圆的证明题
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
1.已知AB、CD是⊙O的两条直径,则四边形ADBC一定是()A.等腰梯形 B.正方形 C.菱形 D.矩形2.如图1,DE是⊙O的直径,弦AB⊥ED于C,连结AE、BE、AO、BO,则图中全等三角形有()A.3对 B.2对 C.1对 D.0对(1) (2) (3) (4)3.垂径定理及推论中的四条性质:①经过圆心;②垂直于弦;③平分弦;④平分弦所对的弧.由上述四条性质组成的命题中,假命题是()A.①②⇒③④ B.①③⇒②④C.①④⇒②③ D.②③⇒①④4.Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,给出下列三个结论:①以点C为圆心,•2.3cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB相切;•③以点C为圆心,2.5cm长为半径的圆与AB相交,则上述结论正确的有()A.0个 B.1个 C.2个 D.3个5.在⊙O中,C是AB的中点,D是AC上的任意一点(与A、C不重合),则()A.AC+CB=AD+DB B.AC+CB<AD+DBC.AC+CB>AD+DB D.AC+CB与AD+DB的大小关系不确定6.如图2,梯形ABCD内接于⊙O,AD∥BC,EF切⊙O于点C,则图中与∠ACB相等的角(不包括∠ACB)共有().A.1个 B.2个 C.3个 D.4个7.如图3,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:•①A D2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC;④AG·EG=BG·CG.其中正确结论的有()A.1个 B.2个 C.3个 D.4个8.如图4,AB是⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F,交⊙O于G.•下面的结论:①EC=DF;②AE+BF=AB;③AE=GF;④FG·FB=EC·ED.其中正确的有()A.①②③ B.①③④ C.②③④ D.①②④9.如图5,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,•垂足是P,DH⊥BH,垂足是H,下列结论:①CH=CP;②AD BD=;③AP=BH;④DH为圆的切线,其中一定成立的是()A.①②④ B.①③④ C.②③④ D.①②③(5) (6) (7) (8) 10.如图6,在⊙O中,AB=2CD,那么()A.2AB CD>; B.2AB CD<;C.2AB CD=; D.AD与2CD的大小关系可能不确定11 .直径为8的⊙O中,弦AB=42cm ,则弦AB所对的圆周角是-----12. ⊙O平面内一点P和⊙O上一点的距离最小为3cm,最大为8cm,则这圆的半径是_________cm。
圆证明题的归纳与总结一、引言圆是初中数学中的一个重要概念,在学习中常常会遇到各种与圆相关的证明题。
这些题目需要我们灵活运用各种几何知识和推理方法,才能成功地解答。
本文将针对圆证明题进行归纳和总结,帮助读者更好地理解和掌握这类问题的解题方法。
二、圆的基本性质1. 圆的定义圆是平面上到一定点距离相等的点的轨迹。
2. 圆的元素一个圆由圆心、直径、半径和弧组成。
3. 圆的重要性质(1)直径与半径的关系:直径是半径的两倍。
(2)圆的周长公式:周长等于直径乘以π(π≈3.14)。
(3)圆的面积公式:面积等于半径的平方乘以π。
三、圆的证明题解题方法解决圆的证明题需要掌握以下几种常用的解题方法:1. 利用圆的性质和定理在圆的证明过程中,可以充分利用圆的基本性质和定理,如弦切角定理、切线定理、弧长角度定理等。
通过灵活应用这些性质和定理,可以推导出所给证明题目的解答过程。
2. 利用等价命题在圆的证明中,我们常常可以将所要证明的命题转化为等价的命题,然后再通过证明该等价命题来完成整个问题的解答。
例如,对于证明两个圆互为切圆,可以转化为证明两个圆内切。
3. 利用反证法反证法是一种常用的证明方法,也适用于圆证明题。
当我们在解题过程中遇到矛盾的命题时,可以采用反证法,设定一个假设,通过推导矛盾的结论来证明所给命题的正确性。
4. 利用平移、旋转和对称在一些复杂的圆证明题中,我们可以通过平移、旋转和对称等操作,改变问题的结构,简化问题的难度。
例如,通过平移一个圆,可以使两个圆相交于一点,进而证明它们相切。
四、常见的圆证明题类型1. 圆的切线问题圆的切线问题是圆证明题中常见的一类问题。
在解答这类题目时,需要根据切线与半径的相互关系,运用平行线性质或相似三角形的性质,进行推导和证明。
2. 圆的切圆问题切圆问题是指两个或多个圆相切的情况。
在解答这类问题时,我们需要利用切线的性质,结合等角定理和相似三角形性质,推导出所给的切圆关系。
3. 圆的内接四边形问题内接四边形问题是指一个四边形可以内接于一个圆的情况。
2022年中考数学真题汇编圆类几何证明题1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.2.(1)求证:直线PE是⊙O的切线;3.(2)若⊙O的半径为6,∠P=30°,求CE的长.4.(2022·广西壮族自治区贵港市)如图,在△ABC中,∠ACB=90°,点D是AB边的中∠BDC.点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=125.(1)求证:AF是⊙O的切线;6.(2)若BC=6,sinB=4,求⊙O的半径及OD的长.57.(2022·山东省烟台市)如图,⊙O是△ABC的外接圆,∠ABC=45°.8.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);9.(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.10.(2022·山东省聊城市)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.11.(1)连接AF,求证:AF是⊙O的切线;12.(2)若FC=10,AC=6,求FD的长.13.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.14.(1)求证:∠D=∠EBC;15.(2)若CD=2BC,AE=3,求⊙O的半径.16.(2022·湖南省张家界市)如图,四边形ABCD内接于圆O,AB是直径,点C是BD⏜的中点,延长AD交BC的延长线于点E.17.(1)求证:CE=CD;18.(2)若AB=3,BC=√3,求AD的长.19.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.20.(1)求证:CE与⊙O相切;21.(2)若AD=4,∠D=60°,求线段AB,BC的长.22.(2022·贵州省铜仁市)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.23.(1)求证:AB=CB;24.(2)若AB=18,sinA=1,求EF的长.325.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.26.(1)求证:BF与⊙O相切;27.(2)若AP=OP,cosA=4,AP=4,求BF的长.528.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.29.(1)求证:CD是⊙O的切线.30.(2)若tan∠BED=2,AC=9,求⊙O的半径.331.32.(2022·内蒙古自治区呼和浩特市)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交线段CA的延长线于点E,连接BE.33.(1)求证:BD=CD;34.(2)若tanC=1,BD=4,求AE.235.(2022·北京市)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.36.(1)求证:∠BOD=2∠A;37.(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.38.(2022·广西壮族自治区百色市)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点M,作AD⊥MC,垂足为D,已知AC平分∠MAD.39.(1)求证:MC是⊙O的切线;40.(2)若AB=BM=4,求tan∠MAC的值.41.(2022·山东省临沂市)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.42.(1)求证:∠D=∠E;43.(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.44.(2022·辽宁省)如图,在Rt△ABC中,∠ACB=90°,▱ODEF的顶点O,D在斜边AB上,顶点E,F分别在边BC,AC上,以点O为圆心,OA长为半径的⊙O恰好经过点D和点E.45.(1)求证:BC与⊙O相切;46.(2)若sin∠BAC=3,CE=6,求OF的长.547.(2022·湖北省恩施土家族苗族自治州)如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.48.(1)求证:∠ADE=∠PAE.49.(2)若∠ADE=30°,求证:AE=PE.50.(3)若PE=4,CD=6,求CE的长.51.(2022·内蒙古自治区赤峰市)如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.52.(1)求证:AD是⊙O的切线;53.(2)若CD=6,OF=4,求cos∠DAC的值.54.(2022·湖北省潜江市)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE交⊙O于点G,连接BG.55.(1)求证:FB2=FE⋅FG;56.(2)若AB=6,求FB和EG的长.57.(2022·贵州省毕节市)如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.58.(1)求证:BF=BD;59.(2)若CF=1,tan∠EDB=2,求⊙O的直径.60.(2022·贵州省黔东南苗族侗族自治州)(1)请在图1中作出△ABC的外接圆⊙O(尺规作图,保留作图痕迹,不写作法);61.(2)如图2,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE⏜的中点,过点B的切线与AC的延长线交于点D.62.①求证:BD⊥AD;63.②若AC=6,tan∠ABC=3,求⊙O的半径.464.65.(2022·山东省威海市)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.66.(1)若AB=AC,求证:∠ADB=∠ADE;67.(2)若BC=3,⊙O的半径为2,求sin∠BAC.68.(2022·江苏省无锡市)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.69.(1)求证:△CED∽△BAD;70.(2)当DC=2AD时,求CE的长.71.(2022·陕西省)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.72.(1)求证:∠CAB=∠APB;73.(2)若⊙O的半径r=5,AC=8,求线段PD的长.74.(2022·新建生产建设兵团)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,点D在⊙O上,AC=CD,连接AD,延长DB交过点C的切线于点E.75.(1)求证:∠ABC=∠CAD;76.(2)求证:BE⊥CE;77.(3)若AC=4,BC=3,求DB的长.78.(2022·江苏省扬州市)如图,AB为⊙O的弦,OC⊥OA交AB于点P,交过点B的直线于点C,且CB=CP.79.(1)试判断直线BC与⊙O的位置关系,并说明理由;80.(2)若sinA=√5,OA=8,求CB的长.5参考答案1.(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,BC=6,在Rt△CDE中,即得CE的长是3.