涂三棱柱的三个侧面,共有C错误!×C错误!×C错误!×C错误!=3×2×1×2=12种不同的涂法.[答案] 12[针对训练]在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,则实验顺序的编排方法共有()A.24种B.48种C.96种D.144种解析:选C 第一步安排A有2种方法;第二步在剩余的5个位置选取相邻的两个排B,C,有4种排法,而B,C位置互换有2种方法;第三步安排剩余的3个程序,有A错误!种排法,共有2×4×2×A错误!=96种.考点三:两个原理的综合应用[典例] (2014·黄冈质检)设集合I={1,2,3,4,5}.选择集合I的两个非空子集A和B,若集合B中最小的元素大于集合A中最大的元素,则不同的选择方法共有()A.50种B.49种C.48种D.47种[解析] 从5个元素中选出2个元素,小的给集合A,大的给集合B,有C错误!=10种选择方法;从5个元素中选出3个元素,有C错误!=10种选择方法,再把这3个元素从小到大排列,中间有2个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是2,故此时有10×2=20种选择方法;从5个元素中选出4个元素,有C错误!=5种选择方法,从小到大排列,中间有3个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是3,故此时有5×3=15种选择方法;从5个元素中选出5个元素,有C错误!=1种选择方法,同理隔开方法有4种,故此时有1×4=4种选择方法.根据分类加法计数原理,总计为10+20+15+4=49种选择方法.故选B.[答案] B本例中条件若变为“A={1,2,3,4},B={5,6,7},C={8,9}现从中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合”,则可以组成多少个集合?解:(1)选集合A,B,有C错误!C错误!=12;(2)选集合A,C,有C错误!C错误!=8;(3)选集合B,C,有C错误!C错误!=6;故可以组成12+8+6=26个集合.[针对训练]上海某区政府召集5家企业的负责人开年终总结经验交流会,其中甲企业有2人到会,其余4家企业各有1人到会,会上推选3人发言,则这3人来自3家不同企业的可能情况的种数为________.解析:若3人中有一人来自甲企业,则共有C错误!C错误!种情况,若3人中没有甲企业的,则共有C错误!种情况,由分类加法计数原理可得,这3人来自3家不同企业的可能情况共有C错误!C错误!+C 错误!=16(种).答案:16二、排列组合考点一:排列问题1.数列{a n}共有六项,其中四项为1,其余两项各不相同,则满足上述条件的数列{a n}共有()A.30个B.31个C.60个D.61个解析:选A 在数列的六项中,只要考虑两个非1的项的位置,即得不同数列,共有A错误!=30个不同的数列.2.(2013·东北三校联考)在数字1,2,3与符号“+”,“—”这五个元素的所有全排列中,任意两个数字都不相邻的全排列方法共有()A.6种B.12种C.18种D.24种解析:选B 本题主要考查某些元素不相邻的问题,先排符号“+”,“—”,有A错误!种排列方法,此时两个符号中间与两端共有3个空位,把数字1,2,3“插空”,有A错误!种排列方法,因此满足题目要求的排列方法共有A错误!A错误!=12种.3.(2013·西安检测)8名游泳运动员参加男子100米的决赛,已知游泳池有从内到外编号依次为1,2,3,4,5,6,7,8的8条泳道,若指定的3名运动员所在的泳道编号必须是3个连续数字(如:5,6,7),则参加游泳的这8名运动员被安排泳道的方式共有()A.360种B.4320种C.720种D.2160种解析:选B 法一:先从8个数字中取出3个连续的数字共有6种方法,将指定的3名运动员安排在这3个编号的泳道上,剩下的5名运动员安排在其他编号的5条泳道上,共有6A错误!A错误!=4320种安排方式.法二:先将所在的泳道编号是3个连续数字的3名运动员全排列,有A错误!种排法,然后把他们捆绑在一起当作一名运动员,再与剩余5名运动员全排列,有A错误!种排法,故共有A错误!A错误!=4320种安排方式.[类题通法]求解排列应用题的主要方法考点二:组合问题[典例] (2013·重庆高考)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).[解析] 直接法分类,3名骨科,内科、脑外科各1名;3名脑外科,骨科、内科各1名;3名内科,骨科、脑外科各1名;内科、脑外科各2名,骨科1名;骨科、内科各2名,脑外科1名;骨科、脑外科各2名,内科1名.所以选派种数为C错误!·C错误!·C错误!+C错误!·C错误!·C错误!+C错误!·C错误!·C 错误!+C错误!·C错误!·C错误!+C错误!·C错误!·C错误!+C错误!·C错误!·C错误!=590.[答案] 590[针对训练](2013·四平质检)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种解析:选A 法一(间接法):当选择的3名医生都是男医生或都是女医生时,共有C错误!+C错误!=14种组队方案.当从9名医生中选择3名医生时,共有C错误!=84种组队方案,所以男、女医生都有的组队方案共有84—14=70种.法二(直接法):当小分队中有1名女医生时,有C错误!C错误!=40种组队方案;当小分队中有2名女医生时,有C错误!C错误!=30种组队方案,故共有70种不同的组队方案.考点三:分组分配问题角度一整体均分问题1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.解析:先把6个毕业生平均分成3组,有错误!种方法,再将3组毕业生分到3所学校,有A错误!=6种方法,故6个毕业生平均分到3所学校,共有错误!·A错误!=90种分派方法.答案:90角度二部分均分问题2.将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有________种.(用数字作答)解析:把6本不同的书分成4组,每组至少1本的分法有2种.1有1组3本,其余3组每组1本,不同的分法共有错误!=20种;2有2组每组2本,其余2组每组1本,不同的分法共有错误!·错误!=45种.所以不同的分组方法共有20+45=65种.然后把分好的4组书分给4个人,所以不同的分法共有65×A错误!=1560种.答案:1560角度三不等分问题3.将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.解析:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C错误!种取法;第2步,在余下的5名教师中任取2名作为一组,有C错误!种取法;第3步,余下的3名教师作为一组,有C错误!种取法.根据分步乘法计数原理,共有C错误!C错误!C错误!=60种取法.再将这3组教师分配到3所中学,有A错误!=6种分法,故共有60×6=360种不同的分法.答案:360二、二项式定理考点一二项式的特定项或特定项的系数1.(2013·江西高考)错误!5展开式中的常数项为()A.80 B.