最新版2019-2020年山西省太原市七年级上学期期中数学模拟试卷及答案-精编试题
- 格式:doc
- 大小:278.50 KB
- 文档页数:18
2019-2020学年第一学期第一次测评初一数学——试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母标号填入下列相应位置)1.有理数-3的绝对值是()A.3B.-3 C.13D.132.下表是某年1月份我国几个城市的平均气温,在这些城市中,平均气温最低的城市是()城市北京上海沈阳广州太原平均气温-5.6℃ 2.3℃-16.8℃17.6℃-11.2℃A.北京B.沈阳C.广州D.太原3.如图,在数学活动课上,同学们用一个平面分别去截下列四个几何体,所得截面是三角形的是()4.下列运算正确的是()A.x2+x2=x4B.4x+(x-3y)=3x+3yC.x2y-2x2y=-x2yD.2(x+2)=2x+25.化简14(16x-12)-2(x-1)的结果是()A.2x-1B.x+1C.5x+3D.x-36.下列四个几何体,同一个几何体从正面看和从左面看的形状图相同,这样的几何体共有()A.1个B.2个C.3个D.4个7.有一个两位数,个位数字是n,十位数字是m,则这个两位数可表示为()。
A.mn B.10m+n C.10n+m D.m+n8.今年 9月世界计算机大会在湖南省长沙市开幕,大会的主题是“计算万物,湘约未来”.从心算、珠算的古老智慧到“银河”“天河”“神威”创造的中国速度,“中国计算”为世界瞩目.超级计算机“天河一号”的性能是 4700万亿次,换算成人工做四则运算,相当于60亿人算一年,它1秒就可以完成.数 4700万亿用科学记数法表示为( )。
A.4.7×107B.4.7×1011C.4.7×1014D..7×10159.“1285个服务站点”,“4.1万辆公共自行车”,“日均租骑量 32.54万次”,“1小时内免费”,···,自 2012年开通运营以来,太原公共自行车已经伴随太原市民走过近七个春秋,课外活动小组的同学们,在某双休日 11:30—12:00对我市某个公共自行车服务站点的租骑量进行了观察记录.用“-6”表示骑走了6辆自行车,记录结果如下表:(时间段不含前一时刻但含后一时刻,如 11:30—11:35不含 11:30但含 11:35)时间段11:30—11:35 11:35—11:40 11:40—11:45 11:45—11:50 11:50—11:55 11:55—12:00 自行车数量-15+8-11+10-6+13假设此服务站点在11:30时有自行车30辆,则在12:00时该站点有自行车()A.31辆B.30辆C. 29辆D.27辆10.和谐公园内有一段长方形步道,它由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道地砖的排列方式,若正方形地砖为连续排列且总共有 40块,则这段步道用了白色等腰直角三角形地砖( )A.80块B.81块C.82块D.84块二、填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.11.如图,汽车的雨刮器能把前挡风玻璃上的雨水刮干净.这一现象,抽象成数学事实是.12.如图是小明设计的运算程序,若输入x的值为-2,则输出的结果是.13.代数式-2x+3的值随着x的值的逐渐变大而.(填“变大”或“变小”)14.成语“运筹帷幄”中“筹”的原意是指《孙子算经》中记载的“算筹”.算筹是中国古代用来计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵、横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的算筹需要纵、横相间;个位,百位,万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.如:数3306用算筹表示成.用算筹表示的数是.15.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.cm.A.该长方体礼品盒的容积为3B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为cm.三、解答题(本大题含8个小题,共55分)解答时应写出必要的文字说明、演算步骤或推理过程. 16.(本题共4个小题,每小题3分,共12分)(1)3(4)(5)--+-;(2)118()6(2)3⨯--÷-(3)572(36)12183⎛⎫-+⨯- ⎪⎝⎭;(4)321(2)8(3)3⎡⎤-÷-+-⨯⎢⎣⎦17.(本题6分)先化简,再求值:322232(2)2()n mn m n mn n -+---,其中31005m n==-,. 18.(本题4分)下面是小颖计算25( 3.4)(1)( 1.6)()33--+-+++的过程,请你在运算步骤后的括号内填写运算依据.解:原式=25( 3.4)(1)( 1.6)()33-+-+-++()=25( 3.4)( 1.6)(1)()33-+-+-++()=[]25( 3.4)( 1.6)(1)()33⎡⎤-+-+-++⎢⎥⎣⎦()=(5)0-+ ()=5-今年假期某校对操场进行了维修改造,如图是操场的一角,在长为a米,宽为b米的长方形场地中间,并排着两个大小相同的篮球场,这两个篮球场之间以及篮球场与长方形场地边沿的距离都为c米.(1)直接写出一个篮球场的长和宽;(用含字母a、b、c的代数式表示)(2)用含字母a、b、c的代数式表示这两个篮球场占地面积的和,并求出当a=42,b=36,c=4时,这两个篮球场占地面积的和.20.(本题6分)如图是用8个大小相同的小立方块搭成的几何体,请分别画出从正面,左面和上面看到的这个几何的形状图.从正面看从左面看从上面看21.(本题7分)某中学为打造体育特色学校,落实每天锻炼1小时的规定,经调查研究后决定在七、八、九年级分别开展跳绳、羽毛球、毽球项目,七年级共有六个班,每班的人数以a人为标准,各班人数情况如下表,八年级学生人数比七年级学生人数的2倍少240人,九年级学生人数的2倍刚好是七、八年级学生人数的和.