可得BD=CD=12本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(1)作OH⊥FA,垂足为H,连接OE,利用直角三角形斜边上中线的性质得AD=CD,再通过导角得出AC是∠FAB的平分线,再利用角平分线的性质可得OH=OE,从而证明结论;(2)根据BC=6,sinB=4,可得AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,5利用Rt△AOE∽Rt△ABC,可得r的值,再利用勾股定理求出OD的长.本题主要考查了圆的切线的性质和判定,直角三角形的性质,三角函数,相似三角形的判定与性质,勾股定理等知识,熟练掌握切线的判定与性质是解题的关键.3.(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.本题考查作图−复杂作图,三角形的外接圆,切线的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.(1)根据SAS证△AOF≌△EOF,得出∠OAF=∠OEF=90°,即可得出结论;(2)根据勾股定理求出AF,证△OEC∽△FAC,设圆O的半径为r,根据线段比例关系列方程求出r,利用勾股定理求出OF,最后根据FD=OF−OD求出即可.本题主要考查切线的判定和性质,熟练掌握切线的判定和性质是解题的关键.5.(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.6.(1)连接AC,通过证明△ACE≌△ACB,利用全等三角形的性质分析推理;(2)通过证明△EDC∽△EBA,利用相似三角形的性质分析计算.本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.7.(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,∠D=60°,即得AB=√3BD=2√3,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=√2AB=√6,又△AOC是等腰直角三角形,OA=OC=2,得AC=2√2,故CF=2√AC2−AF2=√2,从而BC=BF+CF=√6+√2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.8.(1)连接OD,则OD⊥DE,利用BC⊥DE,可得OD//BC,通过证明得出∠A=∠C,结论得证;(2)连接BD,在Rt△ABD中,利用sinA=1求得线段BD的长;在Rt△BDF中,利用3sin∠A=sin∠FDB,解直角三角形可得结论.本题主要考查了圆的切线的性质,垂径定理,圆周角定理,三角形相似的判定与性质,解直角三角形,勾股定理,等腰三角形的判定,平行线的判定与性质.连接过切点的半径和直径所对的圆周角是解决此类问题常添加的辅助线.9.(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,AD,然后利用等腰三角形的进而利用直角三角形三角形斜边上的中线可得BF=EF=12性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE=90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.10.(1)连接OD,由圆周角定理得出∠ADB=90°,证出OD⊥CD,由切线的判定可得出结论;(2)证明△BDC∽△DAC,由相似三角形的性质得出CDAC =BCCD=BDDA=23,由比例线段求出CD和BC的长,可求出AB的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.11.(1)连接AD,利用直径所对的圆周角是直角可得∠ADB=90°,然后利用等腰三角形的三线合一性质即可解答;(2)利用(1)的结论可得BD=DC=4,BC=8,然后在Rt△ADC中,利用锐角三角函数的定义求出AD的长,从而利用勾股定理求出AC的长,最后证明△CDA∽△CEB,利用相似三角形的性质求出CE的长,进行计算即可解答.本题考查了圆周角定理,相似三角形的判定与性质,解直角三角形,等腰三角形的性质,熟练掌握圆周角定理,以及解直角三角形是解题的关键.12.(1)连接AD,首先利用垂径定理得BC⏜=BD⏜,知∠CAB=∠BAD,再利用同弧所对的圆心角等于圆周角的一半可得结论;(2)连接OC,首先由点F为AC的中点,可得AD=CD,则∠ADF=∠CDF,再利用圆的性质,可说明∠CDF=∠OCF,∠CAB=∠CDE,从而得出∠OCD+∠DCE=90°,从而证明结论.本题主要考查了圆周角定理,垂径定理,圆的切线的判定等知识,熟练掌握圆周角定理是解题的关键.13.(1)根据垂直定义可得∠D=90°,然后利用等腰三角形和角平分线的性质可证OC//DA,从而利用平行线的性质可得∠OCM=90°,即可解答;(2)先在Rt△OCM中,利用勾股定理求出MC的长,然后证明A字模型相似三角形△MCO ∽△MDA,从而利用相似三角形的性质可求出AD,CD的长,进而在Rt△ACD中,利用锐角三角函数的定义求出tan∠DAC的值,即可解答.本题考查了切线的判定与性质,相似三角形的判定与性质,勾股定理,解直角三角形,熟练掌握切线的判定与性质,以及相似三角形的判定与性质是解题的关键.14.(1)连接OB,由切线的性质得出∠E+∠BOE=90°,由圆周角定理得出∠D+∠DCB= 90°,证出∠BOE=∠OCB,则可得出结论;(2)求出∠BOG=60°,由三角形面积公式及扇形的面积公式可得出答案.本题考查了切线的性质,直角三角形的性质,等腰三角形的性质,平行线的性质,圆周角定理,扇形的面积公式,熟练掌握切线的性质是解题的关键.15.(1)连接OE,利用平行四边形的性质和圆的性质可得四边形AOEF是平行四边形,则OE//AC,从而得出∠OEB=90°,从而证明结论;(2)过点F作FH⊥OA于点H,根据sin∠CFE=sin∠CAB=35,可得EF的长,由OA=OE,得▱AOEF是菱形,则AF=AO=EF=10,从而得出FH和AH的长,进而求出OF的长.本题主要考查了圆的切线的判定,平行四边形的判定与性质,三角函数的定义,勾股定理等知识,熟练运用相等角的三角函数值相等是解题的关键.16.(1)连接OA,利用切线的性质定理,圆周角定理,同圆的半径相等,等腰三角形的性质和等角的余角相等解答即可;(2)利用(1)的结论,直径所对的圆周角为直角,三角形的外角的性质和等腰三角形的判定定理解答即可;(3)CE=x,则DE=CD+CE=6+x,OA=OE=6+x2,OC=OE−CE=6−x2,OP=OE+PE=14+x2,利用相似三角形的判定与性质得出比例式即可求得结论.本题主要考查了圆的切线的性质,切线长定理,等腰三角形的判定与性质,圆周角定理,垂径定理,相似三角形的判定与性质,连接OA是解决此类问题常添加的辅助线.17.(1)利用等腰三角形的三线合一,平行线的判定与性质和圆的切线的判定定理解答即可;(2)利用全等三角形的判定与性质得到CF=CD=6,利用相似三角形的判定与性质求得线段AC,再利用直角三角形的边角关系定理在Rt△AOC中,求得cos∠OCA,则结论可得.本题主要考查了圆的切线的判定,等腰三角形的性质,平行线的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,相似三角形的判定与性质,勾股定理,直角三角形的边角关系定理,灵活应用等量代换是解题的关键.18.(1)利用相似三角形的判定与性质解答即可;(2)连接OE,利用平行线分线段成比例定理求得FB;利用相交弦定理求EG即可.本题主要考查了正方形的性质,圆周角定理,垂径定理及其推论,相似三角形的判定与性质,平行线的性质,勾股定理,相交弦定理,灵活运用上述定理及性质是解题的关键.19.(1)连接OE,利用圆的切线的性质定理,平行线的判定与性质,同圆的半径相等和等腰三角形的判定定理解答即可;(2)连接BE,利用直径所对的圆周角为直角,直角三角形的边角关系定理和相似三角形的判定与性质解答即可.本题主要考查了圆的切线的性质定理,平行线的判定与性质,等腰三角形的判定与性质.相似三角形的判定与性质,直角三角形的边角关系定理,连接经过切点的半径和直径所对的圆周角是解决此类问题常添加的辅助线.20.(1)利用尺规作图分别作出AB、AC的垂直平分线交于点O,以O为圆心、OA为半径作圆即可;(2)①连接OB,根据切线的性质得到OB⊥CD,证明OB//AD,根据平行线的性质证明结论;②连接EC,根据圆周角定理得到∠AEC=∠ABC,根据正切的定义求出EC,根据勾股定理求出AE,得到答案.本题考查的是切线的性质、圆周角定理、解直角三角形,掌握圆的切线垂直于经过切点的半径是解题的关键.21.(1)根据圆内接四边形的性质以及等腰三角形的性质即可求证;(2)连接CO并延长交⊙O于点F,连接BF,根据圆周角定理得出∠FBC=90°,∠F=∠BAC,解直角三角形即可得解.此题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质、圆周角定理是解题的关键.22.(1)由对顶角的性质,圆周角定理得出∠CDE=∠BDA,∠A=∠E,即可证明△CED∽△BAD;(2)过点D作DF⊥EC于点F,由等边三角形的性质得出∠A=60°,AC=AB=6,由DC=2AD,得出AD=2,DC=4,由相似三角形的性质得ECDE =ABAD=62=3,得出EC=3DE,由含30°角的直角三角形的性质得出DE=2EF,设EF=x,则DE=2x,DF=√3x,EC=6x,进而得出FC=5x,利用勾股定理得出一元二次方程(√3x)2+ (5x)2=42,解方程求出x的值,即可求出EC的长度.本题考查了圆周角定理,等边三角形的性质,相似三角形的判定与性质,熟练掌握圆周角定理,相似三角形的判定与性质,等边三角形的性质,勾股定理,解一元二次方程等知识是解决问题的关键.23.(1)根据平行线的判定和切线的性质解答即可;(2)通过添加辅助线,构造出直角三角形,利用勾股定理和相似三角形的判定和性质解答即可.本题主要考查了切线的性质定理,勾股定理,相似三角形的判定和性质,熟练掌握这些性质定理是解题的关键.24.(1)利用等腰三角形的性质可得∠CAD=∠ADC,再利用同弧所对的圆周角相等可得∠ABC=∠ADC,即可解答;(2)利用切线的性质可得∠OCE=90°,利用圆内接四边形对角互补以及平角定义可得∠CAD=∠CBE,再利用(1)的结论可得∠OCB=∠CBE,然后可证OC//BE,最后利用平行线的性质可得∠E=90°,即可解答;(3)根据直径所对的圆周角是直角可得∠ACB=90°,从而在Rt△ABC中,利用勾股定理求出BA的长,再根据同弧所对的圆周角相等可得∠CAB=∠CDB,进而可证△ACB∽△DEC,然后利用相似三角形的性质可求出DE的长,最后再利用(2)的结论可证△ACB∽△CEB,利用相似三角形的性质可求出BE的长,进行计算即可解答.本题考查了切线的性质,等腰三角形的性质,相似三角形的判定与性质,三角形的外接圆与外心,圆周角定理,熟练掌握相似三角形的判定与性质,以及圆周角定理是解题的关键.25.(1)连接OB,由等腰三角形的性质得出∠A=∠OBA,∠CPB=∠CBP,结合对顶角的性质得出∠APO=∠CBP,由垂直的性质得出∠A+∠APO=90°,进而得出∠OBA+∠CBP=90°,即可得出直线BC与⊙O相切;(2)由sinA=√5,设OP=√5x,则AP=5x,由勾股定理得出方程(√5x)2+82=(5x)2,5=4,再利用勾股定理得出BC2+82=解方程求出x的值,进而得出OP=√5×4√55(BC+4)2,即可求出CB的长.本题考查了切线的判定,勾股定理,锐角三角函数的定义,熟练掌握等腰三角形的性质,切线的判定与性质,勾股定理,锐角三角函数的定义,一元二次方程的解法是解决问题的关键.。
1对1个性化教案2.已知:如图,AB是⊙∠E=18°,求∠C及∠3.已知:如图,△ABC,试用直尺和圆规画出过4.已知:如图,A,B是半圆是(1)在CD上求作一点(2)若CD=4cm,求AP5.如图,有一圆弧形的拱桥,桥下水面宽度为货箱从桥下经过,已知货箱长利通过该桥?在7.已知:如图,△ABC8.已知:如图,AB9.已知:如图,△ABC求证:FE=EH.10.已知:如图,⊙12.已知:如图,ABAF交⊙O于M.求证:∠13.已知:如图,半圆求∠CAD的度数及弦14.已知:如图,割线ABC15.已知:如图,△ABC16.已知:如图,P A切⊙O于求⊙O的半径长.17.已知:如图,⊙O是半径r;(2)若AC=b,BC18.已知:如图,⊙O内切于△ABC,∠长.19.已知:如图,AB是⊙O上两点,且,过长线于E点,交AB的延长线于(1)试判断DE与⊙O的位置关系,并证明你的结论;(2)试判断∠BCD与∠BAC20.已知:如图,⊙O是Rt21.已知:如图,AB为⊙O的直径,(1)求证:AT平分∠BAC;(2)22.如图,工地放置的三根外径是23.已知:如图,⊙射线DO1交AC24.已知:如图,⊙O1与⊙ODB,连结EB,试判断25.如图,点A,B在直线MN速度自左向右运动,与此同时,26.已知:如图,正八边形A 1A 2A 3A 4A 5A 6A 7A (1)求A 1A 3的长;(2)求四边形A 1A 2A 3O27.已知:如图,⊙O 切正方形.求二者的边长比28.已知:如图,⊙O 的半径为A ′B ′和面积比S 内∶29.如图,△ABC 中,BC =4交AC 于F ,点P 是⊙A C .94π8-,30.已知:如图,以线段圆O2于D点.试比较与31.已知:如图,扇形OAB.,=l2.32.如图,圆锥的轴截面是边长为求在圆锥的侧面上从教研部建议:教研部签字:日期:年月日。