—80C.40 D.—40解析:选C T r+1=C错误!·(x2)5—r·错误!r=C错误!·(—2)r·x10—5r,令10—5r=0,得r=2,故常数项为C错误!×(—2)2=40.2.(2014·浙江五校联考)在错误!5的展开式中x的系数为()A.5B.10C.20 D.40解析:选B ∵T r+1=C错误!(x2)5—r错误!r=C错误!x10—3r,∴x的系数为C错误!=10,故选B.3.(2013·安徽高考)若错误!8的展开式中x4的系数为7,则实数a=________.解析:二项式错误!8展开式的通项为T r+1=C错误!a r x483r-,令8—错误!r=4,可得r=3,故C错误!a3=7,易得a=错误!.答案:错误![类题通法]求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r+1,代回通项公式即可.考点二二项式系数和各项系数和问题[典例] (1)(2014·北京西城一模)若错误!m的展开式中二项式系数之和为128,则展开式中错误!的系数是()A.21B.—21C.7 D.—7(2)(2013·成都诊断)若(1—2x)4=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a 4=________.[解析] (1)∵2m=128,∴m=7,∴展开式的通项T r+1=C错误!(3x)7—r·错误!r=C错误!37—r(—1)r x573r-,令7—错误!r=—3,解得r=6,∴错误!的系数为C错误!37—6(—1)6=21,故选A.(2)令x=1可得a0+a1+a2+a3+a4=1,令x=0,可得a0=1,所以a1+a2+a3+a4=0.[答案] (1)A (2)0在本例(2)中条件不变,问题变为“求|a0|+|a1|+|a2|+|a3|+|a4|的值”.解:由题意知(1+2x)4=a0+|a1|x+|a2|x2+|a3|x3+|a4|x4,令x=1得a0+|a1|+|a2|+|a3|+|a4|=34=81.[针对训练]若(1—2x)2013=a0+a1x+a2x2+…+a2013x2013,则错误!+错误!+…+错误!=________.解析:当x=0时,左边=1,右边=a0,∴a0=1.当x=错误!时,左边=0,右边=a0+错误!+错误!+…+错误!,∴0=1+错误!+错误!+…+错误!.即错误!+错误!+…+错误!=—1答案:—1考点三多项式展开式中的特定项(系数问题)在高考中,常常涉及一些多项式二项式问题,主要考查学生的化归能力,归纳起来常见的命题角度有:1几个多项式和的展开式中的特定项系数问题;2几个多项式积的展开式中的特定项系数问题;3三项展开式中的特定项系数问题.角度一几个多项式和的展开式中的特定项问题1.错误!4+错误!8的展开式中的常数项为()A.32B.34C.36 D.38解析:选D 错误!4的展开式的通项为T m+1=C错误!(x3)4—m·错误!m=C错误!(—2)m x12—4m,令12—4m=0,解得m=3,错误!8的展开式的通项为T n+1=C错误!x8—n错误!n=C错误!x8—2n,令8—2n=0,解得n=4,所以所求常数项为C错误!(—2)3+C错误!=38.角度二几个多项式积的展开式中的特定项(系数)问题2.(2013·全国课标卷Ⅱ)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=()A.—4B.—3C.—2D.—1解析:选D 展开式中含x2的系数为C错误!+a C错误!=5,解得a=—1,故选D.角度三三项展开式中特定项(系数)问题3.错误!5的展开式中的常数项为________.(用数字作答)解析:原式=错误!5=错误!·[错误!2]5=错误!错误!10.求原式的展开式中的常数项,转化为求错误!10的展开式中含x 5项的系数,即C 错误!·错误!5. 所以所求的常数项为错误!=错误!.答案:错误!四、近年新课标高考试题1、(10.)(x 2+x+y )5的展开式中,x 5y 2的系数为( )A. 10 B. 20 C. 30 D. 60解:(x 2+x+y )5的展开式的通项为T r+1=,令r=2,则(x 2+x )3的通项为=, 令6—k=5,则k=1,∴(x 2+x+y )5的展开式中,x 5y 2的系数为=30.故选:C. 2、(5).4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )A .18B .38C .58D .78选D3、(13)8()()x y x y -+的展开式中22x y 的系数为 .(用数字填写答案)答案:—204、(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A.5 B.6 C.7 D.8答案:B解析:由题意可知,a =2C m m ,b =21C m m +,又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+), 即132171m m +=+.解得m =6.故选B. 5、2.将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有A. 12种 B. 10种 C. 9种 D. 8种【解析】选A.只需选定安排到甲地的1名教师2名学生即可,共1224C C 种安排方案.6、(15.作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)服从正态分布 )50,1000(2N ,且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 .【解析】38. 由已知可得,三个电子元件使用寿命超过1000小时的概率均为211311228⎡⎤⎛⎫--⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以该部件的使用寿命超过1000小时的概率为211311228⎡⎤⎛⎫--⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.7、((4))有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A 8、((8))512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 (A )—40 (B )—20 (C )20 (D )40解析1.令x=1得a=1.故原式=511()(2)x x x x +-。
排列组合概率例题与讲解排列、组合与概率一、基本知识点回顾:(一)排列、组合1、知识结构表:2、两个基本原理:(1)分类计数原理(2)分步计数原理3、排列(1)排列、排列数定义(2)排列数公式:(3)全排列公式:4、组合(1)组合、组合数定义(2)组合数公式:(3)组合数性质:①②③④⑤即:5、思想方法(1)解排列组合应用题的基本思路:①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步②对“组合数”恰当的分类计算是解组合题的常用方法;③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;(2)解排列组合题的基本方法:①优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