(说明:1901班表示七年级一班)班级1901班1902班1903班1904班1905班1906班与标准人数的差(人)+3+2-2+20 -1(1)用含a的代数式表示七年级学生人数;(2)学校按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,已知跳绳每根5元,毽球每个3元,羽毛球拍每副18元,当a=40时,求购买器材的总费用.下列等式:11222215513333-=⨯+-=⨯+,,…,具有a-b=1ab+的结构特征,我们把满足这一特征的一对有理数,a b称为“共生有理数对”,记作(a、b)如:数对12 25 33(,),(,)都是“共生有理数对”(1)在两个数对(-2,1),1 3 2(,)中,“共生有理数对”是;(2)若(m,n)是“共生有理数对”,则(-n,-m)“共生有理数对”;(填“是”或“不是”)(3)从AB两题中任选一题作答A.请再写出一对“共生有理数对” (要求:不与题目中已有的“共生有理数对”重复)B.是否存在“共生有理数对”(n,n),若存在,求出n的值;若不存在,请说明理由.23.(本题8分)如图,数轴的单位长度为1,点C,D表示的数互为相反数,结合数轴回答下列问题:(1)请在数轴上标出原点 O的位置;(2)直接写出点 A、B、C、D所表示的数,并判断哪一点表示的数的平方最大,最大是多少?(3)从 AB两题中任选一题作答.A.①若点 F在数轴上,与点 C的距离 C F =3.5,求点 F表示的数;设动点 P从点 B出发,以每秒 3个单位长度的速度沿数轴的正方向匀速向终点 D运动,运动时间为t秒,求P,C之间的距离CP.(用含t的代数式表示)B.设点M,N都从点A出发沿数轴的正方向匀速向终点D运动,点M的速度为每秒2个单位长度,点N的速度为每秒5个单位长度,当点M运动到点B时点N开始运动,设点M运动时间为t秒,求点M,N之间的距离MN(用含t的代数式表示)。
第Ⅰ卷一、选择题:(本题共10小题,每小题3分,共30分)1.2016年9月15日22时04分,中国在酒泉卫星发射中心用长征二号FT2运载火箭将天宫二号空间实验室发射升空。
次日,天宫二号于成功实施了两次轨道控制,顺利进入运行轨道。
天宫二号空间实验室将开展的实验中,包括了空间科学物理领域重点项目——空间冷原子钟实验,有望实现3千万年误差一秒的超高精度,对卫星定位导航等生产生活及引力波探测等空间科学研究将产生重大影响。
空间冷原子钟可以将航天器自主守时精度提高两个数量级,大幅提高导航定位精度。
3000用科学记数法表示为()A.3 B. 0.3 C. 0.3D.2.下列算式中,运算结果为负数的是().A. (2)-- B. 3(2)- C.2- D. 2(2)-3.下列计算正确的是().A. 22232x y x y x y-= B. 277a a a+=C. 532y y-= D. 325a b ab+=4.已知1a b-=,则代数式223a b--的值是().A. 1-B. 1C. 5D.5-5.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.aB.C.D.6.若21(2)02x y-++=,则( )的值为()A.1-B.1C.D. 20167.人口自然增长率是指在一定时期内(通常为一年)人口增加数与该时期内平均人数之比。
人口自然增长率是反映人口发展速度和制定人口计划的重要指标,用来表明人口自然增长的程度和趋势。
2015年,一些国家的人口自然增长率(%)如下表所示,人口自然增长趋势最慢的国家是()美国日本中国印度德国卡塔尔0.9 -0.0772 0.48 1.312 -0.2 4.93A.卡塔尔B.中国C.日本D.德国8.历史上,数学家欧拉最先把关于x的多项式用记号()f x来表示,把x等于某数a时的多项式的值用()f a来表示,例如1x=-时,多项式2()35f x x x=+-的值记为(1)f-,那么(1)f-等于().A. 1-B. 3-C.7-D. 9-考生须知1.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共4页。
山西省2019-2020学年第一学期七年级期中质量评估试题数学(北师版)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列各数中,最小的是()A. 0B. 2-C. ()31-D. 4-【答案】D【解析】【分析】逐个求出值,然后比较大小即可.【详解】解:选项A:计算结果为0;选项B:计算结果为2;选项C:计算结果为-1;选项D:计算结果为-4.故答案选:D.【点睛】本题考查有理数的大小比较,常借助于数轴比较大小,熟悉绝对值、幂的运算是解决此类题的关键.2.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.中国是世界上最早认识和应用负数的国家,比西方早一千多年,负数最早记载于下列哪部著作中()A. B. C. D.【答案】C【解析】【分析】根据负数的发展史作答即可.【详解】解:中国是世界上最早认识和应用负数的国家,比西方早(一千多)年.负数最早记载于中国的《九章算术》(成书于公元一世纪)中.故答案为:C.【点睛】本题考查数学的发展历史,需要学生对历史上重要的数学成就有所了解.3.如图是一无盖的正方体盒子,其展开图不能是()A. B. C. D.【答案】C【解析】【分析】根据平面图形的折叠及无盖正方体的展开图即可求解.【详解】解:由四棱柱四个侧面和底面的特征可知,A、B、D可以拼成无盖的正方体,而C拼成的是上下都无底,且有一面重合的立体图形.故一个无盖的正方体盒子的平面展开不可以是选项中的C.故答案选:C【点睛】此题主要考察了正方体侧面展开图的应用,需要一定的空间想象能力.4.下列运算中,结果正确的是()A. 22213222x x x-= B. 224549a a a+= C.222437m n mn m n+= D. 826y y-=【答案】A 【解析】【分析】根据整式的加减运算法则逐个进行分析即可. 【详解】解:选项A:22213222x x x-=,故选项A正确;选项B:222549+=a a a,故选项B错误;选项C:24m n和23mn不是同类项,故不能进行加减,故选项C错误;选项D:826-=y y y,故选项D正确. 故答案为:A. 