圆的证明题1.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.2.如图,在△ABC中,AB=AC,以AC为直径的半圆O交BC于点E,DE⊥AB,垂足为D.(1)求证:点E是BC的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)如果⊙O的直径为9,cosB=,求DE的长.3.如图,AB是⊙O的直径,弦CD⊥AB于H.点G在⊙O上,过点G作直线EF,交CD延长线于点E,交AB的延长线于点F.连接AG交CD于K,且KE=GE.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若AC∥EF,,FB=1,求⊙O的半径.4.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O 于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.5.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙0,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB 的延长线于点F.(1)求证:EF是⊙0的切线.(2)如果⊙0的半径为5,sin∠ADE=,求BF的长.6.如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的直线,垂足为D,且AC平分∠BAD.(1)求证:CD是⊙O的切线;(2)若AC=,AD=4,求AB的长.7.如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE 于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.8.如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD平分OB.(2)若点E为的中点,连接0E,CE.求证:CE平分∠OCD.(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.9.如图,点C在以AB为直径的半圆O上,以点A为旋转中心,以∠β(0°<β<90°)为旋转角度将B旋转到点D,过点D作DE⊥AB于点E,交AC于点F,过点C作圆O的切线交DE于点G。
决胜2020年中考数学压轴题全揭秘()专题07圆的有关计算与证明问题【考点1】圆中有关角的计算问题【例1】(2019•台州)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC 上,连接AE.若∠ABC=64°,则∠BAE的度数为.̂)上,若∠【例2】(2019•温州)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧(EDFBAC=66°,则∠EPF等于度.【考点2】切线的有关线段计算问题【例3】(2019•舟山)如图,已知⊙O 上三点A ,B ,C ,半径OC =1,∠ABC =30°,切线P A 交OC 延长线于点P ,则P A 的长为( )A .2B .√3C .√2D .12 【例4】(2019•台州)如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则⊙O 的半径为( )A .2√3B .3C .4D .4−√3【考点3】扇形与弧长的有关计算问题【例5】(2019•宁波)如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A .3.5cmB .4cmC .4.5cmD .5cm【例6】(2019•绍兴)如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°.若BC =2√2,则BC ̂的长为( )A .πB .√2πC .2πD .2√2π【考点4】圆锥的有关计算问题【例7】(2019•湖州)已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2【例8】(2019•金华)如图物体由两个圆锥组成.其主视图中,∠A =90°,∠ABC =105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .√3C .32D .√2【考点5】圆与多边形的有关计算问题【例9】(2019•湖州)如图,已知正五边形ABCDE 内接于⊙O ,连结BD ,则∠ABD 的度数是( )A .60°B .70°C .72°D .144°【例10】(2018•温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB =5cm ,小正六边形的面积为49√32cm 2,则该圆的半径为 cm .【考点6】圆中有关线段的最值问题【例11】(2019•嘉兴)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【考点7】圆中有关计算与证明综合问题【例12】(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.̂的度数.(1)求BD(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.【例13】(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.̂的长.(2)若DE=√3,∠C=30°,求AD1.(2020•温岭市一模)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,则上下两圆锥的侧面积之比为()A.1:2B.1:√3C.2:3D.1:√22.(2020•金华模拟)如图,一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面的B点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为()A.√36+4π2B.√4+36π2C.4πD.6π3.(2020•杭州模拟)如图,在△ABC中,以BC为直径的⊙O,交AB的延长线于点D,交AC于点E,连接OD,OE.若∠A=α,则∠DOE的度数为()A.180°﹣2αB.180°﹣αC.90°﹣αD.2α4.(2020•温州模拟)如图,△ABC,AC=3,BC=4√3,∠ACB=60°,过点A作BC的平行线1,P为直线l上一动点,⊙O为△APC的外接圆,直线BP交⊙O于E点,则AE的最小值为()A.√3−1B.7﹣4√3C.√3D.15.(2020•绍兴一模)如图,AB是⊙O的直径,DB,DE分别切⊙O于点B、C,若∠ACE=20°,则∠D 的度数是()A.40°B.50°C.60°D.70°二.填空题(共5小题)6.(2020•金华模拟)如图,BC是⊙O的弦,以BC为边作等边三角形ABC,圆心O在△ABC的内部,若BC=6,OA=√3,则⊙O的半径为.7.(2020•天台县模拟)如图,已知等边△ABC的边长为8,以AB为直径的⊙O与边AC、BC分别交于D、̂的长为.E两点,则劣弧DE8.(2020•绍兴一模)如图所示,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C为圆心,r为半径的圆与边AB所在直线有公共点,则r的取值范围为.9.(2020•拱墅区校级模拟)如图,P A,PB是⊙O的两条切线,A,B为切点,点D,E,F分别在线段AB,BP,AP上,且AD=BE,BD=AF,∠P=54°,则∠EDF=度.10.(2020•衢州模拟)如图,小圆O的半径为1,△A1B1C1,△A2B2C2,△A3B3C3,…,△A n B n∁n依次为同心圆O的内接正三角形和外切正三角形,由弦A1C1和弧A1C1围成的弓形面积记为S1,由弦A2C2和弧A2C2围成的弓形面积记为S2,…,以此下去,由弦A n∁n和弧A n∁n围成的弓形面积记为S n,其中S2020的面积为.三.解答题(共10小题)11.(2020•金华模拟)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,以O为圆心,OA为半径作⊙O,与BC相切于点D,且交AB于点E.(1)连结AD,求证:AD平分∠CAB;(2)若BE=√2−1,求阴影部分的面积.12.(2020•鹿城区校级模拟)如图,在Rt△ABC中,∠BAC=90°,D是BC边上的一点,过A,B,D三点的⊙O交AC于点E,作直径AF,连结FD并延长交AC于点G,且FG∥BE,连结BE,BF﹒(1)求证:AB=BD;(2)若BD=2CD,AC=5,求⊙O的直径长﹒13.(2020•绍兴一模)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过格点A(0,4)、B(﹣4,4)、C(﹣6,2),若该圆弧所在圆的圆心为D点,请你利用网格图回答下列问题:(1)圆心D的坐标为;(2)若扇形ADC是一个圆锥的侧面展开图,求该圆锥底面圆的半径长(结果保留根号).14.(2020•上虞区校级一模)如图1 (1)已知△ABC中AB=AC,∠BAC=36°,BD是角平分线,求证:点D是线段AC的黄金分割点;(2)如图2,正五边形的边长为2,连结对角线AD、BE、CE,线段AD分别与BE和CE相交于点M、N,求MN的长;(3)设⊙O的半径为r,直接写出它的内接正十边形的边长=(用r的代数式表示).15.(2020•长安区模拟)如图1,在△ABC中,AC=BC,以BC为直径的⊙O交AB于点D.(1)求证:点D是AB的中点;(2)如图2,过点D作DE⊥AC于点E,求证:DE是⊙O的切线.16.(2020•衢州模拟)如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线;(2)若BF=4,DF=√10,求⊙O的半径.17.(2020•温州模拟)如图,AB是O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.18.(2020•拱墅区校级模拟)如图,△ABC是的内接三角形,点C是优弧AB上一点,设∠OAB=α,∠C =β.(1)猜想:β关于α的函数表达式,并给出证明;(2)若α=30°,AB=6,S△ABC=6√3,求AC的长.19.(2019•泸县模拟)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求DE的长.20.(2019•泰顺县模拟)已知矩形ABCD,AB=10,AD=8,G为边DC上任意一点,连结AG,BG以AG 为直径作⊙P分别交BG,AB于点E,H,连结AE,DE.̂的中点,证明:AG=AB.(1)若点E为GH(2)若△ADE为等腰三角形时,求DG的长.(3)作点C关于直线BG的对称点C′.①当点C落在线段AG上时,设线段AG,DE交于点F,求△ADF与△AEF的面积之比;②在点G的运动过程中,当点C′落在四边形ADGE内时(不包括边界),则DG的范围是(直接写出答案)。