③分类处理:某些问题总体不好解决时,常常分成若干类,再由分类计数原理得出结论;注意:分类不重复不遗漏。
④分步处理:对某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决;在解题过程中,常常要既要分类,以要分步,其原则是先分类,再分步。
⑤插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间。
⑥捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列。
⑦穷举法:将所有满足题设条件的排列与组合逐一列举出来;这种方法常用于方法数比较少的问题。
(二)二项式定理历年高考中对二项式定理的考查主要有以下两种题型:1、求二项展开式中的指定项问题:方法主要是运用二项式展开的通项公式;2、求二项展开式中的多个系数的和:此类问题多用赋值法;要注意二项式系数与项的系数的区别;(三)概率1、随机事件的概率2、等可能事件的概率:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是,如果某个事件A包容的结果有m个,那么事件A的概率;3、互斥事件的概率:(1)互斥事件:试验时不可能同时发生的两个事件叫做互斥事件;对立事件:试验时如果两个互斥事件A、B必有一个发生,那么称A、B为对立事件;(2) 互斥事件有一个发生的概率:设A、B互斥,把A、B中有一个发生的事件记为A+B,则有:P(A+B)=P(A)+P(B)(3) 把一个事件A的对立事件记为,则:4、相互独立事件的概率:(1)相互独立事件:事件A是否发生对事件B发生的概率没有影响,这样的两个事件叫做相互独立事件;(2)相互独立事件同时发生的概率:两个相互独立事件A、B同时发生的事件记作,则:(3) 独立重复试验:如果一次试验中某事件发生的概率是p,那么n次独立重复试验中这个事件恰好发生k次的概率为:5、解概率题关键是把应用题转化为相应的概率模型,即要弄清所求事件是属于何种事件,然后利用相关的公式进行计算。
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一1.公式:1.2.(1) (2) ;(3)三.组合:从n 个不同元素中任取m (m≤n)个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若四.处理排列组合应用题1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
(4)两种途径:①元素分析法;②位置分析法。
3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
高考数学知识点专题精讲与知识点突破排列、组合、二项式、概率一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。
(2)排列数、组合数: 排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:n ; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。
第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。
g a o o 2. ! ①;②;③;④[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2 28步,那么共有C=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有213种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C种分法,然132后再分到两部门去共有C A种方法,第三步只需将其他3人分成两组,一组1人另一组213人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C种13213方法,由分步乘法计数原理共有2C A C=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36123[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C·A=12个;1233②所得空间直角坐标系中的点的坐标中含有1个1的有C·A+A=18个;13③所得空间直角坐标系中的点的坐标中含有2个1的有C=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.144213223[解析] 分两类:若1与3相邻,有A·C A A=72(个),若1与3不相邻有forsos的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选。
一.基来历根基理之袁州冬雪创作1.加法原理:做一件事有n 类法子,则完成这件事的方法数等于各类方法数相加.2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘. 注:做一件事时,元素或位置允许重复使用,求方法数时常常使用基来历根基理求解.二.摆列:从n 个分歧元素中,任取m (m≤n)个元素,依照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个分歧元素中任取m (m≤n)个元素并组成一组,叫做从n 个分歧的m 元素中任取 m 个元素的组合数,记作 Cn .1. 公式: ()()()C A A n n n m m n m n m n m n m mm ==--+=-11……!!!!10=n C 规定: ①;②;③;④若12m m 1212m =m m +m n n n C C ==则或四.处理摆列组合应用题 1.①明白要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类.2.解摆列、组合题的基本战略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体思索,再把不符合条件的所有情况去掉.这是处理摆列组合应用题时一种常常使用的解题方法.(2)分类处理:当问题总体欠好处理时,常分成若干类,再由分类计数原理得出结论.注意:分类不重复不遗漏.即:每两类的交集为空集,所有各类的并集为全集.(3)分步处理:与分类处理近似,某些问题总体欠好处理时,常常分成若干步,再由分步计数原理处理.在处理摆列组合问题时,常常既要分类,又要分步.其原则是先分类,后分步.(4)两种途径:①元素分析法;②位置分析法.3.摆列应用题:(1)穷举法(罗列法):将所有知足题设条件的摆列与组合逐一罗列出来; (2)、特殊元素优先思索、特殊位置优先思索;(3).