【点睛】本题考查整式的加减运算,只有同类项才能进行加减运算,不是同类型则不能进行加减运算,加减运算时,系数进行加减,字母及指数保持不变;熟练掌握运算法则是解决此题的关键.5.2019年3月28日,“二青会圣火”在山西省运城市芮城县风陵渡镇境内的西侯度遗址圣火公园点燃.距今约180万年前,西侯度人点燃了人类文明的第一把火,把人类用火的时间向前推进了100多万年,在古人类进化史上书写了浓墨重彩的一笔.数据180万年可以用科学记数法表示为( )A. 51.810⨯年B. 61.810⨯年C. 51810⨯年D. 50.1810⨯年【答案】B【解析】【分析】 科学记数法的表示形式为:10n a ⨯,其中1||10a ≤<,n 为整数;确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:用科学记数法表示:180万年=1800000年=61.810⨯年.故答案为:B.【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为:10n a ⨯,表示时关键要正确确定a 和n 的值.6.下列说法正确的是( )A. 单项式7ab 的次数是1B. 单项式23ab 的系数是2 C. 多项式2326a a b ab -+的次数是3D. 24a b -,3ab ,5是多项式2435a b ab -+-的项【答案】C【解析】【分析】根据单项式和多项式的次数和系数的概念逐个分析即可.【详解】解:选项A :单项式7ab 的次数为2,故选项A 错误;选项B :单项式23ab 的系数为23,故选项B 错误; 选项C :多项式2326a a b ab -+的次数是3次,故选项C 正确;选项D :2435a b ab -+-的项是:24a b -,3ab 和5-,故选项D 错误.故答案为:C.【点睛】本题考单项式和多项式的次数及系数的概念,单项式是指数字和字母的乘积,单项式的次数是指所有字母的指数和,系数是指单项式的数字部分;多项式是多个单项式的和,次数是多项式中单项式的最高次数叫做多项式的次数;熟练掌握概念是解决此题的关键.7.用一个平面去截一个立体图形,当截取的角度和方向不同时,截面的形状随截法的不同而改变,下列截面中属于三角形的是( )A. B. C. D.【答案】B【解析】【分析】根据立体图形的摆放方式及截取方式逐个分析即可.【详解】解:选项A 中截出的是一个圆,故选项A 错误;选项B 中截出的是一个三角形,故选项B 正确;选项C 中截出的是一个平行四边形,故选项C 错误;选项D 中截出的是一个平行四边形,故选项D 错误.故答案为:B.【点睛】本题考查学生的空间想象能力,掌握常见图形及其截面图是解决此类题的关键.8.下列去括号中,正确的是( )A. a 2﹣(2a ﹣1)=a 2﹣2a ﹣1B. a 2+(﹣2a ﹣3)=a 2﹣2a +3C. ﹣(a +b )+(c ﹣d )=﹣a ﹣b ﹣c +dD. 3a ﹣[5b ﹣(2c ﹣1)]=3a ﹣5b +2c ﹣1【答案】D【解析】【分析】根据去括号的法则进行计算即可.【详解】解:A、a2﹣(2a﹣1)=a2﹣2a+1,故A错误;B、a2+(﹣2a﹣3)=a2﹣2a﹣3,故B错误;C、﹣(a+b)+(c﹣d)=﹣a﹣b+c﹣d,故C错误;D、3a﹣[5b﹣(2c﹣1)]=3a﹣5b+2c﹣1,故D正确;故选D.【点睛】本题考查了整式的加减,掌握去括号的法则与合并同类项的法则是解题的关键.9.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“7cm”分别对应数轴上的52-和x,则x的值为()A.72- B.92C. 4D.112【答案】B 【解析】【分析】根据数轴得出算式:5()702--=-x,求出即可.【详解】解:由题意可知:有:5()702--=-x解得:92x=. 故答案为:B. 【点睛】本题考查了数轴的应用,关键是能理解题意,根据题意列出等量关系求解. 10.山西面食不仅是中华民族饮食文化的重要组成部分,也是世界的面食之根.其中,“拉面”远播世界各地.制作方法如图所示,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,反复几次,这根很粗的面条就被拉成许多细的面条,第一次捏合变2根细面条,第二次捏合变4根细面条,第三次捏合变8根细面条,这样捏合到第n次后可拉出细面条()A. 2n 根B. 12n +根C. 12n -根D. 112n +⎛⎫ ⎪⎝⎭根【答案】A【解析】【分析】 找规律,然后根据有理数的乘方的定义列出更加一般的情况即可求解.【详解】解:第一次捏合变2根细面条,可以看成是12第二次捏合变4根细面条,可以看成是22第三次捏合变8根细面条,可以看成是32依据这个规律下去第n 次捏合可拉出细面条的根数为:2n .故答案为:A. 【点睛】本题借助生活中的实际例子考查了有理数的乘方的定义,理解乘方的意义是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分) 11.比较大小:75-_____97-.(填“<”“=”“>”) 【答案】<【解析】【分析】 用79()57---,计算结果后与0比较大小即可. 【详解】解:∵797949454()0575*******----=-+=+=-< ∴75-<97- 故答案为:<. 【点睛】本题考查了有理数的大小比较,比较大小常见的一种方法是作差法:即两个数相减,其结果与0比较;解答本题的关键是掌握有理数大小的比较法则.12.请你写出一个满足下列条件的代数式,(1)同时含有字母,m n ;(2)是一个5次单项式;(3)它的系数是一个负数,你写出的一个代数式是______.【答案】232m n -(答案不唯一,写出满足题意的一个即可).【解析】【分析】根据代数式的书写规范及单项式的系数和次数的概念求解即可【详解】解:由题意知:写出的单项式为:232m n -故答案为:232m n -(答案不唯一,写出满足题意的一个即可).【点睛】本题考查代数式的书写规范及单项式的系数和次数的概念,熟练掌握概念是解决此类题的关键. 13.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,下列编号为1、2、3、6的小正方形中不能剪去的是 ________(填编号).