《圆》的计算及证明题之中考真题精选汇编(2)1.如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.(1)求证:BD=BC;(2)若⊙O的半径r=3,BE=6,求线段BF的长.2.如图,点E是△ABC的内心,AE的延长线与边BC相交于点F,与△ABC的外接圆交于点D.(1)求证:S△ABF:S△ACF=AB:AC;(2)求证:AB:AC=BF:CF;(3)求证:AF2=AB•AC﹣BF•CF;(4)猜想:线段DF,DE,DA三者之间存在的等量关系.(直接写出,不需证明.)3.如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD于点E.(1)若∠EAC=25°,求∠ACD的度数;(2)若OB=2,BD=1,求CE的长.4.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,以O为圆心,OA为半径的半圆分别交AC,BC,AB于点D,E,F,且点E是弧DF的中点.(1)求证:BC是⊙O的切线;(2)若CE=√2,求图中阴影部分的面积(结果保留π).5.如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,过点C作⊙O的切线交AB 延长线于点D,OF⊥BC于点E,交CD于点F.(1)求证:∠BCD=∠BOE;(2)若sin∠CAB=35,AB=10,求BD的长.6.如图,AB是⊙O的直径,点E,C在⊙O上,点C是BÊ的中点,AE垂直于过C点的直线DC,垂足为D,AB的延长线交直线DC于点F.(1)求证:DC是⊙O的切线;(2)若AE=2,sin∠AFD=1 3,①求⊙O的半径;②求线段DE的长.7.如图,以AB为直径的⊙O是△ABC的外接圆,延长BC到点D.使得∠BAC=∠BDA,点E在DA的延长线上,点M在线段AC上,CE交BM于N,CE交AB于G.(1)求证:ED是⊙O的切线;(2)若AC=√6,BD=5,AC>CD,求BC的长;(3)若DE•AM=AC•AD,求证:BM⊥CE.8.已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3√3,AE=3,求弦BC的长.9.如图,在△ABC中,∠ACB=90°,点D是AB上一点,且∠BCD=12∠A,点O在BC上,以点O为圆心的圆经过C、D两点.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若sin B=35,⊙O的半径为3,求AC的长.10.如图,点A在第一象限内,⊙A与x轴相切于点B,与y轴相交于点C,D,连结AB,过点A作AH⊥CD于点H.(1)求证:四边形ABOH为矩形.(2)已知⊙A的半径为4,OB=√7,求弦CD的长.11.如图,△ABC中,以AB为直径的⊙O交BC于点D,DE是⊙O的切线,且DE⊥AC,垂足为E,延长CA交⊙O于点F.(1)求证:AB=AC;(2)若AE=3,DE=6,求AF的长.12.如图,已知⊙O是Rt△ABC的外接圆,∠ACB=90°,D是圆上一点,E是DC延长线上一点,连结AD,AE,且AD=AE,CA=CE.(1)求证:直线AE是⊙O是的切线;(2)若sin E=23,⊙O的半径为3,求AD的长.13.如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC,交AC的延长线于点E,交AB的延长线于点F,连接BD并延长交AC的延长线于点M.(1)求证:直线DE是⊙O的切线;(2)当∠F=30°时,判断△ABM的形状,并说明理由;(3)在(2)的条件下,ME=1,连接BC交AD于点P,求AP的长.14.如图所示,四边形ABCD是半径为R的⊙O的内接四边形,AB是⊙O的直径,∠ABD =45°,直线l与三条线段CD、CA、DA的延长线分别交于点E、F、G,且满足∠CFE =45°.(1)求证:直线l⊥直线CE;(2)若AB=DG.①求证:△ABC≌△GDE;②若R=1,CE=32,求四边形ABCD的周长.15.如图,在△ABC中,AB=4,∠C=64°,以AB为直径的⊙O与AC相交于点D,E为ABD̂上一点,且∠ADE=40°.(1)求BÊ的长;(2)若∠EAD=76°,求证:CB为⊙O的切线.16.在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.17.如图,在⊙O中,弦AB的长为8,点C在BO延长线上,且cos∠ABC=45,OC=12OB.(1)求⊙O的半径;(2)求∠BAC的正切值.18.如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC 于点F,交⊙O于点H,DB交AC于点G.(1)求证:AF=DF.(2)若AF=52,sin∠ABD=√55,求⊙O的半径.19.(2023•宜昌)如图1,已知AB是⊙O的直径,PB是⊙O的切线,P A交⊙O于点C,AB=4,PB=3.(1)填空:∠PBA的度数是,P A的长为;(2)求△ABC的面积;(3)如图2,CD⊥AB,垂足为D.E是AĈ上一点,AE=5EC.延长AE,与DC,BP的延长线分别交于点F,G,求EFFG的值.20.如图,AB为⊙O的直径,点C是AD̂的中点,过点C做射线BD的垂线,垂足为E.(1)求证:CE是⊙O的切线;(2)若BE=3,AB=4,求BC的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).21.如图,在⊙O中,直径AB垂直弦CD于点E,连接AC,AD,BC,作CF⊥AD于点F,交线段OB于点G(不与点O,B重合),连接OF.(1)若BE=1,求GE的长.(2)求证:BC2=BG•BO.(3)若FO=FG,猜想∠CAD的度数,并证明你的结论.22.如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F边OB中点,为以O 为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求OGOD的值.23.在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△A′B′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.24.如图,⊙O是△ABC的外接圆,BD是⊙O的直径,AB=AC,AE∥BC,E为BD的延长线与AE的交点.(2)若∠ABC =75°,BC =2,求CD̂的长.25.我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB 是⊙O 的直径,直线l 是⊙O 的切线,B 为切点.P ,Q 是圆上两点(不与点A 重合,且在直径AB 的同侧),分别作射线AP ,AQ 交直线l 于点C ,点D .(1)如图1,当AB =6,BP 长为π时,求BC 的长;(2)如图2,当AQ AB =34,BP ̂=PQ ̂时,求BC CD 的值; (3)如图3,当sin ∠BAQ =√64,BC =CD 时,连接BP ,PQ ,直接写出PQ BP 的值.26.如图,在菱形ABCD 中,对角线AC ,BD 相交于点E ,⊙O 经过A ,D 两点,交对角线AC 于点F ,连接OF 交AD 于点G ,且AG =GD .(2)已知⊙O的半径与菱形的边长之比为5:8,求tan∠ADB的值.27.如图,△ABC内接于⊙O,AB是⊙O的直径,D是⊙O上的一点,CO平分∠BCD,CE ⊥AD,垂足为E,AB与CD相交于点F.(1)求证:CE是⊙O的切线;(2)当⊙O的半径为5,sin B=35时,求CE的长.28.如图,AB是⊙O的直径,点C,F是⊙O上的点,且∠CBF=∠BAC,连接AF,过点C作AF的垂线,交AF的延长线于点D,交AB的延长线于点E,过点F作FG⊥AB于点G,交AC于点H.(1)求证:CE是⊙O的切线;(2)若tan E=3,BE=4,求FH的长.29.如图,AB是⊙O的直径,点P是⊙O外一点,P A与⊙O相切于点A,点C为⊙O上的一点.连接PC、AC、OC,且PC=P A.(1)求证:PC为⊙O的切线;(2)延长PC与AB的延长线交于点D,求证:PD•OC=P A•OD;(3)若∠CAB=30°,OD=8,求阴影部分的面积.̂=EF̂,过点E作直线CD⊥AF交AF 30.如图,以AB为直径的⊙O上有两点E、F,BE的延长线于点D,交AB的延长线于点C,过C作CM平分∠ACD交AE于点M,交BE于点N.(1)求证:CD是⊙O的切线;(2)求证:EM=EN;(3)如果N是CM的中点,且AB=9√5,求EN的长.31.如图,已知等腰△ABC,AB=AC,以AB为直径作⊙O交BC于点D,过D作DF⊥AC 于点E,交BA延长线于点F.(1)求证:DF是⊙O的切线.(2)若CE=√3,CD=2,求图中阴影部分的面积(结果用π表示).32.如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG=∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值.(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.33.如图,以△ABC的边AC为直径作⊙O,交BC边于点D,过点C作CE∥AB交⊙O于点E,连接AD,DE,∠B=∠ADE.(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.34.已知,AB是半径为1的⊙O的弦,⊙O的另一条弦CD满足CD=AB,且CD⊥AB于点H(其中点H在圆内,且AH>BH,CH>DH).(1)在图1中用尺规作出弦CD与点H(不写作法,保留作图痕迹);(2)连结AD,猜想:当弦AB的长度发生变化时,线段AD的长度是否变化?若发生变化,说明理由;若不变,求出AD的长度;(3)如图2,延长AH至点F,使得HF=AH,连结CF,∠HCF的平分线CP交AD的延长线于点P,点M为AP的中点,连结HM.若PD=12AD,求证:MH⊥CP.35.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AD=CD,过点D的直线l交BA 的延长线于点M.交BC的延长线于点N且∠ADM=∠DAC.(1)求证:MN是⊙O的切线;(2)求证:AD2=AB•CN;(3)当AB=6,sin∠DCA=√33时,求AM的长.36.如图,△ABC中,以AB为直径的⊙O交BC于点E,AE平分∠BAC,过点E作ED⊥AC于点D,延长DE交AB的延长线于点P.(1)求证:PE是⊙O的切线;(2)若sin∠P=13,BP=4,求CD的长.37.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E是BC的中点,连接OE、DE.(1)求证:DE是⊙O的切线;(2)若sin C=45,DE=5,求AD的长;(3)求证:2DE2=CD•OE.38.如图,在⊙O 中,AB 是一条不过圆心O 的弦,点C ,D 是AB̂的三等分点,直径CE 交AB 于点F ,连结AD 交CF 于点G ,连结AC ,过点C 的切线交BA 的延长线于点H .(1)求证:AD ∥HC ;(2)若OG GC =2,求tan ∠F AG 的值;(3)连结BC 交AD 于点N ,若⊙O 的半径为5.下面三个问题,依次按照易、中、难排列.请根据自己的认知水平,选择其中一道问题进行解答.①若OF =52,求BC 的长;②若AH =√10,求△ANB 的周长;③若HF •AB =88,求△BHC 的面积.39.如图,CD是⊙O的直径,弦AB⊥CD,垂足为点F,点P是CD延长线上一点,DE⊥AP,垂足为点E,∠EAD=∠F AD.(1)求证:AE是⊙O的切线;(2)若P A=4,PD=2,求⊙O的半径和DE的长.40.如图,△ABC、△ABD内接于⊙O,AB=BC,P是OB延长线上的一点,∠P AB=∠ACB,AC、BD相交于点E.(1)求证:AP是⊙O的切线;(2)若BE=2,DE=4,∠P=30°,求AP的长.41.如图,AB与⊙O相切于点A,半径OC∥AB,BC与⊙O相交于点D,连接AD.(1)求证:∠OCA=∠ADC;(2)若AD=2,tan B=13,求OC的长.42.如图,AB是⊙O的直径,AB=2√10,⊙O的弦CD⊥AB于点E,CD=6.过点C作⊙O 的切线交AB的延长线于点F,连接BC.(1)求证:BC平分∠DCF;̂上一点,连接CG交AB于点H,若CH=3GH,求BH的长.(2)G为AD。