相邻问题:捆邦法:对于某些元素要求相邻的摆列问题,先将相邻接的元素“绑缚”起来,看做一“大”元素与其余元素摆列,然后再对相邻元素外部停止摆列.(4)、全不相邻问题,插空法:某些元素不克不及相邻或某些元素要在某特殊位置时可采取插空法.即先安插好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两头的空地之间拔出.(5)、顺序一定,除法处理.先排后除或先定后插解法一:对于某几个元素按一定的顺序摆列问题,可先把这几个元素与其他元素一同停止全摆列,然后用总的摆列数除于这几个元素的全摆列数.即先全排,再除以定序元素的全摆列.解法二:在总位置中选出定序元素的位置不参与摆列,先对其他元素停止摆列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左摆列,则只有1种排法;若不要求,则有2种排法;(6)“小团体”摆列问题——采取先整体后部分战略对于某些摆列问题中的某些元素要求组成“小团体”时,可先将“小团体”看做一个元素与其余元素摆列,最后再停止“小团体”外部的摆列.(7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排思索,再分段处理.(8).数字问题(组成无重复数字的整数)① 能被2整除的数的特征:末位数是偶数;不克不及被2整除的数的特征:末位数是奇数.②能被3整除的数的特征:各位数字之和是3的倍数;③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数. ⑤能被5整除的数的特征:末位数是0或5.⑥能被25整除的数的特征:末两位数是25,50,75. ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数.4.组合应用题:(1).“至少”“至多”问题用间接解除法或分类法: (2).“含”与“不含” 用间接解除法或分类法:3.分组问题:平均分组:分步取,得组合数相乘,再除以组数的阶乘.即除法处理.非平均分组:分步取,得组合数相乘.即组合处理.混合分组:分步取,得组合数相乘,再除以平均分组的组数的阶乘.4.分配问题:定额分配:(指定到详细位置)即固定位置固定人数,分步取,得组合数相乘.随机分配:(不指定到详细位置)即不固定位置但固定人数,先分组再摆列,先组合分堆后排,注意平均分堆除以平均分组组数的阶乘.5.隔板法:不成分辨的球即相同元素分组问题例1.电视台持续播放6个广告,其中含4个分歧的商业广告和2个分歧的公益广告,要求首尾必须播放公益广告,则共有种分歧的播放方式(成果用数值暗示).例3.6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高摆列,有多少种排法?1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则分歧的取法共有2.从5名男生和4名女生中选出4人去参与辩论比赛(1)如果4人中男生和女生各选2人,有种选法;(2)如果男生中的甲与女生中的乙必须在内,有种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;(4)如果4人中必须既有男生又有女生,有种选法1.6个人分乘两辆分歧的汽车,每辆车最多坐4人,则分歧的乘车方法数为( ) A.40 B.50 C.60 D.702.有6个座位连成一排,现有3人就座,则恰有两个空座位相邻的分歧坐法有( )A.36种B.48种 C.72种D.96种3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不克不及相邻出现,这样的四位数有( )A.6个B.9个 C.18个D.36个4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种分歧的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种 C.28种D.25种6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部分,其中两名英语翻译人员不克不及分在同一个部分,别的三名电脑编程人员也不克不及全分在同一个部分,则分歧的分配方案共有( )A.24种B.36种 C.38种D.108种7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的分歧点的个数为( )8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72 B.96 C.108 D.1449.如果在一周内(周一至周日)安插三所学校的学生观赏某展览馆,天天最多只安插一所学校,要求甲学校持续观赏两天,其余学校均只观赏一天,那末分歧的安插方法有( )A.50种B.60种 C.120种D.210种10.安插7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不克不及安插在5月1日和2日,分歧的安插方法共有________种.(用数字作答)11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种分歧的排法.(用数字作答)12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个分歧场馆服务,分歧的分配方案有________种(用数字作答).14. 将标号为1,2,3,4,5,6的6张卡片放入3个分歧的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则分歧的方法共有(A )12种 (B )18种 (C )36种 (D )54种15. 某单位安插7位员工在10月1日至7日值班,天天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则分歧的安插方案共有A. 504种B. 960种C. 1008种D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种分歧的排法摆列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类法子相互独立每类法子又有多种分歧的法子(每种都可以独立的完成这个事情)分步计数原理 完成一件事,需要分几个步调,每步的完成有多种分歧的方法 2,摆列摆列定义:从n 个分歧元素中,任取m (m≤n)个元素(被取出的元素各不相同),依照一定的顺序排成一列,叫做从n 个分歧元素中取出m 个元素的一个摆3,组合组合定义 从n 个分歧元素中,任取m (m≤n)个元素并成一组,叫做从n 个分歧元素中取出m 个元素的一个组合组合数 从n 个分歧元素中,任取m (m≤n)个元素的所有组合个数 m n C m n C =!!()!n m n m - 性质 m nC =n m n C -11m m m n n n C C C -+=+ 摆列组合题型总结一. 直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求知足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位.Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个分歧的三位数? Eg 三个女生和五个男生排成一排(1) 女生必须全排在一起 有多少种排法( 绑缚法)(2) 女生必须全分开 (插空法 须排的元素必须相邻)(3) 两头不克不及排女生(4) 两头不克不及全排女生(5) 如果三个女生占前排,五个男生站后排,有多少种分歧的排法二. 插空法 当需排元素中有不克不及相邻的元素时,宜用插空法.例3 在一个含有8个节目标节目单中,姑且拔出两个歌唱节目,且坚持原节目顺序,有多少中拔出方法?绑缚法 当需排元素中有必须相邻的元素时,宜用绑缚法.1.四个分歧的小球全部放入三个分歧的盒子中,若使每个盒子不空,则分歧的放法有种,2,某市植物园要在30天内欢迎20所学校的学生观赏,但天天只能安插一所学校,其中有一所学校人数较多,要安插持续观赏2天,其余只观赏一天,则植物园30天内分歧的安插方法有(1928129A C )(注意持续观赏2天,即需把30天种的持续两天绑缚当作一天作为一个整体来选有129C 其余的就是19所学校选28天停止摆列)三. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种 .五平均分推问题eg 6本分歧的书按一下方式处理,各有几种分发?(1)平均分成三堆,(2)平均分给甲乙丙三人(3)一堆一本,一堆两本,一对三本(4)甲得一本,乙得两本,丙得三本(一种分组对应一种方案)(5)一人的一本,一人的两本,一人的三本。
高考数学总复习考点知识专题讲解专题8 排列与组合知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列相同的条件两个排列相同的充要条件:(1)两个排列的元素完全相同.(2)元素的排列顺序也相同.【例1】判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互打电话.知识点三 排列数的定义从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 知识点四 排列数公式及全排列 1.排列数公式的两种形式(1)A m n =n (n -1)(n -2)…(n -m +1),其中m ,n ∈N *,并且m ≤n .(2)A m n =n !(n -m )!. 2.全排列:把n 个不同的元素全部取出的一个排列,叫做n 个元素的一个全排列,全排列数为A n n =n !(叫做n 的阶乘).规定:0!=1. 【例2】(2023•泰州期末)678910⨯⨯⨯⨯可以表示为()A .410AB .510AC .410CD .510C【例3】(2023•莱州市开学)已知18934x x A A -=,则x 等于() A .6B .13C .6或13D .12【例4】(2023•浑南区期末)12320222232022232022M A A A A =++++,20232023N A =,则M 与N 的大小关系是()A .M N =B .M N >C .M N <D .M N …知识点五“相邻”与“不相邻”问题相邻问题捆绑法,不相邻问题插空法.【例5】3名男生,4名女生,这7个人站成一排在下列情况下,各有多少种不同的站法? (1)男、女各站在一起;(2)男生必须排在一起;(3)男生不能排在一起;(4)男生互不相邻,且女生也互不相邻.【例6】(2023•香坊区期末)加工某种产品需要5道工序,分别为A,B,C,D,E,其中工序A,B必须相邻,工序C,D不能相邻,那么有()种加工方法.A.24B.32C.48D.64【例7】(2023•沈阳模拟)甲、乙、丙、丁、戊、己6人站成一排拍合照,要求甲必须站在中间两个位置之一,且乙、丙2人相邻,则不同的排队方法共有() A.24种B.48种C.72种D.96种知识点六定序问题用除法对于定序问题,可采用“除阶乘法”解决.即用不限制的排列数除以顺序一定元素的全排列数.【例8】7人站成一排.(1)甲必须在乙的前面(不一定相邻),则有多少种不同的排列方法?(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少不同的排列方法?知识点七特殊元素的“在”与“不在”问题分析法对于“在”与“不在”问题,可采用“特殊元素优先考虑,特殊位置优先安排”的原则解决.【例9】(2023•卧龙区月考)甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端、丙和丁相邻的不同排列方式有() A .24种B .36种C .48种D .144种【例10】(2023•宜宾月考)“四书”“五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为() A .622622A A A B .6262A A C .622672A A A D .622662A A A【例11】(2023•武强县期中)用数字0,1,2,3,4,5组成没有重复数字的四位数. (1)可组成多少个不同的四位数? (2)可组成多少个不同的偶数?【例12】从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题.(1)甲不在首位的排法有多少种?(2)甲既不在首位也不在末位的排法有多少种? (3)甲与乙既不在首位也不在末位的排法有多少种? (4)甲不在首位,同时乙不在末位的排法有多少种?同步训练(一)1.(2023•宿迁期末)下列各式中,不等于n !的是()A .n n AB .1n n A -C .1n n nA +D .11n n nA --2.(2023•宿迁月考)(1998)(1999)(2021)(2022)(n n n n n N ----∈,2022)n >可表示为()A .241998n A -B .251998n A -C .242022n A -D .252022n A -3.(2023•河南模拟)从3,5,7,11这四个质数中,每次取出两个不同的数分别为a ,b ,共可得到lga lgb -的不同值的个数是()A .6B .8C .12D .164.(2023•揭阳期末)已知甲、乙两个家庭排成一列测核酸,甲家庭是一对夫妻带1个小孩,乙家庭是一对夫妻带2个小孩.现要求2位父亲位于队伍的两端,3个小孩要排在一起,则不同的排队方式的种数为()A.288B.144C.72D.365.(2023•海淀区校级期末)某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A.72B.36C.24D.126.(20123•会宁县期中)用0,1,2,3,4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.7.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?知识点八组合及组合数的定义1.组合一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.知识点九排列与组合的关系【例13】(1)某铁路线上有4个车站,则这条铁路线上共需准备多少种车票?