【答案】3【解析】因为减去3以后,就没有四个面在一条直线上,也就不能围成正方体,所以填3.14.随着人们物质生活水平的不断提升,智能家电越来越受到大家的青睐.某种品牌的洗碗机,进价为m 元,加价n 元后作为标价出售.若国庆期间按标价的八折销售,则售价可表示为______元.【答案】0.8()m n +.【解析】【分析】根据公式:售价=标价×0.8=(进价+加价)×0.8,即可求解. 【详解】解:由题意知:标价为:()m n +元,售价的八折即为:()m n +×0.8=0.8()m n +元.故答案为:0.8()m n +.【点睛】本题考查代数式的意义,解题的关键是读懂题意,找到所求的等量关系,注意八折就是80%的意思.15.如图,搭1个小五边形图案需要5根火柴棒,搭2个小五边形图案需要9根火柴棒,搭3个小五边形图案需要13根火柴棒……,如果用n 表示所搭小五边形图案的个数,那么搭n 个这样的小五边形图案需要___________根火柴棒.(用含n 的代数式表示)【答案】4+1n【解析】【分析】搭一个五边形用5根;搭两个五边形中间少用1根,需要用9根;搭三个五边形中间少用2根,需要用13根,以此为规律,即可求得搭n 个这样的五边形图案需要用:5(1)4+1--=n n n 根.【详解】解:搭1个五边形用5根火柴棒,搭2个小五边形图案需要9根火柴棒,搭3个小五边形图案需要13根火柴棒,搭4个小五边形图案需要17根火柴棒,以此规律,故搭n 个这样的小五边形图案需要:5(1)4+1--=n n n 根火柴棒.故答案为:4+1n .【点睛】本题主要考查了图形的变化类,注意结合图形,发现蕴含的规律,找出解决问题的途径;也可以只分析数字5,9,13,17的变化规律,进而得出结论.三、解答题(本大题共8小题,共75分.解答题应写出文字说明、证明过程或演算步骤) 16.计算:(1)()()()57239---+---;(2)()11233⎛⎫÷- ⎪⎝⎭-+⨯-;(3)22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (4)12336|7|1294⎛⎫-⨯---- ⎪⎝⎭. 【答案】(1) 12-;(2) 17;(3) 9;(4) 25.【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)根据有理数的加减乘除法法则进行计算即可;(3)根据有理数的加减及乘方法则进行计算即可;(4)根据乘法分配律进行计算即可.【详解】解:(1)原式=57239223912-+-+=-+=-故答案为:12-.(2)原式=()12(3)311817-+⨯-⨯-=-+=故答案为:17.(3)原式=34(92)29-⨯-⨯- =3(42)2-⨯-- =3(6)2-⨯- =9故答案为:9(4)原式=12336(36)()(36)()71294-⨯+-⨯-+-⨯-- =38277-++-=25.故答案为:25【点睛】本题考查了有理数的混合运算,主要要掌握正确的运算顺序,即先乘法运算,再乘除运算,最后加减运算,有括号的则先算括号内的.17.化简求值:222125122323x x y x y x y ⎡⎤⎛⎫⎛⎫--⨯---+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,其中1x =-,12y .【答案】化简结果是22x y -;求值结果是3.2- 【解析】 【分析】 先对中括号中的项用乘法分配律乘开,然后再根据整式的加、减法进行同类项的合并,最后代入值求解即可.【详解】解:原式=222145122323⎛⎫--++--- ⎪⎝⎭x x y x y x y =2221451+22323--++-x x y x y x y 2221541=+22233⎛⎫⎛⎫-++-+- ⎪ ⎪⎝⎭⎝⎭x x x x y y y 22=-x y当1x =-,12y 时 原式211312()1.222=--⨯-=--=- 故答案为:化简结果是22x y -,求值结果是3.2- 【点睛】本题考查整式的加、减混合运算,最后进行同类项合并;熟练掌握运算规则和运算顺序是解决此类题的关键.18.如图是由6个相同的小正方体组成的几何体,请在指定的位置画出从正面、左面、上面看得到的这个几何体的形状图.【答案】见解析【解析】【分析】由几何体可得从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为1,2,1;从上面看有3列,每行小正方形数目分别为2,2,1,进而得出答案.【详解】如图所示:.【点睛】此题考查三视图.解题关键在于在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.19.智能折叠电动车是在传统电动车的基础上,根据消费者需求生产的一种新型电动车.某智能折叠电动车公司计划每周生产1400辆,平均每天生产200辆.由于各种原因实际每天生产量与计划每天生产量相比有出入.下表是某周智能折叠电动车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆)星期 一 二 三 四 五 六 七生产情况5+2- 4- 13+ 10- 16+ 9-(1)根据记录可知前三天共生产智能折叠电动车_______辆; (2)产量最多的一天比产量最少的一天多生产________辆;(3)若该公司实行按生产的智能折叠电动车数量的多少计工资,即计件工资制.如果每生产一辆智能折叠电动车可得人民币60元,那么该公司工人这一周的工资总额是多少元? 【答案】(1)599辆;(2)26辆;(3)84540元. 【解析】 【分析】(1)根据表格中的数据求出前三天生产的总量即可; (2)求出每天的产量,找出最大比最少的多生产的量即可;(3)算出一周内总共生产的电动车的数量,然后再乘60,即得到该公司工人这一周的工资总额. 【详解】解:(1) “+”表示实际每天比计划每天多生产,“﹣”表示实际每天比计划每天少生产, 故第一天实际生产205辆,第二天实际生产198辆, 第三天实际生产196辆,∴前三天共生产智能折叠电动车为:205+198+196=599辆 故答案为:599辆.