题型五 圆的相关证明与计算类型二 与切线有关的证明与计算(专题训练)1.如图,ABC V 内接于O e ,AB 是O e 的直径,E 为AB 上一点,BE BC =,延长CE 交AD 于点D ,AD AC =.(1)求证:AD 是O e 的切线;(2)若1tan 3ACE Ð=,3OE =,求BC 的长.【答案】(1)见解析;(2)8【分析】(1)根据BE BC =,可得BEC BCE Ð=Ð,根据对顶角相等可得AED BEC Ð=Ð,进而可得BCE AED Ð=Ð,根据AD AC =,可得ADC ACE Ð=Ð,结合90ACB Ð=°,根据角度的转化可得90AED D Ð+Ð=°,进而即可证明AD 是O e 的切线;(2)根据ADC ACE Ð=Ð,可得1tan tan 3EA D ACE DA ==Ð=,设AE x =,则3AC AD x ==,分别求得,,AC AB BC ,进而根据勾股定理列出方程解方程可得x ,进而根据6BC x =+即可求得.【详解】(1)Q BE BC =,\BEC BCE Ð=Ð,Q AED BEC Ð=Ð,\BCE AED Ð=Ð,Q AD AC =,\ADC ACE Ð=Ð,Q AB 是直径,\90ACB Ð=°,90D AED ACD BCE ACB \Ð+Ð=Ð+Ð=Ð=°,\AD 是O e 的切线;(2)AD AC =Q ,\ADC ACE Ð=Ð,1tan tan 3EA D ACE DA \==Ð=,设AE x =,则3AC AD x ==,3,336OB OA AE OE x BC BE OE OB x x ==+=+==+=++=+,226AB OA x ==+,在Rt ABC V 中,222AC BC AB +=,即()()()2223626x x x ++=+,解得122,0x x ==(舍去),68BC x \=+=.【点睛】本题考查了切线的判定,勾股定理解直角三角形,正切的定义,利用角度相等则正切值相等将已知条件转化是解题的关键.2.如图,ABC V 内接于O e ,AB AC =,AD 是O e 的直径,交BC 于点E ,过点D 作//DF BC ,交AB 的延长线于点F ,连接BD .(1)求证:DF 是O e 的切线;(2)已知12AC =,15AF =,求DF 的长.【答案】(1)见解析;(2)DF =【分析】(1)由题意根据圆周角定理得出90ABC CBD Ð+Ð=°,结合同弧或等弧所对的圆周角相等并利用经过半径外端并且垂直于这条半径的直线是圆的切线进行证明即可;(2)根据题意利用相似三角形的判定即两个角分别相等的两个三角形相似得出FBD FDA ~△△,继而运用相似比FB FD FD FA=即可求出DF 的长.【详解】解:(1)证明:∵AD 是O e 的直径∴90ABD Ð=°(直径所对的圆周角是直角)即90ABC CBD Ð+Ð=°∵AB AC=∴ABC C Ð=Ð(等边对等角)∵ AB AB=∴ADB C Ð=Ð(同弧或等弧所对的圆周角相等)∴ABC ADBÐ=Ð∵//BC DF ,∴CBD FDBÐ=Ð∴90ADB FDB Ð+Ð=°即90ADF Ð=°∴AD DF^又∵AD 是O e 的直径∴DF 是O e 的切线(经过半径外端并且垂直于这条半径的直线是圆的切线).(2)解:∵12AB AC ==,15AF =∴3BF AF AB =-=∵F F Ð=Ð,90FBD FDA Ð=Ð=o∴FBD FDA ~△△(两个角分别相等的两个三角形相似)∴FB FD FD FA=,∴231545FD FB FA =×=´=∴DF =【点睛】本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.3.如图,AB 为O e 的直径,C 为O e 上一点,D 为AB 上一点,BD BC =,过点A 作AE AB ^交CD 的延长线于点E ,CE 交O e 于点G ,连接AC ,AG ,在EA 的延长线上取点F ,使2FCA E Ð=Ð.(1)求证:CF 是O e 的切线;(2)若6AC =,AG =,求O e 的半径.【答案】(1)见解析;(2)5【分析】(1)根据题意判定ADG DCB V V ∽,然后结合相似三角形的性质求得2AGD E ÐÐ=,从而可得FCA AGD ÐÐ=,然后结合等腰三角形的性质求得90FCO а=,从而判定CF 是O e 的切线;(2)由切线长定理可得AF CF =,从而可得2FAC E ÐÐ=,得到AC AE =,然后利用勾股定理解直角三角形可求得圆的半径.【详解】(1)证明:B AGC ÐÐQ =,ADG CDB ÐÐ=,ADG DCB \V V ∽,BD BC GD GA\=,BD BC Q =,GD GA \=,ADG DAG \ÐÐ=,又AE AB ^Q ,90EAD \а=,90GAE DAG E ADG \Ð+ÐÐ+а==,GAE E \ÐÐ=,AG DG EG \==,2AGD E ÐÐ=,2FCA E ÐÐQ =,FCA AGD B \ÐÐÐ==,Q AB 是O e 的直径,90CAB B \Ð+а=,又OA OC Q =,ACO CAB \ÐÐ=,90FCA ACO \Ð+а=,90FCO \а=,即CF 是O e 的切线;(2)Q CF 是O e 的切线,AE AB ^,AF CF \=,2FAC FCA E \ÐÐÐ==,6AC AE \==,又AG DG EG Q ==,在Rt ADE △中,2AD ===,设O e 的半径为x ,则2AB x =,22BD BC x==﹣,在Rt ABC △中,2226222x x +(﹣)=(),解得:5x =,O \e 的半径为5.【点睛】本题考查了圆周角定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等,熟练掌握相关定理与性质是解决本题的关键.4.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF .(1)求证:CE 为⊙O 的切线;(2)若DE =1,CD =3,求⊙O 的半径.【答案】(1)见解析;(2)⊙O 的半径是4.5【分析】(1)如图1,连接OC ,先根据四边形ABCD 内接于⊙O ,得CDE OBC ÐÐ=,再根据等量代换和直角三角形的性质可得90OCE а=,由切线的判定可得结论;(2)如图2,过点O 作OG AE ^于G ,连接OC ,OD ,则90OGE а=,先根据三个角是直角的四边形是矩形得四边形OGEC 是矩形,设⊙O 的半径为x ,根据勾股定理列方程可得结论.【详解】(1)证明:如图1,连接OC ,∵OB OC =,∴OCB OBC ÐÐ=,∵四边形ABCD 内接于⊙O ,∴180CDA ABC Ð+Ð=°又180CDE CDA Ð+Ð=°∴CDE OBC ÐÐ=,∵CE AD ^,∴90E CDE ECD ÐÐа=+=,∵ECD BCF ÐÐ=,∴90OCB BCF Ðа+=,∴90OCE а=,∵OC 是⊙O 的半径,∴CE 为⊙O 的切线;(2)解:如图2,过点O 作OG AE ^于G ,连接OC ,OD ,则90OGE а=,∵90E OCE Ðа==,∴四边形OGEC 是矩形,∴OC EG OG EC =,=,设⊙O 的半径为x ,Rt △CDE 中,31CD DE =,=,∴EC ==∴OG =1GD xOD x =﹣,=,由勾股定理得222OD OG DG +:=,∴222(1)x x =+-,解得: 4.5x =,∴⊙O 的半径是4.5.【点睛】本题考查的是圆的综合,涉及到圆的切线的证明、勾股定理以及矩形的性质,熟练掌握相关性质是解决问题的关键.5.如图,V ABC 内接于⊙O ,且AB =AC ,其外角平分线AD 与CO 的延长线交于点D .(1)求证:直线AD 是⊙O 的切线;(2)若AD =,BC =6,求图中阴影部分面积.【答案】(1)见解析;(2)6p -【分析】(1)连接OA ,证明OA ⊥AD 即可,利用角平分线的意义以及等腰三角形的性质得以证明;(2)求出圆的半径和阴影部分所对应的圆心角度数即可,利用相似三角形求出半径,再根据特殊锐角三角函数求出∠BOC .【详解】解:(1)如图,连接OA 并延长交BC 于E ,∵AB=AC ,△ABC 内接于⊙O ,∴AE 所在的直线是△ABC 的对称轴,也是⊙O 的对称轴,∴∠BAE=∠CAE ,又∵∠MAD=∠BAD ,∠MAD+∠BAD+∠BAE+∠CAE=180°,∴∠BAD+∠BAE=12×180°=90°,即AD ⊥OA ,∴AD 是⊙O 的切线;(2)连接OB ,∵∠OAD=∠OEC=90°,∠AOD=∠EOC ,∴△AOD ∽△EOC ,∴AD OA EC OE =,由(1)可知AO 是ABC D 的对称轴,OE \垂直平分BC ,132CE BC \==,设半径为r ,在Rt EOC D 中,由勾股定理得,,\解得6r =(取正值),经检验6r =是原方程的解,即6OB OC OA ===,又6BC =Q ,OBC \D 是等边三角形,60BOC \Ð=°,OE =BOC BOC S S S D \=-阴影部分扇形2606163602p ´=-´´6p =-【点睛】本题考查了切线的判定和性质、角平分线的性质,圆周角定理,三角形外接圆与外心,扇形面积的计算,灵活运用切线的判定方法是解题的关键.6.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,过⊙O 外一点D 作//DG BC ,DG 交线段AC 于点G ,交AB 于点E ,交⊙O 于点F ,连接DB ,CF ,∠A =∠D .(1)求证:BD 与⊙O 相切;(2)若AE =OE ,CF 平分∠ACB ,BD =12,求DE 的长.【答案】(1)见解析;(2)【分析】(1)如图1,延长DB 至H ,证明90ABD Ð=°,即可根据切线的判定可得BD 与O e 相切;(2)如图2,连接OF ,先根据圆周角定理证明OF AB ^,再证明EFO EDB △∽△,列比例式可得4OF =,即O e 的半径为4,根据勾股定理可得DE 的长.【详解】(1)证明:如图1,延长DB 至H ,Q,DG BC//\Ð=Ð,CBH DQ,Ð=ÐA D\Ð=Ð,A CBHe的直径,Q是OAB\Ð=°,ACB90\Ð+Ð=°,A ABC90\Ð+Ð=°,90CBH ABC\Ð=°,90ABD∴AB⊥BD,e相切;\与OBD(2)解:如图2,连接OF,CFQ平分ACBÐ,\Ð=Ð,ACF BCF\=,AF BF∴∠AOF=∠BOF=90°,OF AB \^,BD AB ^Q ,//OF BD \,EFO EDB \△∽△,\OF OE BD BE=,AE OE =Q ,\13OE EB =,\1123OF =,4OF \=,4OA OB OF \===,246BE OE OB \=+=+=,DE \.【点睛】此题考查了相似三角形的判定与性质,切线的判定,圆周角定理,勾股定理等知识,解答本题需要我们熟练掌握切线的判定,第2问关键是证明EFO EDB △∽△.7.如图,在Rt △ACD 中,∠ACD =90°,点O 在CD 上,作⊙O ,使⊙O 与AD 相切于点B ,⊙O 与CD 交于点E ,过点D 作DF ∥AC ,交AO 的延长线于点F ,且∠OAB =∠F .(1)求证:AC 是⊙O 的切线;(2)若OC =3,DE =2,求tan ∠F 的值.【答案】(1)见详解;(2)12.【分析】(1)由题意,先证明OA 是∠BAC 的角平分线,然后得到BO=CO ,即可得到结论成立;(2)由题意,先求出BD=4,OD=5,然后利用勾股定理求出6AB AC ==,10AD =,结合直角三角形ODF ,即可求出tan ∠F 的值.【详解】解:(1)∵DF ∥AC ,∴∠CAO=∠F ,∵∠OAB =∠F ,∴∠CAO=∠OAB ,∴OA 是∠BAC 的角平分线,∵AD 是⊙O 的切线,∴∠ABO=∠ACO=90°,∴BO=CO ,又∵AC ⊥OC ,∴AC 是⊙O 的切线;(2)由题意,∵OC =3,DE =2,∴OD=5,OB=3,CD=8,∴4BD ==,由切线长定理,则AB=AC ,设AB AC x ==,在直角三角形ACD 中,由勾股定理,则222AC CD AD +=,即2228(4)x x +=+,解得:6x =,∴6AB AC ==,6410AD =+=,∵∠OAB =∠F ,∴10DF AD ==,∵90FDO ACO Ð=Ð=°,∴51tan 102OD F DF Ð===.【点睛】本题考查了圆的切线的判定和性质,勾股定理,角平分线的性质,以及三角函数,解题的关键是熟练掌握所学的知识,正确的求出所需的长度,从而进行解题.8.如图,在Rt ABC V 中,90ACB °Ð=,以斜边AB 上的中线CD 为直径作O e ,与BC 交于点M ,与AB 的另一个交点为E ,过M 作MN AB ^,垂足为N .(1)求证:MN 是O e 的切线;(2)若O e 的直径为5,3sin 5B =,求ED 的长.【答案】(1)见解析;(2)75ED =.【解析】【分析】(1)欲证明MN 为⊙O 的切线,只要证明OM ⊥MN .(2)连接,DM CE ,分别求出BD=5,BE=325,根据ED BE BD =-求解即可.【详解】(1)证明:连接OM ,OC OM =Q ,OCM OMC \Ð=Ð.在Rt ABC V 中,CD 是斜边AB 上的中线,12CD AB BD \==,DCB DBC \Ð=Ð,OMC DBC \Ð=Ð,//OM BD \,MN BD ^Q ,MN OM \^,MN \是O e 的切线.(2)连接,DM CE ,易知,DM BC CE AB ^^,由(1)可知5BD CD ==,故M 为BC 的中点,3sin 5B =Q ,4cos 5B \=,在Rt BMD △中,cos 4BM BD B =×=,28BC BM \==.在Rt CEB V 中,32cos 5BE BC B =×=,327555ED BE BD \=-=-=.