(2)把5本不同的书分给5个学生,每人一本;(3)从7本不同的书中取出5本给某个学生.【例14】一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?知识点十组合数公式规定:C 0n =1.知识点十一 组合数的性质 性质1:C mn =C n -mn .性质2:C m n +1=C m n +C m -1n .【例15】(2023•朝阳区期末)已知2188m m C C -=,则m 等于() A .1B .3C .1或3D .1或4【例16】(2023•吉水县期末)计算33334562015C C C C ++++的值为()A .42015CB .32015C C .420161C -D .520151C -【例17】(2023•崂山区期末)对于伯努利数()n B n N ∈,有定义:001,(2)nk n n k k B B C B n ===∑….则()A .216B =B .4130B =C .6142B =D .230n B +=【例18】(2023•沙坪坝区模拟)某项活动安排了4个节目,每位观众都有6张相同的票,活动结束后将票全部投给喜欢的节目,一位观众最喜欢节目A,准备给该节目至少投3张,剩下的票则随机投给其余的节目,但必须要A节目的得票数是最多的,则4个节目获得该观众的票数情况有()种A.150B.72C.20D.17【例19】(2023•东湖区期末)某校举行科技文化艺术节活动,学生会准备安排6名同学到两个不同社团开展活动,要求每个社团至少安排两人,其中A,B两人不能分在同一个社团,则不同的安排方案数是()A.56B.28C.24D.12知识点十二分组、分配问题(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等,均匀分成n组,最后必须除以n!;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.1 平均分组【例20】(1)6本不同的书,分给甲、乙、丙三人,每人两本,有多少种方法?(2)6本不同的书,分为三份,每份两本,有多少种方法?2 不平均分组【例21】(1)6本不同的书,分为三份,一份一本,一份两本,一份三本,有多少种方法?(2)6本不同的书,分给甲、乙、丙三人,一人一本,一人两本,一人三本,有多少种不同的方法?3 分配问题【例22】6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种不同的方法?【例23】(2022秋•浑南区期末)将6本不同的书分给甲、乙、丙、丁4个人,每人至少一本的不同分法共有种.(用数字作答)【例24】(2022秋•浑南区期末)某市聘请6名农业专家安排到三个乡镇作指导,每个乡镇至少一人,则安排方案的种数是()A.495B.540C.630D.720【例25】(2023•云南模拟)中国空间站()ChinaSpaceStation的主体结构包括天和核心舱、问天实验舱和梦天实验舱.2022年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕.2023年,中国空间站将正式进入运营阶段.假设中国空间站要安排甲、乙等5名航天员进舱开展实验,其中“天和核心舱”安排2人,“问天实验舱”安排2人,“梦天实验舱”安排1人.若甲、乙两人不能同时在一个舱内做实验,则不同的安排方案共有()A.9种B.24种C.26种D.30种知识点十三相同元素分配问题之隔板法隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”,每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法,隔板法专门解决相同元素的分配问题.将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法,可描述为(n-1)个空中插入(m -1)块板.【例26】6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.【例27】(2023•浦东新区期末)10个相同的小球放到6个不同的盒子里,每个盒子里至少放一个小球,则不同的放法有种.【例28】(2023•海淀区期末)没有一个冬天不可逾越,没有一个春天不会来临.某街道疫情防控小组选派7名工作人员到A ,B ,C 三个小区进行调研活动,每个小区至少去1人,恰有两个小区所派人数相同,则不同的安排方式共有() A .1176B .2352C .1722D .1302【例29】(2023•多选•玄武区期末)甲、乙、丙、丁、戊共5位志愿者被安排到A ,B ,C ,D 四所山区学校参加支教活动,要求每所学校至少安排一位志愿者,且每位志愿者只能到一所学校支教,则下列结论正确的是() A .不同的安排方法共有240种 B .甲志愿者被安排到A 学校的概率是14C .若A 学校安排两名志愿者,则不同的安排方法共有120种D .在甲志愿者被安排到A 学校支教的前提下,A 学校有两名志愿者的概率是25【例30】(2023•多选•营口期末)某校的高一和高二年级各10个班级,从中选出五个班级参加活动,下列结论正确的是()A .高二六班一定参加的选法有420C 种B .高一年级恰有2个班级的选法有231010C C 种C .高一年级最多有2个班级的选法为52012C 种D .高一年级最多有2个班级的选法为231451*********C C C C C ++种【例31】(2023•福建模拟)近年来,“剧本杀”门店遍地开花.放假伊始,7名同学相约前往某“剧本杀”门店体验沉浸式角色扮演型剧本游戏,目前店中仅有可供4人组局的剧本,其中A ,B 角色各1人,C 角色2人.已知这7名同学中有4名男生,3名女生,现决定让店主从他们7人中选出4人参加游戏,其余3人观看,要求选出的4人中至少有1名女生,并且A ,B 角色不可同时为女生.则店主共有348种选择方式.【例32】(2023•和平区校级模拟)我们常常运用对同一个量算两次的方法来证明组合恒等式,如:从装有编号为1,2,3,⋯,1n +的1n +个球的口袋中取出m 个球(0m n <…,m ,)n N ∈,共有1m n C +种取法.在1m n C +种取法中,不取1号球有m n C 种取法;取1号球有1m n C -种取法.所以11m m m n n n C C C -++=.试运用此方法,写出如下等式的结果:323232323142241n n n n n C C C C C C C C ----+⋅+⋅++⋅+=.同步训练(二)8.(多选)下列问题是组合问题的有()A .10个朋友聚会,每两人握手一次,一共握手多少次B .平面上有2 021个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段C .集合{a 1,a 2,a 3,…,a n }中含有三个元素的子集有多少个D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法9.(2023•宣城期中)关于排列组合数,下列结论错误的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .11m m mn n n A mA A -++=10.