(2)一周每天的产量分别是:205,198,196,213,190,216,191 故产量最多的一天比产量最少的一天多生产216-190=26辆. 故答案为:26辆.(3)一周生产电动车的总量数为:205+198+196+213+190+216+191=1409辆 故一周工人工资的总费用为:1409×60=84540元. 故答案为:84540元.【点睛】本题考查了有理数的加减混合运算及实际应用,读懂题目意思是解题的关键. 20.阅读材料并完成任务.莱昂哈德·欧拉是18世纪数学界最杰出的人物之一,瑞士著名的数学家、物理学家,他不但为数学界作出贡献,更把整个数学推至物理的领域;同时,也是数学史上研究成果最多的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学等的课本,《无穷小分析引论》《微分学原理》《积分学原理》等都成为数学界中的经典著作.因此,被称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯).在数学成就上,欧拉最先把关于x 的多项式用记号()f x 的形式来表示(f 可用其他字母代替,但不同的字母表示不同的多项式),例如()236f x x x =+-,当x a =时,多项式的值用()f a 来表示,即()236f a a a =+-;当1x =-时,多项式的值用()1f -来表示,记为2(1)(1)3(1)68f -=-+⨯--=-.任务:已知()2235g x x x =--+;321()232h x x x x =-+-+. 请你根据材料中代入求值的方法解决下列问题: (1)求()2g -的值;(2)求12h ⎛⎫⎪⎝⎭的值. 【答案】(1)3;(2) 4716. 【解析】 【分析】(1)根据()2235g x x x =--+的定义,将=2x -代入求解即可;(2)根据321()232h x x x x =-+-+的定义,将1=2x 代入求解即可. 【详解】解:(1)将=2x -代入()2235g x x x =--+中得到:()22(2)3(2)586532=-⨯--⨯-+=-++-=g故答案为:3. (2) 将1=2-x 代入321()232h x x x x =-+-+中得到:3211111()()2()322222=-⨯+⨯-+h =11131622-+-+ =4716. 故答案为:4716. 【点睛】本题属于新定义题型,借助新定义考查了有理数的加减乘除及乘方的混合运算;新定义题型就是按照题目中定义的步骤来演算即可.21.阅读下面的解题过程,并用解题过程中的解题方法解决问题. 示例:计算:523112936342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 解:原式:5231(1)(2)9(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(1)(2)9(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦534⎛⎫=+- ⎪⎝⎭74=以上解题方法叫做拆项法.请你利用拆项法计算52153201920201403963264⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 【答案】3712- 【解析】 【分析】根据题意,将带分数拆成成整数部分和分数部分的和,然后整数部分相加减,分数部分相加减,分别计算即可.【详解】解:原式=521532019()(2020)()(1)()()403963264-+-+-+-+-+-+-++=52153[2019(2020)(1)4039][()()()()]63264-+-+-++-+-+-+-+=10861091()()()()1212121212-+-+-+-+-+ =25112--=3712-. 故答案为:3712-. 【点睛】本题考查了有理数的加、减法混合运算,关键是要学会将一个带分数拆成整数部分和分数部分分别进行计算. 22.综合与探究阅读理解:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用较大数与较小数的差来表示.例如:在数轴上,有理数3与1对应的两点之间的距离为312-=; 在数轴上,有理数3与-2对应的两点之间的距离为()325--=; 在数轴上,有理数-3与-2对应的两点之间的距离为()()231---=.解决问题:如图所示,已知点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为2.(1)点A 和点C 之间的距离为______.(2)若数轴上动点P 表示的数为x ,当1x >-时,点P 和点B 之间的距离可表示为______;当1x <-时,点P 和点B 之间的距离可表示为______.(3)若数轴上动点P 表示的数为x ,点P 在点A 和点C 之间,点P 和点A 之间的距离表示为PA ,点P 和点C 之间的距离表示为PC ,求23PA PC +(用含x 的代数式表示并进行化简)(4)若数轴上动点P 表示的数为-2,将点P 向右移动19个单位长度,再向左移动23个单位长度终点为Q ,那么P ,Q 两点之间的距离是______.【答案】(1)5;(2)1x + ,1x --;(3)12-x ;(4)4 【解析】 【分析】(1)用点C 表示的数减去点A 表示的数即可;(2)当1x >-时,用点P 表示的数减去点B 表示的数即可;当1x <-时,用点B 表示的数减去点P 表示的数即可;(3)先表示出PA 和PC ,然后代入计算即可;(4)先求出点Q 表示的数,然后根据两点间距离的求法计算即可. 【详解】解:(1)2-(-3)=5; (2)x-(-1)=1x + ;1x --; (3)∵PA=x-(-3)=x+3,PC=2-x , ∴()()232332PA PC x x +=++-2663x x =++- 12x =-;(4)∵-2+19-23=-6,∴P ,Q 两点之间的距离是-2-(-6)=4.【点睛】此题考查了数轴上的动点问题,以及数轴上两点之间的距离的求法:用右边的点表示的数-左边的点表示的数=两点之间的距离. 23.