【点睛】本题考查切线的判定和性质,等腰三角形的性质,解直角三角形等知识;熟练掌握切线的判定定理是解题的关键.9.如图,AB 是半圆O 的直径,,C D 是半圆O 上不同于,A B 的两点,AD BC AC =与BD 相交于点,F BE 是半圆O 所任圆的切线,与AC 的延长线相交于点E ,()1求证:CBA DAB D D ≌;()2若,BE BF =求AC 平分DAB Ð.【答案】()1证明见解析;()2证明见解析.【解析】【分析】()1利用,AD BC =证明,ABD BAC Ð=Ð利用AB 为直径,证明90,ADB BCA Ð=Ð=°结合已知条件可得结论;()2利用等腰三角形的性质证明:,EBC FBC Ð=Ð 再证明,CBF DAF Ð=Ð 利用切线的性质与直径所对的圆周角是直角证明:,EBC CAB Ð=Ð 从而可得答案.【详解】()1证明:,AD BC =Q,AD BC\= ,ABD BAC \Ð=ÐAB Q 为直径,90,ADB BCA \Ð=Ð=°,AB BA =QCBA DAB \V V ≌.()2证明:,90,BE BF ACB =Ð=°Q,FBC EBC \Ð=Ð90,,ADC ACB DFA CFB Ð=Ð=°Ð=ÐQ,DAF FBC EBC \Ð=Ð=ÐBE Q 为半圆O 的切线,90,90,ABE ABC EBC \Ð=°Ð+Ð=°90,ACB Ð=°Q90,CAB ABC \Ð+Ð=°,CAB EBC \Ð=Ð,DAF CAB \Ð=ÐAC \平分DAB Ð.【点睛】本题考查的是圆的基本性质,弧,弦,圆心角,圆周角之间的关系,直径所对的圆周角是直角,三角形的全等的判定,切线的性质定理,三角形的内角和定理,掌握以上知识是解题的关键.10.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交 BC于点D,过点D 作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【答案】(1)见解析;(2)【解析】【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【详解】解:(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,Q AB为⊙O的直径,90,ACB\Ð=°∵DE∥BC,∴∠E=ACB=∠ 90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BF BA BD=,∴BD2=BF•BA=2×6=12.∴BD=【点睛】本题考查的是圆的基本性质,圆周角定理,切线的判定,同时考查了相似三角形的判定与性质.(1)中判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”,有切线时,常常“遇到切点连圆心得半径”;(2)中能得△DBF∽△ABD是解题关键.11.如图,在⨀O中,AB为⨀O的直径,C为⨀O上一点,P是 BC的中点,过点P作AC的垂线,交AC 的延长线于点D .(1)求证:DP 是⨀O 的切线;(2)若AC=5,5sin 13APC Ð=,求AP 的长.【答案】(1)见解析;(2)AP=.【解析】【分析】(1)根据题意连接OP ,直接利用切线的定理进行分析证明即可;(2)根据题意连接BC ,交于OP 于点G ,利用三角函数和勾股定理以及矩形的性质进行综合分析计算即可.【详解】解:(1)证明:连接OP ;∵OP=OA;∴∠1=∠2;又∵P 为 BC的中点;∴ PCPB =∴∠1=∠3;∴∠3=∠2;∴OP ∥DA ;∵∠D=90°;∴∠OPD=90°;又∵OP 为⨀O 半径;∴DP 为⨀O 的切线;(2)连接BC ,交于OP 于点G ;∵AB 是圆O 的直径;∴∠ACB 为直角;∵5sin 13APC Ð=∴sin ∠ABC=513AC=5,则AB=13,半径为132由勾股定理的12=,那么CG=6又∵四边形DCGP 为矩形;∴GP=DC=6.5-2.5=4∴AD=5+4=9;在Rt △ADP 中,==.【点睛】本题考查圆的综合问题,熟练掌握圆的切线定理和勾股定理以及三角函数和矩形的性质是解题的关键.12.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC ,CE ⊥AB 于点E ,D 是直径AB 延长线上一点,且∠BCE =∠BCD .(1)求证:CD 是⊙O 的切线;(2)若AD =8,BE CE =12,求CD 的长.【答案】(1)见解析;(2)4【解析】【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【详解】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO =∠BCO+∠BCD =90°,∴∠DCO =90°,∴CD 是⊙O 的切线;(2)解:∵∠A =∠BCE ,∴tanA =BC AC =tan ∠BCE =BE CE =12,设BC =k ,AC =2k ,∵∠D =∠D ,∠A =∠BCD ,∴△ACD ∽△CBD ,∴BC AC =CD AD =12,∵AD =8,∴CD =4.【点睛】本题考查了切线的判定定理,相似三角形的判定与性质以及解直角三角形的应用,熟练掌握性质定理是解题的关键.13.如图,AB 是O e 的直径,点C 是O e 上一点,CAB Ð的平分线AD 交 BC于点D ,过点D 作//DE BC 交AC 的延长线于点E .(1)求证:DE 是O e 的切线;(2)过点D 作DF AB ^于点F ,连接BD .若1OF =,2BF =,求BD 的长度.【答案】(1)见解析;(2)BD =【解析】【分析】(1)连接OD ,由等腰三角形的性质及角平分线的性质得出∠ADO =∠DAE ,从而OD ∥AE ,由DE ∥BC 得∠E =90°,由两直线平行,同旁内角互补得出∠ODE =90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB =90°,再由OF =1,BF =2得出OB 的值,进而得出AF 和BA 的值,然后证明△DBF ∽△ABD ,由相似三角形的性质得比例式,从而求得BD 2的值,求算术平方根即可得出BD 的值.【详解】解:(1)连接OD ,如图:∵OA =OD ,∴∠OAD =∠ADO ,∵AD 平分∠CAB ,∴∠DAE =∠OAD ,∴∠ADO =∠DAE ,∴OD ∥AE ,∵DE ∥BC ,∴∠E =90°,∴∠ODE =180°−∠E =90°,∴DE 是⊙O 的切线;(2)因AB 为直径,则90ADB Ð=°∵1OF =,2BF =∴OB=3∴4AF =,6BA =∵∠ADB=∠DFB=90°, ∠B=∠B∴△DBF ∽△ABD ∴BF BD BD AB=∴22612BD BF BA =×=´=所以BD=.【点睛】本题考查了切线的判定、相似三角形的判定与性质、平行线的性质等知识点,熟练掌握圆的切线的判定及圆中的相关计算是解题的关键.。
人教版数学中考专题复习:圆的切线证明题专项训练1.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,点E在AC上,以AE为直径的∠O经过点D.(1)求证:BC是∠O的切线;(2)若∠C=30°,且CD=2.如图,在Rt∠ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A.D的∠O分别交AB,AC于点E,F.(1)求证:BC是∠O的切线;(2)若BE=8,sin B≈513,求∠O的半径;(3)求证:AD2=AB•AF.3.如图,AB 是O 的直径,D 为O 上一点,点E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求OC 的长.4.如图,∠O 的弦AB 、CD 交于点E ,点A 是CD 的中点,连接AC 、BC ,延长DC 到点P ,连接PB .(1)若PB =PE ,判断PB 与∠O 的位置关系,并说明理由.(2)若AC 2=2AE 2,求证:点E 是AB 的中点.5.如图,在Rt ABC 中,∠BAC =90°,以AD 为直径的∠O 与边BC 有公共点E ,且AB =BE .(1)求证:BC是∠O的切线;(2)若BE=3,BC=7,求∠O的半径.⊥于点C,交O于点E,CD与BA的延长线交于点6.如图,AB为O直径,D为O上一点,BC CDF,BD平分ABC∠.(1)求证:CD是O的切线;BC=,求BD的长.(2)若3AB=,27.如图,四边形ABCD内接于∠O,AB是∠O的直径,点P为CA的延长线上一点,∠CAD=45°.(1)若AB=8,求图中阴影部分的面积;(2)若BC=AD,AD=AP,求证:PD是∠O的切线.8.如图,在∠ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE∠AC,垂足为E,∠O经过A,B,D三点.(1)证明:AB是∠O的直径(2)试判断DE与∠O的位置关系,并说明理由;(3)若DE的长为3,∠BAC=60°,求∠O的半径.9.如图,在Rt∠ABC中,∠ACB=90°,E是BC的中点,以AC为直径的∠O与AB边交于点D,连接DE.(1)求证:DE是∠O的切线;(2)若CD=3cm,5cm2DE ,求∠O直径的长.10.如图,点D在∠O的直径AB的延长线上,点C在∠O上,且AC=CD,∠ACD=120°.(1)求证:CD是∠O的切线;(2)若∠O的半径为2,求图中阴影部分的面积.11.如图,在∠ABC中,AB=AC,以AB为直径的∠O与BC相交于点D,DE∠AC于E.(1)求证:DE是∠O的切线;(2)若∠O的半径为5,BC=16,求DE的长.12.如图,AB是∠O的直径,C、D是∠O上的点,BD平分∠ABC,DE∠BE,DE交BC的延长线于点E.(1)求证:DE是∠O的切线;(2)如果CE=1,AC=∠O的半径r.13.如图,AB是O的直径,点C、G为圆上的两点,当点C是弧BG的中点时,CD垂直直线AG,垂足为D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分ACB ∠,交AB 于点F ,连接BE .(1)求证:DC 与O 相切;(2)求证:PC PF =;(3)若1tan 3E =,BE =PF 的长.14.如图,∠O 是四边形ABCD 的外接圆,AC 是∠O 的直径,BE ∠DC ,交DC 的延长线于点E ,CB 平分∠ACE .(1)求证:BE 是∠O 的切线.(2)若AC =4,CE =1,求tan∠BAD .15.如图,AB 为∠O 的直径,射线AD 交∠O 于点F ,C 为BF 的中点,过点C 作CE ∠AD ,连接AC .(1)求证:CE是∠O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.16.如图,∠O是△ABC的外接圆,且AB=AC,四边形ABCD是平行四边形,边CD与∠O交于点E,连接AE.(1)求证△ABC∠∠ADE;(2)求证:AD是∠O的切线..以AB为直径的O交BC于点D,过点D作DE∠AC于点17.已知:如图,在∠ABC中,AB ACE.(1)求证:DE与O相切;AB ,sin B,求线段AF的长.(2)延长DE交BA的延长线于点F,若618.如图,Rt∠ABC中,∠ABC=90°,点E为BC的中点,连接DE.(1)求证:DE是半圆∠O的切线;(2)若∠BAC=30°,DE=2,求AD的长.19.如图,AB是∠O的直径,点E是劣弧AD上一点,∠PBD=∠BED,且DEBE平分∠ABD,BE与AD交于点F.(1)求证:BP是∠O的切线;(2)若tan∠DBE EF的长;(3)延长DE,BA交于点C,若CA=AO,求∠O的半径.20.如图,在Rt△OAB中,∠AOB=90°,OA=OB=4,以点O为圆心、2为半径画圆,过点A作∠O的切线,切点为P,连接OP.将OP绕点O按逆时针方向旋转到OH时,连接AH,BH.设旋转角为α(0°<α<360°).(1)当α=90°时,求证:BH是∠O的切线;(2)当BH与∠O相切时,求旋转角α和点H运动路径的长;(3)当△AHB面积最小时,请直接写出此时点H到AB的距离.参考答案:1.(1)连接OD,∠AD是∠BAC的平分线,∠∠DAB=∠DAO,∠OD=OA,∠∠DAO=∠ODA,则∠DAB=∠ODA,∠DO∠AB,而∠B=90°,∠∠ODB=90°,∠BC是∠O的切线;(2)连接DE、OD、DF、OF,设圆的半径为R,∠∠C=30°,CD=∠OD=CD•tan30°=3,∠∠DAB=∠DAE=30°,∠DE=DF,∠∠DOE=60°,∠∠DOF=60°,∠∠FOA=60°,∠∠OFD、△OF A是等边三角形,∠DF∠AC,∠S阴影=S扇形DFO=2603360π⨯⨯=32π.2.