(2023•多选•朝阳区期末)关于排列组合数,下列结论正确的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .!()!mn n A n m =-11.课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.12.将4个编号为1,2,3,4的小球放入4个编号为1,2,3,4的盒子中.(1)有多少种放法?(2)每盒至多1个球,有多少种放法?(3)恰好有1个空盒,有多少种放法?(4)每个盒内放1个球,并且恰好有1个球的编号与盒子的编号相同,有多少种放法?(5)把4个不同的小球换成4个相同的小球,恰有一个空盒,有多少种放法?13.(多选)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数可能为()A.1 B.2 C.3 D.414.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有的4件次品,则这样的不同测试方法数是多少?15.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?16.空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为()A.205 B.110 C.204 D.20017.4名优秀学生全部保送到3所学校去,每所学校至少去1名,则不同的保送方案有______种.18.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.(用数字作答)19.(2023•长沙期末)6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到一个社区,每个社区至少分配一名志愿者且人数各不相同,不同的分配方案共有() A .540种B .360种C .180种D .120种20.(2023•多选•罗湖区期末)在10件产品中,有7件合格品,3件不合格品,从这10件产品中任意抽出3件,则下列结论正确的有()A .抽出的3件产品中恰好有1件是不合格品的抽法有1237C C 种 B .抽出的3件产品中至少有1件是不合格品的抽法有1239C C 种 C .抽出的3件产品中至少有1件是不合格品的抽法有1221337373C C C C C ++种D .抽出的3件产品中至少有1件是不合格品的抽法有33107C C -种。
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 nn n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合知识点归纳总结高考一、简介排列组合是数学中的一个重要分支,也是高考数学考试中常见的题型。
掌握排列组合的知识,不仅可以帮助我们解决实际问题,还有助于提高我们的逻辑思维能力和解决问题的能力。
本文将对排列组合的基本概念、计算公式以及应用进行总结和归纳。
二、基本概念1. 排列排列是从给定的若干个元素中,取出一部分元素,按照一定的顺序进行排列。
排列的计算公式为:A(n,m) = n! / (n - m)!2. 组合组合是从给定的若干个元素中,取出一部分元素,不考虑其顺序,进行组合。
组合的计算公式为:C(n,m) = n! / (m! * (n - m)!)三、排列组合的计算公式1. 排列当元素可以重复使用时,排列的计算公式为:A'(n,m) = n^m2. 组合当元素可以重复使用时,组合的计算公式为:C'(n,m)= C(n+m-1,m)四、应用1. 随机抽奖在某次抽奖活动中,参与者共10人,要从中抽取3名幸运儿,问有多少种可能的结果?解题思路:这是一个组合问题,从10人中抽取3人,不考虑顺序。
根据组合的计算公式C(n,m) = n! / (m! * (n - m)!), 可以得出C(10,3) = 10! / (3! * (10 - 3)!) = 120 种可能的结果。
2. 配对组合在某次活动中,有5对情侣参加,要求每对情侣都不跟自己的伴侣配对,问有多少种可能的配对方式?解题思路:这是一个排列问题,每对情侣都有两种可能的配对方式。
根据排列的计算公式A(n,m) = n! / (n - m)!, 可以得出A(10,5) = 10! / (10 - 5)! = 30,240 种可能的配对方式。
3. 买彩票中奖某彩票号码由6个数字组成,开奖时从0-9之间随机选择6个数字作为中奖号码,以每注彩票中奖概率为4‰,购买一张彩票的中奖概率是多少?解题思路:这是一个组合问题,从10个数字中选择6个数字作为中奖号码,不考虑顺序。
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n nn m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
高考排列组合、概率知识点总结及典型例题排列组合知识点总结:一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式:()()()C A A n n n m m n m n m n m nm mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①m m n c -=n n c ;②111-m n c --+=m n n n c c ;③11-k n kc -=k n nc ;11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n nn C C ==则或 四、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数.....最大. I. 当n是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大.③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C概率知识点总结:一、基本知识在一定的条件下必然要发生的事件,叫做必然事件; 在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下可能发生也可能不发生的事件,叫做随即事件。
(1)在大量重复进行同一试验时,事件A 发生的频率nm总是接近于某个常数,在它附近摆动,这是就把这个常数叫做事件A 的概率,记作P(A)。
一次试验连同其中可能出现的每一个结果称为一个基本事件,通常试验中的某一事件A 由几个基本事件组成。
如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是n1。
如果某个事件A 包含的结果有m 个,那么事件A 的概率P(A)=nm.事件A 与B 不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。
一般地,如果事件A 1、A 2、……A n 中的任何两个都是互斥事件,那么就说事件A 1、A 2、……A n 彼此互斥。