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm 的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计) 动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm 的小正方形,再沿虚线折合起来.问题解决(1)该长方体纸盒的底面边长为_______cm ;(请你用含,a b 的代数式表示) (2)若12a cm =,3b cm =,则长方体纸盒的底面积为_______2cm ; 动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm 的小正方形和两个同样大小的小长方形,再沿虚线折合起来. 拓展延伸(3)该长方体纸盒的体积为______3cm ;(请你用含,a b 的代数式表示)(4)现有两张边长a 均为30cm 的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若5b cm =,求无盖盒子的体积是有盖盒子体积的多少倍. 【答案】(1) (2)a b -;(2)36;(3) 21(2)2-b a b ;(4) 无盖盒子的体积是有盖盒子体积的2倍. 【解析】 【分析】(1)用底面大正方形的边长a 减去两个小正方形的边长b 即可;(2)长方体纸盒的底面为一个正方形,根据(1)中求出的边长,再利用面积公式求解即可; (3)将有盖长方体的底面积和高分别用,a b 的代数式表示,然后再相乘即可.(4)分别求出有盖和无盖的盒子的体积,然后再用有盖盒子体积除以无盖盒子的体积即得到答案. 【详解】解:(1) 用底面大正方形的边长a 减去两个小正方形的边长b 长方体纸盒的底面边长为:(a-2b )cm. 故答案为:a-2b.(2)当 12a cm =,3b cm =时,代入:此时底面正方形的边长为:21223=6-=-⨯a b cm 故底面正方形的面积为:36cm². 故答案为:36.(3)有盖纸盒的高即为左上角剪去的小正方形的边长, 有盖纸盒的底面为长方形,且该长方形的长为:(2)a b -∵要组成一个有盖的纸盒,故如下图中A ,B 两块长方形的宽要一样,∴有盖长方体纸盒底面长方形的宽为:1(2)2(2)2-÷=-a b a b ∴有盖长方体纸盒的体积为:211(2)(2)(2)22-⨯-⨯=-a b a b b b a b 故答案为:21(2)2-b a b (4)当 30,5==a cm b cm 时图一中无盖长方体纸盒的体积为:222(2)(3010)52000-⨯=-⨯=a b b cm ,图二中有盖长方体纸盒的体积为:22211(2)=5(3010)100022-⨯⨯-=b a b cm . 故答案为:无盖盒子的体积是有盖盒子体积的2倍.【点睛】本题考查了整式的混合运算及代数式的含义,正确表示出纸盒的长、宽、高是解决此题的关键.。
2020-2021学年山西省太原市七年级(上)期中数学试卷1.−2020的相反数是()A. 2020B. −2020C. ±12020D. −120202.在下列各数中,比−1大6的数是()A. −7B. 7C. −5D. 53.用一个平面去截如图所示的三棱柱,截面的形状不可能是()A. 三角形B. 四边形C. 五边形D. 圆形4.在比较同学们的身高时,设160cm为标准身高,超出记为“+”,不足记为“−”.某小组1~6号同学的身高(cm)依次为:+2,+5,−8,−4,+7,−1,则这六名同学中身高最高的是()A. 3号B. 4号C. 5号D. 6号5.下列运算正确的是()A. 3m+3n=6mnB. 7m−5m=2mC. −m2−m2=0D. 5mn2−2mn2=36.9月8日,由央视网、中国信息通信研究院共同推出《经济战疫⋅云起》节目.据介绍,抗击疫情过程中,工信部组织基础电信企业发送疫情防控公益短信近300亿条,有效支撑了各地防控工作.数据300亿用科学记数法表示正确的是()A. 3×1011B. 300×108C. 3×1010D. 0.3×10117.若x表示某件物品的原价,则代数式(1+10%)x表示的意义是()A. 该物品打九折后的价格B. 该物品价格上涨10%后的售价C. 该物品价格下降10%后的售价D. 该物品价格上涨10%时上涨的价格8.如图,点A,B是正方体的两个顶点,将正方体按如下方式展开,则在展开图中点A,B的位置标注正确的是()A.B.C.D.9. 如图,数轴上的点P 表示的有理数为a ,则表示有理数“−2a ”的点是( )A. 点AB. 点BC. 点CD. 点D10. 观察下列等式:12+22+32=3×4×76,12+22+32+42=4×5×96,12+22+32+42+52=5×6×116,…,按照此规律,式子12+22+32+⋯+1002可变形为( )A. 100×101×1026B. 100×101×2016C.100×101×1036D.100×101×20110011. 化简|−25|的结果为______.12. 比较大小:−3______−5.(用符号>、<、=填空) 13. 化简2x 3+3x 3的结果为______.14. 2020年7月23日,中国首次火星探测任务“天问一号”探测器发射升空,已知华氏温度f(℉)与摄氏温度c(℃)之间的关系满足f =95c +32.火星上的平均温度大约为−55℃,换算成华氏温度为______℉.15.下列图形都是由面积为1的小正方形按一定的规律无间隙且不重叠地拼接而成的.请从下面A,B两题中任选一题作答.我选择______题.A.其中,第1个图形中共有9个面积为1的正方形;第2个图形中共有14个面积为1的正方形;第3个图形中共有19个面积为1的正方形;…若按照此规律,第n个图形中共有______个面积为1的正方形.(用含字母n的代数式表示)B.其中,第1个图形中共有14个正方形;第2个图形中共有23个正方形;…若按照此规律,第n个图形中共有______个正方形.(用含字母n的代数式表示)16.计算下列各题:(1)(−3)−15+(−12);(2)(−3)×(−2)−(−16)÷4;(3)(−2)3×(−14+32−58);(4)(23−1)2÷(−13)+0×(−56).17.如图,在数轴上有A,B两点,点A在点B的左侧.已知点A对应的数为−3,点B对应的数为2.