(1)证明: 如图,连接OD ,∠OA =OD ,∠∠ODA =∠OAD ,∠AD 平分∠BAC ,∠∠OAD =∠CAD ,∠∠ODA =∠CAD∠OD AC ∥,∠∠C =90°,∠ ∠ODB =∠C =90°,又∠OD 是∠O 的半径,∠BC 是∠O 的切线;(2)解:90BDO ∠=︒,∴在Rt∠BDO 中,5sin 813OD OD OD B BO BE OD OD ====++, 解得5OD =,故∠O 的半径为5;(3)证明:如图:连接EF ,∠AE 是直径,∠90AFE ACB ∠=︒=∠,∠EF BC ∥,∠AEF B ∠=∠,又∠AEF ADF ∠=∠,∠B ADF ∠=∠,又∠OAD CAD ∠=∠,∠∠DAB ∠∠F AD , ∠AD AF AB AD=, ∠2AD AB AF =⋅.3.(1)解:连接OD ,∠OD OB =,∠B ODB ∠=∠,又∠B CDA ∠=∠,∠ODB CDA ∠=∠,∠AB 是圆O 的直径,∠∠ADB =90°,∠90ODB ODA ∠+∠=︒,∠90CDA ODA ∠+∠=︒即90ODC ∠=︒, ∠CD 是O 的切线;(2)解:连接BE 、OE∠E 是BD 的中点,∠2BE DE ==,OE BD ⊥,260BOE BDE ∠=∠=︒, ∠OBE △是等边三角形,∠2OB BE ==,60BOE ∠=︒∠OB OD =,OE BD ⊥,∠60BOE DOE ∠=∠=︒,∠60DOC ∠=︒在Rt ODC ,60DOC ∠=︒,∠∠C =30°,∠24OC OD ==.4.(1)PB 与∠O 相切,理由是:连接OA 、OB ,OA 交CD 于F ,∠点A 是CD 的中点,∠OA ∠CD ,∠∠AFE =90°,∠∠OAE +∠AED =90°,∠OA=OB,PB=PE,∠∠OAE=∠OBA,∠PEB=∠PBE,∠∠AED=∠PEB,∠∠OBA+∠PBE=90°,即∠OBP=90°,∠OB∠PB,∠PB与∠O相切;(2)∠AC=AD,∠∠ACE=∠ABC,∠∠CAE=∠BAC,∠∠ACE∠∠ABC,∠ACAE=ABAC,∠AC2=AE•AB,∠AC2=2AE2,∠AE•AB=2AE2,∠AB=2AE,∠E为AB的中点.5.(1)证明:连接OB,OE,如图所示,在ABO和EBO△中,AB BE OA OE OB OB =⎧⎪=⎨⎪=⎩,∠()SSS ABO EBO △△≌, ∠90BEO BAO ∠=∠=︒,即OE BC ⊥,∠BC 是O 的切线;(2)解:∠3BE =,7BC =,∠3AB BE ==,4CE =,∠AC == ∠OE BC ⊥,∠222OE EC OC +=,即()2224OE OE +=,解得:OE = ∠O6.(1)连接OD ,如图,∠BD 平分ABC ∠,∠ABD DBC ∠=∠,∠OB OD =,∠OBD ODB ∠=∠∠DBC ODB ∠=∠,∠∥OD BC ,∠ODF C ∠=∠∠BC CD ⊥,∠90C ∠=︒,∠90ODF C ∠=∠=︒,即OD DC ⊥,∠CD 是O 的切线(2)连接AD ,如图,∠AB 为O 直径,∠90ADB ∠=︒∠90C ∠=︒,∠90ADB C ∠=∠=︒∠ABD DBC ∠=∠,∠ABD DBC △△∽ ∠BC BD BD AB =,即23BD BD =, ∠BD =∠BD .7.(1)解:如图,连接OC ,OD ,∠∠COD=2∠CAD,∠CAD=45°,∠∠COD=90°,∠AB=8,∠OC=12AB=4,∠S扇形COD=2904360π⨯⨯=4π,S△OCD=12×OC×OD=12×4×4=8,∠S阴影= S扇形COD- S△OCD =4π﹣8.(2)证明:∠BC=AD,∠BC AD=,∠∠BOC=∠AOD,∠∠COD=90°,∠∠AOD=45°,∠OA=OD,∠∠ODA=∠OAD,∠∠AOD+∠ODA+∠OAD=180°,∠∠ODA=67.5°,∠AD=AP,∠∠ADP=∠APD,∠∠CAD=∠ADP+∠APD,∠CAD=45°,∠∠ADP=12∠CAD=22.5°,∠∠ODP=∠ODA+∠ADP=90°,∠PD是∠O的切线.8.(1)解:如图所示,连接AD∠AB=AC,BD=DC,∠AD∠BC即∠ADB=90°,∠AB是∠O的直径.(2)解:DE与∠O相切,理由如下:如图所示,连接OD,∠OB=OA,BD=DC,∠OD是∠ABC的中位线,∥.∠OD AC∠DE∠AC,∠DE∠OD即∠ODE=90°,∠DE与∠O相切.(3)解:∠AB=AC,AD∠BC,∠BAC=60°,∠∠BAD=∠DAE=30°.∠DE∠AC,AD∠BD,∠AD=2DE=6,AB=2BD.在∠ABD 中,222BD AD AB +=, ∠()22262BD BD +=,解得BD =∠2AB BD ==,∠∠O 的半径为9.(1)连接OD∠AC 为圆O 的直径 ∠∠ADC =90°∠OD =OC∠∠ODC =∠OCD在Rt ∠BCD 中,∠E 为BC 中点 ∠12DE BC CE == ∠∠EDC =∠ECD∠∠ODC +∠EDC =∠OCD +ECD =90° 即∠ODE =90°∠OD ∠DE∠DE 是圆O 的切线(2)在Rt∠BCD中,∠E为BC中点∠BC=2DE=5∠CD=3∠BD=4∠AC为直径,∠∠ADC=∠ACB=∠BDC=90°,又∠∠B=∠B∠∠ABC∠∠CBD,∠AC BC CD BD=∠5 34 AC=∠154=AC cm10.(1)证明:如图,连接OC,∠CD=AC,∠∠CAD=∠D,又∠∠ACD=120°,∠∠CAD=∠D=12(180°﹣∠ACD)=30°,∠OC=OA,∠∠A=∠2=30°,∠∠COD=60°,又∠∠D=30°,∠∠OCD=180°﹣∠COD﹣∠D=90°,∠OC∠CD∠OC是∠ O的半径∠CD是∠ O的切线;(2)解:∠∠A =30°,∠∠1=2∠A =60°. ∠260223603OBC S ππ⨯==扇形 ,在Rt ∠OCD 中,tan 60CD OC ==•︒=∠11222Rt OCD S OC CD =⨯=⨯⨯=△.∠图中阴影部分的面积为23π.11.(1)证明:如图:连接OD .∠AB =AC ,∠∠B =∠C ,又∠OD =OB ,∠∠ODB =∠OBD .∠∠ODB =∠ACB .∠OD AC ∥,∠DE ∠AC .∠OD ∠DE .∠OD 是圆的半径,∠DE 是∠O 的切线;(2)解:如图:连接AD ,∠AB为∠O的直径,∠∠ADB=90°,即AD∠BC,又∠AB=AC,BC=16,∠BD=CD=8,∠∠O的半径为5,∠AC=AB=10,∠6 AD=,∠S△ADC11••22AC DE CD AD ==,∠10DE=8×6,∠DE=4.8.12.(1)解:连接OD,如下图所示:∠OB=OD,∠∠OBD=∠ODB,∠BD平分∠ABC,∠∠OBD=∠DBE,∠∠ODB=∠DBE,∠OD∥BE,∠DE∠BE于点E,∠∠E=90°,∠∠ODE=180°-∠E=180°-90°=90°,∠OD∠DE;∠DE是∠O的切线.(2)解:设OD交AC于点M,如下图:∠AB为∠O的直径,∠∠ACB=∠ACE=90°,由(1)知,∠ODE=90°,∠∠ACE=∠E=∠ODE=90°,∠四边形DECM为矩形,∠EC=DM=1,∠MO∥CB,O为AC的中点,∠MO为∠ABC的中位线,且∠AMO=∠ACB=90°,AC∠AM=MC=12设圆的半径为r,则MO=DO-DM=r-1,在Rt∠AMO中,由勾股定理可知:AO²=AM²+MO²,代入数据:222=+-,r r(1)解出:4r=,故圆∠O的半径为4.13.(1)解:(1)CD AD ⊥,90D ∴∠=︒,∠∠DAC +∠DCA =90°,点c 是弧BG 的中点,∠CG BC =DAC BAC ∴∠=∠,OA OC =,OCA BAC ∴∠=∠,OCA DAC ∠=∠∴,//∴AD OC ,∠∠D =∠OCP =90°, OC 是圆O 的半径,DC ∴与O 相切,(2) AB 是O 的直径,90ACB ∴∠=︒,90PCB ACD ∴∠+∠=︒,由(1)得:90DAC DCA ∠+∠=︒,PCB DAC ∴∠=∠,DAC BAC ∠=∠,PCB BAC ∴∠=∠, CE 平分ACB ∠,ACF BCF ∴∠=∠,∠∠PFC =∠BAC +∠ACF ,∠PCF =∠PCB +∠BCF ,PFC PCF ∴∠=∠,PC PF ∴=;(3)连接AE ,CE 平分ACB ∠,∴AE BE =,AE BE ∴=, AB 是O 的直径,90AEB ∴∠=︒,AEB ∴∆为等腰直角三角形,∠AB ,∠OB =OC ∠1tan 3E = ∠1tan 3BC CAB AC ==∠, ∠∠PCB =∠BAC ,∠P =∠P ,∠△PCB ∠△P AC , ∠13BC PB AC PC ==, ∴设PB x =,3=PC x ,在Rt OCP ∆中,222OC PC OP +=,∠222(3))x x +=,∠x =x =0(舍去),∠PC∠PF 14.(1)证明:如图,连接OB,∠CB平分∠ACE.∠∠ACB=∠ECB,∠OB=OC,∠∠BCO=∠CBO,∠∠BCE=∠CBO,∠OB∠ED.∠BE∠ED,∠EB∠BO.∠BE是∠O的切线;(2)解:∠AC是∠O的直径,∠∠ABC=90°,∠BE∠ED,∠∠E=90°,∠∠E=∠ABC,∠∠BCE=∠ACB,∠∠BCE∠∠ACB,∠BC CE AC BC=,∠AC=4,CE=1,∠2BC==,∠BE,∠∠BCD+∠BAD=∠BCD+∠BCE=180°,∠∠BCE=∠BAD,∠tan tan BE BAD BCE CE∠=∠== 15.(1) 解:(1)连接BF ,OC ,∠AB 是∠O 的直径,∠∠AFB =90°,即BF ∠AD ,∠CE ∠AD ,∠BF ∠CE ,∠点C 为劣弧BF 的中点,∠OC ∠BF ,又BF ∠CE ,∠OC ∠CE ,∠OC 是∠O 的半径,∠CE 是∠O 的切线;(2)解:连接OF ,CF ,∠OA =OC ,∴∠OCA =∠BAC =30°,∠∠BOC =60°,∠点C 为劣弧BF 的中点,∠FC BC =,∠∠FOC =∠BOC =60°,∠OF =OC ,∴△FOC为等边三角形,∠∠OCF=∠COB=60°,∠CF∠AB,∠S△ACF=S△OCF,∠阴影部分的面积等于S扇形COF,∠AB=4,∠FO=OC=OB=2,∠S扇形FOC=260223603ππ⋅⨯=,即阴影部分的面积为23π.16.(1)解:∠四边形ABCD是平行四边形,∠∠B=∠D.∠四边形ABCE为∠O的内接四边形,∠∠B+∠AEC=180°.∠∠AED+∠AEC=180°.∠∠B=∠AED.∠AB=AC,∠AB=∠ACB∠∠ACB=∠AED.∠∠ABC∠∠ADE.(2)解:如图,连接AO并延长,交BC于点M,连接OB、OC.∠AB=AC,OB=OC,∠AM垂直平分BC.∠∠AMC=90°.∠四边形ABCD是平行四边形,∠AD∠BC.∠∠DAO=90°.∠点A在∠O上,∠AD是∠O的切线.17.(1)证明:连接OD,∠AB=AC,∠=∠,∠B C=,又∠OB OD∠1∠=∠,B∠C1∠=∠,∥,∠OD AC∠DE∠AC于E,∠DE∠OD,∠OD是O的半径,∠DE与O相切;(2)解:如图:连接AD,∠AB为O的直径,∠∠ADB=90°,∠AB =6,sin B∠sin AD AB B =⋅ ∠123290∠+∠=∠+∠=︒, ∠13∠=∠,∠3B ∠=∠,在∠AED 中,∠AED =90°,∠sin 3AE AD ∠==∠65AE AD ===. 又∠OD AE ∥, ∠∠FAE ∠∠FOD , ∠FA AE FO OD=, ∠6AB =,∠3OD AO ==, ∠235FA FA =+, ∠2AF =.18.(1)连接OD ,BD ,如图,AB 是直径,90ADB ∴∠=︒, 90BDC ∴∠=︒,E 是BC 的中点,12DE BE EC BC ∴=== EBD EDB ∠∠∴=,OB OD =OBD ODB ∠∠∴=OBD EBD ODB EDB ∠∠∠∠∴+=+即90ODE ABC ∠=∠=︒OD DE ∴⊥ OD 是半径,∴DE 是半圆∠O 的切线.(2)2DE =24BC ED ∴==30BAC ∠=︒28AC BC ∴==AB ∴==12BD AB ∴==6AD ∴=.19.(1) 证明:∠AB 是∠O 的直径,∠∠ADB =90︒,∠∠DAB +∠ABD =90︒,∠∠BED =∠DAB ,∠PBD =∠BED ,∠∠DAB =∠PBD ,∠∠PBD +∠ABD =90︒,∠∠ABP =90︒,∠AB ∠PB ,∠BP 是∠O 的切线;(2)解:连接AE ,∠AB 是直径∠∠AEB =90︒,∠BE 平分∠ABD ,∠∠ABE =∠DBE ,∠AE DE =,∠AE =DE∠∠ABE =∠DBE =∠DAE ,∠tan tan tan EF DBE ABE DAE EA ∠∠∠====,∠EF (3)解:连接OE ,∠OE =OB ,∠∠ABE =∠OEB ,∠∠ABE =∠DBE ,∠∠DBE =∠OEB ,∠//OE BD ∠CE OC DE OB=, ∠CA =AO ,设CA =AO =BO =R , ∠22CE R DE R==,2=, ∠CE∠DC = CE +DE∠∠ADC =∠ABE ,∠C =∠C ,∠CAD CEB △∽△, ∠CD AC CB CE=,= ∠R,∠∠O20.(1)证明:∠α=90°,∠AOB =90°,∠∠AOP =∠BOH ,在∠AOP 和∠BOH 中,OA OB AOP BOH OP OH =⎧⎪∠=∠⎨⎪=⎩∠∠AOP ∠∠BOH (SAS ),∠∠OP A=∠OHB,∠AP是∠O的切线,∠∠OP A=90°,∠OHB=90°,即OH∠BH于点H,∠BH是∠O的切线;(2)如图,过点B作∠O的切线BC,BD,切点分别为C,D,连接OC,OD,则有OC∠BC,OD∠BD,∠OC=2,OB=4,∠cos2142OCBOCOB===∠∠∠BOC=60°,同理∠BOD=60°,当点H与点C重合时,由(1)知:α=90°,∠∠OHB=90°.∠圆弧PH的长为902180ππ⨯=;当点H与点D重合时,α=∠POC+∠BOC+∠BOD=90°+2×60°=210°,∠圆弧PH的长为21027 1803ππ⨯=,∠当BH与∠O相切时,旋转角α=90°或210°,点H运动路径的长为π或73π;(3)设h表示点H到直线AB的距离,作ON∠AB于点N,H在圆O上,在Rt∠ONB中,∠OBN=45°,OB=4,∠ON=4cos45°=∠h的最小值为=ON﹣r=2∠当∠AHB面积最小时,点H到AB的距离为2。