事件A 与A 中必有一个发生,这种其中必有一个发生的互斥事件叫做对立事件。
如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率的和,即P(A+B)=P(A)+P(B)。
一般地,如果事件A 1、A 2、……A n 彼此互斥,那么事件A 1+A 2+……+A n (即A 1、A 2、……A n 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即P(A 1+A 2+……+A n )= P(A 1)+ P(A 2)+ ……+ P(A n )。
对立事件的概率的和等于1,即1)()()(=+=+A A P A P A P 。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(AB)=P(A)P(B)。
一般地,如果事件A 1、A 2、……A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即)()()()(2121n n A P A P A P A A A P =。
一般地,在n 次独立重复试验中,如果事件A 在其中1次试验中发生的概率是P ,那么在n次独立重复试验中这个事件恰好发生k 次的概率:k n k knn P P C k P --=)1()(。
注意逆运算】【德摩根定律,;)()()()()2(___________________________B A P B A P B A P B A P == )(1)()3(___A P A P -=【逆事件】,学会考虑逆事件求解概率问题)】()()(独立,、);当()(,【当B P A P AB P A B P AB P A B )()()()()4(__==⊂-==-B AB P A P B A P B A P (5)A 、B 互斥,则P (AB )=0;A 、B 独立,则P (AB )=P(A)P(B) (6)互逆且互斥;AB B A AB AB AB ,,Ω=== φφ二、等可能事件的概率公式: (1)P(A)=mn ;(2)互斥事件分别发生的概率公式为:P(A+B)=P(A)+P(B); (3)相互独立事件同时发生的概率公式为P(AB)=P(A)P(B);(4)独立重复试验概率公式Pn(k)=;)1(k n k knp p C --⋅ (5)如果事件A 、B 互斥,那么事件A 与B 、A 与B 及事件A 与B 也都是互斥事件;(6)如果事件A 、B 相互独立,那么事件A 、B 至少有一个不发生的概率是1-P(AB)=1-P(A)P(B);(6)如果事件A 、B 相互独立,那么事件A 、B 至少有一个发生的概率是1-P(A B )=1-P(A )P(B );统计知识点总结:1.理解随机变量,离散型随机变量的定义,能够写出离散型随机变量的分布列,由概率的性质可知,任意离散型随机变量的分布列都具有下述两个性质:(1)p i ≥0,i=1,2,...; (2) p 1+p 2+ (1)2.二项分布:记作ξ~B(n,p),其中n,p 为参数,,)(k n k k n q p C k P -==ξ并记),;(p n k b q p C k n k k n =-;3.(1)1 1 2 2 n n (2)方差D ξ=⋅⋅⋅+-+⋅⋅⋅+-+-n n p E x p E x p E x 2222121)()()(ξξξ ;(3)标准差ξξξξξδξD a b a D b aE b a E D 2)(;)(;=++=+=; (4)若ξ~B(n,p),则E ξ=np, D ξ=npq,这里q=1- p;4.掌握抽样的三种方法:(1)简单随机抽样(包括抽签法和随机数表法);(2)系统抽样,也叫等距离抽样;(3)分层抽样,常用于某个总体由差异明显的几部分组成的情形;5.总体分布的估计:用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;6.正态总体的概率密度函数:,,21)(222)(R x ex f x ∈=-σμσπ式中σμ,是参数,分别表示总体的平均数与标准差;7.正态曲线的性质:(1)曲线在x =μ 时处于最高点,由这一点向左、向右两边延伸时,曲线逐渐降低;(2)曲线的对称轴位置由确定;曲线的形状由确定,越大,曲线越矮胖;反过来曲线越高瘦;(3)曲线在x 轴上方,并且关于直线x=μ 对称;8.利用标准正态分布的分布函数数值表计算一般正态分布),(2σμN 的概率 P(x 1<ξ<x 2),可由变换t x =-σμ而得)()(σμφ-=x x F ,于是有P(x 1<ξ<x 2)=)()(12σμφσμφ---x x ;9.假设检验的基本思想:(1)提出统计假设,确定随机变量服从正态分布),(2σμN ;(2)确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-;(3)作出推断:如果a ∈)3,3(σμσμ+-,接受统计假设;如果a ∉)3,3(σμσμ+-,由于这是小概率事件,就拒绝假设;排列组合典例分类讲解:一、合理分类与准确分步法(利用计数原理)解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
例1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )A .120种B .96种C .78种D .72种 分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有A 44=24种排法;2)若甲在第二,三,四位上,则有3*3*3*2*1=54种排法,由分类计数原理,排法共有24+54=78种,选C 。
解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。
二、分组(堆)问题、分组(堆)问题的六个模型:①无序不等分;②无序等分;③无序局部等分;(④有序不等分;⑤有序等分;⑥有序局部等分.) 处理问题的原则:①若干个不同的元素“等分”为 m个堆,要将选取出每一个堆的组合数的乘积除以m!②若干个不同的元素局部“等分”有 m个均等堆,要将选取出每一个堆的组合数的乘积除以m!③非均分堆问题,只要按比例取出分完再用乘法原理作积.④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列.例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式?解:要完成发包这件事,可以分为两个步骤: ⑴ 将四项工程分为三“堆”,有 种分法; ⑵再将分好的三“堆”依次给三个工程队, 有3!=6种给法.∴共有6×6=36种不同的发包方式. 三.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,个位置.先排末位共有13C然后排首位共有14C211421226C C C A =最后排其它位置共有34A 由分步计数原理得113434288C C A =四.相邻元素捆绑策略例1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。