(1)请在该数轴上标出原点的位置,并将有理数−92,3.4表示在该数轴上;(2)将−3,2,0,−92,3.4这五个数用“<”连接为:______.18.如图,是由一些大小相同的小正方体组合成的几何体.请根据要求完成下列任务:(1)请在4×4的正方形网格中,用实线分别画出从正面和上面看该几何体得到的形状图;(2)该几何体共有______个小正方体组成.19.(1)化简:5m+3n−7m−n;(2)下面是小彬同学进行整式化简的过程,请认真阅读并完成相应任务.3x2y+2xy−2(xy+x2y)=3x2y+2xy−(2xy+2x2y)第一步=3x2y+2xy−2xy+2x2y第二步=5x2y第三步任务1:填空:①以上化简步骤中,第一步的依据是______;②以上化简步骤中,第______步开始出现错误,这一步错误的原因是______;任务2:请直接写出该整式正确的化简结果,并计算当x=−1,y=−1时该整式10的值.20.为发扬勤俭节约的传统美德,学生会组织了首届“校园跳蚤市场”,吸引了众多同学.如表是小颖同学第一天参加跳蚤市场六笔交易的记账单(记收入为正,支出为负).(1)小颖这六笔交易的总金额是多少元?(说明:此处交易总金额指每次交易额的绝对值的和)(2)已知小颖当天原有40元,完成六笔交易之后,她的钱数是增加了还是减少了?她现在有多少元?序号交易情况(单位:元)1+252−63+184+125−246−1521.2020年是第六届全国文明城市创建的第三年,也是太原市“创城”的冲刺之年,某社区计划将一块长80米、宽60米的长方形空地改建为一个便民停车场.如图是停车场的设计方案,其中的阴影部分是四个完全相同的长方形停车区域,空白部分均为宽度相等的通道.设通道的宽为a米.(1)每个长方形停车区域的长为______米,宽为______米(用含a的代数式表示);(2)当a=3时,求四个停车区域的总面积.22.阅读下列材料,完成相应的任务:任务:(1)下列四个代数式中,是对称式的是______(填序号即可);①a+b+c;②a2+b2;③a2b;④a.b(2)写出一个只含有字母x,y的单项式,使该单项式是对称式,且次数为6次;(3)请从下面A,B两题中任选一题作答.我选择______题.A.已知A=2a2+4b2,B=a2−2ab,求A+2B,并直接判断所得结果是否为对称式;c2a,B=a2b−5b2c,求3A−2B,并直接判断所得结B.已知A=a2b−3b2c+13果是否为对称式.23.综合与实践−探究数轴中的问题问题情境:活动课上,同学们将如图所示的数轴进行对折,探究其中的数学问题.操作思考:(1)勤学小组的对折方案是:使表示−5的点与表示5的点重合.①对折后数轴上表示7的点与表示______的点重合;②对折后数轴上表示有理数m的点与表示______的点重合(用含m的式子表示);(2)善思小组的对折方案是:使表示−5的点与表示7的点重合.①对折后数轴上表示______的点与原点重合;对折后表示−25的点与表示______的点重合;②对折后数轴上表示有理数m的点与表示______的点重合(用含m的式子表示);拓展探究:(3)好问小组的对折方案是:使表示有理数m的点与表示有理数n的点重合(其中m<n).请从下面A,B两题中任选一题作答.我选择______题.A.①对折后数轴上表示有理数m的点到对折点的距离为______(用含m,n的式子表示);②对折后数轴上原点与表示______的点重合(用含m,n的式子表示).B.①该数轴对折点表示的有理数为______(用含m,n的式子表示);②对折后数轴上表示有理数p的点与表示______的点重合(用含m,n,p的式子表示).答案和解析1.【答案】A【解析】解:−2020的相反数是2020;故选:A.根据相反数的定义即可求解.本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【答案】D【解析】解:比−1大6的数为:−1+6=5.故选:D.根据有理数的加法法则求解即可.此题主要考查了有理数的加法,熟记有理数加法法则是解答本题的关键.3.【答案】D【解析】解:用平面去截如图所示的三棱柱,截面形状可能是三角形、四边形、五边形,不可能是圆形.故选:D.根据截面经过几个面,得到的多边形就是几边形判断即可.考查了截一个几何体,涉及的知识点为:截面经过几个面,得到的形状就是几边形.4.【答案】C【解析】解:∵−7<−4<−1<+2<+5<+7,∴这六名同学中身高最高的是5号.故选:C.根据正负数的意义记录最大的正数为最高,最小的负数为最低.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.5.【答案】B【解析】解:A、3m与3n不是同类项,所以不能合并,故本选项不合题意;B、7m−5m=2m,故本选项符合题意;C、−m2−m2=−2m2,故本选项不合题意;D、5mn2−2mn2=3mn2,故本选项不合题意;故选:B.在合并同类项时,系数相加减,字母及其指数不变,据此逐一判断即可.本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.6.【答案】C【解析】解:根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,则300亿=30000000000=3×1010.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.本题主要考查利用科学记数法表示较大的数的方法,掌握科学记数法的表示方法是解答本题的关键,这里还需要注意n的取值.7.【答案】B【解析】解:若x表示某件物品的原价,则代数式(1+10%)x表示的意义是该物品价格上涨10%后的售价.故选:B.说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.此题考查了代数式,此类问题应结合实际,根据代数式的特点解答.8.【答案】A【解析】解:将右边的展开图复原,则只有选项A中的点A与点B处于体对角线的两端.与已知正方体中点A与点B的位置相同.故选:A.解答几何体的展开图,按照空间想象,将原图在脑海中复原或实物折叠,则问题可解.本题考查了几何体的展开图,具备一定的空间想象能力或实物操作是解题的关键.9.