人教版年九年级数学上册《圆》期末证明题练习-附有答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,AB是半圆O的直径,AE为弦,C为弧AE的中点,CD AB⊥于点D,交AE于点F,BC交AE于点G.求证:AF FC=.2.如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x 轴于点A,点D在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(﹣2,4),试求MC的长及直线DC的解析式.3.如图,已知△ABC内接于⊙O,AB=AC,∠BOC=120°,延长BO交⊙O于点D.(1)试求∠BAD的度数;(2)求证:△ABC为等边三角形.4.已知:如图,O过正方形ABCD的顶点,A B,且与CD边相切于点E.点F是BC与O的交点,连接OB,OF,AF,点G是AB延长线上一点,连接FG,且1902G BOF ∠+∠=︒.(1)求证:FG 是O 的切线; (2)如果正方形边长为8,求O 的半径.5.已知:如图,在O 中,弦AB CD ∥.求证:AD BC =.6.如图,已知在⊙O 中,M 、N 分别是半径OA 、OB 的中点,且CM⊥OA,DN⊥OB.求证:AC BD =.7.如图,AB 是⊙O 直径,点C 是⊙O 上一点,过点C 作⊙O 的切线CG ,过点B 作CG 的垂线,垂足为点D ,交⊙O 于点E ,连接CB .(1)求证:CB 平分∠ABD ; (2)若BC =5,BD =3,求AB 长.8.如图,在ABC 中AB BC =,以AB 为直径的O 与AC 交于点D ,过点D 作O 的切线DE ,分别交BC AB 、的延长线于点F E 、.(1)求证:DE BC ⊥; (2)若2BE =,30A ∠=︒求图中阴影部分面积.9.已知ABC 内接于O ,过点A 作直线EF .(1)如图1所示,若AB 为O 的直径,要使EF 成为O 的切线,还需要添加的一个条件是________________.(2)如图2所示,如果AB 是不过圆心O 的弦,且CAE B ∠=∠,那么EF 是O 的切线吗?试证明你的判断.10.如图,在ABC 中,以边AB 为直径作O 分别交BC ,AC 于点D ,E ,点D 是BC 中点,连接OE ,OD .(1)求证:ABC 是等腰三角形.(2)若6AB =,40A ∠=︒求AE 的长和扇形EOD 的面积.11.如图,AB 是O 的直径,C ,D 都是O 上的点,且AD 平分CAB ∠,过点D 作AC 的垂线交AC 的延长线于点E ,交AB 的延长线于点F .(1)求证:EF 是O 的切线; (2)若13AB = 5AC = 求CE 的长.12.如图 在ABC 中 BO 平分ABC ∠ 以点O 为圆心 OA 的长为半径的O 与AB 相切于点A .(1)求证:BC 是O 的切线; (2)若6AB = 10BC = 求OA 的长.13.如图1 半圆O 的直径为AB 点M 为半圆上一动点(不与点A B 重合) 点N 为弧AM 的中点 ND AB ⊥于点D 过点M 的切线交DN 的延长线于点C 连结OM .(1)若//MC AB (如图2所示)①求证:AD CN =; ②填空:四边形OMCD 是哪种特殊的四边形?(直接写出结论)__________.(2)填空:当ANM ∠=______°时 四边形ANMO 为菱形.(直接写出结论)答案:1.解∵C 为弧AE 的中点∴∠B=∠CAF∵AB 是半圆O 的直径∴90ACB ∠=︒∴90ACD DCB ∠+∠=︒.∵CD AB ⊥∴90CDB ∠=︒∴90B DCB ∠+∠=︒.∴B ACD ∠=∠.∵C 是AE 的中点∴B CAE ∠=∠.∴ACD CAE ∠=∠∴AF FC =.2. 解:(1)答:直线DC 与⊙O 相切于点M . 证明如下:连OM ∵DO∥MB∴∠1=∠2 ∠3=∠4.∵OB=OM∴∠1=∠3.∴∠2=∠4.在△DAO 与△DMO 中 {24AO OMDO DO=∠=∠=.∴△DAO≌△DMO.∴∠OMD=∠OAD.由于FA⊥x 轴于点A∴∠OAD=90°.∴∠OMD=90°.即OM⊥DC.∴DC 切⊙O 于M .(2)由D (-2 4)知OA=2(即⊙O 的半径) AD=4. 由(1)知DM=AD=4 由△OMC∽△DAC 知2142MC OM AC AD ===. ∴AC=2MC在Rt△ACD 中 CD=MC+4.由勾股定理 有(2MC )2+42=(MC+4)2 解得MC=83或MC=0(不合题意 舍去).∴MC 的长为83.∴点C (1030).设直线DC 的解析式为y=kx+b . 则有100{342k b k b=+=-+. 解得3452k b ⎧=-⎪⎪⎨⎪=⎪⎩.∴直线DC 的解析式为y=-34x+52.3 (1)解:∵BD 是⊙O 的直径∴∠BAD=90°.(2)证明:∵∠BOC=120°∴∠BAC=12∠BOC=60°. 又∵AB=AC∴△ABC 是等边三角形.4. (1)证明:∵四边形ABCD 是正方形 ∴90ABF ∠=︒∴AF 是O 的直径∵12BAF BOF ∠=∠ 1902G BOF ∠+∠=︒∴90BAF G ∠+∠=︒∴90AFG ∠=︒ 即AF FG ⊥∴FG 是O 的切线.(2)解:如图所示 连接OE∵O 与CD 相切于点E 即CD 是O 的切线∴OE CD ⊥ 且OB OF =(圆的半径相等) 过O 作OH BC ⊥于H 则四边形OECH 是矩形 BH FH = ∴,OH CE CH OE ==∵,8AO OF AB == 即,O H 分别是,AF BF 的中点∴142OH AB ==设OB OE CH r ===∴8BH BC OE r =-=-在Rt BOH 中∵222OB BH OH =+∴222(8)4r r =-+∴=5r .5.证明:过点O 作OE AB ⊥于点E 交CD 于点F 交CD 于点M 连接OA OBOC OD 如图:∵OE AB ⊥ //AB CD∴OF CD ⊥∴在OAB 中 OA OB =;在OCD 中 OC OD = ∴AOE BOE ∠=∠ COF DOF ∠=∠∴AOE DOF BOE COF ∠+∠=∠+∠∴AOD BOC ∠=∠∴AD BC =6.解:连接OC OD 则OC =OD=OA=OB. ∵M N 分别是半径OA OB 的中点 ∴OM=ON. ∵CM⊥OA DN⊥OB∴∠OMC=∠OND=90°.在Rt△OMC和Rt△OND中OM=ON OC=OD ∴Rt△OMC≌Rt△OND(HL).∴∠MOC=∠NOD.∴AC=BC.7.(1)证明:如图1 连接OC则OC=OB∴∠OCB=∠OBC∵CG是⊙O的切线BD⊥CG∴∠OCD=∠BDC=90°∴OC∥BD∴∠OCB=∠DBC∴∠OBC=∠DBC∴BC平分∠OBD;(2)解:∵BD=3 BC=5 ∠BDC=90°∴CD=4过点B作BH⊥OC于点H则四边形BDCH为矩形∴CH=BD=3 BH=CD=4设OC=OB=r则OH=OC-CH=r-3 在Rt△OHB中OH2+BH2=OB2∴(r-3)2+42=r2解得:r=256∴AB=2r=2×256=253.8.(1)证明:连接OD如图所示:∵AB BC=OA OD=∴A C∠=∠A ODA∠=∠∴C ODA∠=∠∴BC OD∥又∵DE是O的切线∴DE OD∴DE BC⊥;(2)解:由(1)得:60DOE A ODA∠=∠+∠=︒∵BC OD∥∴60EBF DOE∠=∠=︒∵DE BC ⊥ ∴30E ∠=︒∴2OE OD =∵OD OB =∴2OB BE OD ===∴23DE =∴ODE 的面积112232322OD DE =⋅=⨯⨯= 扇形OBD 的面积260223603ππ=⨯= ∴阴影部分的面积2233π=-.9.解1)90BAE ∠=︒或EAC ABC ∠=∠ 或AE AB ⊥等(其他填法正确也可)(2)是;作直径AM 连MC则90ACM ∠=︒ M B ∠=∠ M CAM ∴∠+∠=90B CAM ∠+∠=︒ CAE B ∠=∠90CAM CAE ∴∠+∠=︒AE AM ∴⊥AM 为直径EF ∴是O 的切线.10.(1)连接AD∵AB 为O 直径∴90ADB ∠=︒ 即AD BC⊥又∵D 是BC 中点∴AD 是线段BC 的中垂线∴AB AC =∴ABC 是等腰三角形;(2)∵40,A OA OE =︒=∠∴40A AEO ∠=∠=︒∴100AOE ∠=︒∵6AB =∴3OA OE ==∴100π35π1803AE l ⨯==∵,AB AC OB OD ==∴70ABC ODB ∠=︒=∠∴140AOD ∠=︒∴40EOD ∠=︒∴240π3π360EOD S ⨯==扇形. 11.(1)证明:如图1 连接ODAD 平分CAB ∠OAD EAD ∴∠=∠OD OA =ODA OAD ∴∠=∠ODA EAD ∴∠=∠∴OD AE ∥90ODF AEF ∠=∠=︒且D 在O 上 EF ∴是O 的切线;(2)连接BC 交OD 于HAB 是O 的直径90ACB ∴∠=︒13AB = 5AC =BC ∴=22AB AC -=22135-12= 90E ACB ∠=∠=︒∴BC EF ∥90OHB ODF ∴∠=∠=︒OD BC ∴⊥CH ∴=126BC =CH BH = OA OB =OH ∴=12 2.5AC =6.5 2.54DH ∴=-=90E HCE EDH ∠=∠=∠=︒∴四边形ECHD 是矩形6ED CH ∴== 4CE DH ==.12.(1)解:过点O 作OE BC ⊥于点E 如图所示∵AB 是O 的切线∴OA AB ⊥∴90A ∠=︒∵BO 平分ABC ∠∴ABO EBO ∠=∠∵OE BC ⊥∴90BEO ∠=︒∵OB OB =∴()AAS BAO BEO ≌∴OA OE =∴OE 是O 的半径 OE BC ⊥ ∴BC 是O 的切线;(2)解:∵在Rt ABC △中 6AB = 10BC = ∴22221068AC BC AB =-=-=在Rt BAO 和Rt BEO △中 BO BO OA OE=⎧⎨=⎩ ∴()Rt Rt HL BAO BEO ≌△△ ∴6BE BA ==∴1064CE BC BE =-=-=设OA x = 则OE x = 8CO AC AO x =-=- 在Rt CEO △中 由勾股定理得222=+CO CE OE ∴()22284x x -=+.解得:3x = ∴3OA =.13.解:(1)①如图2 连结ON∵点N 为弧AM 的中点切O于点M CM.AB ND CD切O于点M CM+∠CMNAB ND∴90NCM ADN ∠=∠=︒∴90DAN AND ∠+∠=︒∴AND NMC ∠=∠又AN NM = 90NCM ADN ∠=∠=︒ ∴ADN NCM △≌△∴AD CN =;②∵CM 切O 于点M∴OM CM ⊥∵//MC AB ND AB ⊥∴CM CD ⊥∴∠CDO=∠CMO=∠DOM =90︒ ∴四边形CDOM 是矩形故答案为:矩形;(2)当120ANM ∠=︒时 四边形ANMO 为菱形. 证明:连接ON∵点N 为弧AM 的中点∴AN NM =∵OA=OM ON=ON∴△AON ≌△MON∴ANO MNO∠=∠∵120∠=︒ANM∴60∠=∠=︒ANO MNO∵OA=OA=OM∴△AON和△MON都是等边三角形∴AN=AO=MO=MN∴四边形ANMO为菱形.故答案为:120.。