【答案】D【解析】解:由数轴可得:−1<a<0,所以0<−2a<2.故选:D.首先根据点P的位置估算出a的值,再用−2乘即可.本题考查了数轴,能正确的估算是解题关键.10.【答案】B【解析】解:∵12+22+32=3×4×76,12+22+32+42=4×5×96,12+22+32+42+52=5×6×116,…,∴12+22+32+⋯+1002=100×101×(100+101)6=100×101×2016,故选:B.根据题目中的式子可以发现:一些连续的整数的平方之和的结果是分母都是6,而分子是最后一个整数乘以(最后一个整数+1)再乘以(前面两个整数的和),从而可以写出所求式子的值.本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现式子的变化特点,求出相应式子的值.11.【答案】25【解析】解:|−25|=25.故答案为25.直接利用绝对值的意义求解.本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=−a.12.【答案】>【解析】解:−3>−5.故答案为:>.利用两个负数比较大小,绝对值大的数反而小直接比较得出答案即可.此题考查有理数大小比较的方法,注意掌握两个负数比较是有理数大小比较的关键.13.【答案】5x3【解析】解:2x3+3x3=(2+3)x3=5x3,故答案为:5x3.在合并同类项时,系数相加减,字母及其指数不变,据此求解即可.本题考查了合并同类项,熟记合并同类项法则是解答本题的关键.14.【答案】−67【解析】解:∵f=95c+32,c=−55℃,∴f=95×(−55)+32=−67(℉),故答案为:−67.将c=−55代入f=95c+32,求出f即可.本题考查代数式求值,熟练掌握代数式求值的方法,并准确计算是解题的关键.15.【答案】A 5n +4 9n +5【解析】解:选择A 时,第1个图形中共有9个面积为1的正方形;第2个图形中共有14个面积为1的正方形;第3个图形中共有19个面积为1的正方形;… 若按照此规律,第n 个图形中共有5n +4个面积为1的正方形;选择B 时,第1个图形中共有14个正方形;第2个图形中共有23个正方形;…若按照此规律,第n 个图形中共有9n +5个正方形; 故答案为:A ;5n +4;9n +5.根据题干给出图形,找出规律进行解答即可.此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.16.【答案】解:(1)(−3)−15+(−12)=−3−15−12 =−30;(2)(−3)×(−2)−(−16)÷4 =6+4 =10;(3)(−2)3×(−14+32−58)=−8×(−14+32−58)=−8×(−14)−8×32−8×(−58) =2−12+5 =−5;(4)(23−1)2÷(−13)+0×(−56) =(−13)2÷(−13)+0 =19÷(−13)+0=−13+0 =−13.【解析】(1)先化简,再计算加减法; (2)先算乘除,后算减法;(3)变形为−8×(−14+32−58),再根据乘法分配律简便计算;(4)先算乘方,再算乘除法,最后算加法;如果有括号,要先做括号内的运算. 考查了有理数混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.17.【答案】−92<−3<0<2<3.4【解析】解:(1)如图所示:(2)将−3,2,0,−92,3.4这五个数用“<”连接为:−92<−3<0<2<3.4. 故答案为:−92<−3<0<2<3.4.(1)根据点A 、B 表示的数确定原点位置,再将有理数−92,3.4表示在该数轴上即可; (2)根据数轴上的点表示的数右边的总比左边的大,可得答案.本题考查了有理数大小比较,利用数轴上的点表示的数右边的总比左边的大是解题关键.18.【答案】8【解析】解:(1)如图所示:(2)该几何体共有8个小正方体组成. 故答案为:8.(1)直接利用从正面看以及上面看的观察角度,分别得出视图;(2)利用结合的组成得出总个数.此题主要考查了三视图,正确掌握观察角度得出视图是解题关键.19.【答案】乘法分配律二去括号没变号【解析】解:(1)原式=−2m+2n;故答案为:−2m+2n;(2)任务1:①以上化简步骤中,第一步的依据是乘法分配律;②以上化简步骤中,第二步开始出现错误,这一步错误的原因是去括号没变号;故答案为:①乘法分配律;②二;去括号没变号;任务2:原式=3x2y+2xy−(2xy+2x2y)=3x2y+2xy−2xy−2x2y=x2y,当x=−1,y=−110时,原式=−110.(1)原式合并同类项即可得到结果;(2)任务1:①观察第一步变形过程,确定出依据即可;②找出出错的步骤,分析其原因即可;任务2:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)|+25|+|−6|+|+18|+|+12|+|−24|+|−15|=100(元),答:小颖这六笔交易的总金额是100元;(2)25−6+18+12−24−15=10(元),40+10=50(元),答:她的钱数是增加了10元,现在有50元.【解析】(1)把六个数的绝对值相加即可;(2)根据有理数的加减混合计算解答即可.此题考查正数和负数、有理数的加减混合计算,关键是根据题意列出算式解答即可.21.【答案】(80−2a)(15−a2)【解析】解:(1)根据题意可知,每个长方形停车区域的长为(80−2a)米,宽为60−2a4=(15−a2)米.故答案为:(80−2a),(15−a2);(2)当a=3时,每个长方形的长为80−2a=80−2×3=74(米),宽为15−a2=15−32=272(米),则四个停车区域的总面积为4×74×272=3996(平方米).(1)根据题意每个长方形停车区域的长(80−2a)米,则宽为(60−2a)米,总共4个停车场,每个停车场的宽为60−2a4米,化简即可得出答案;(2)把a=3代入(1)中即可得出每个长方形的长和宽,再用长方形面积计算公式即可得出答案.本题主要考查了代数式求值,根据题意列出代数式是解决本题的关键.22.【答案】①②A或B【解析】解:(1)下列四个代数式中,是对称式的是①②.故答案为:①②;(2)该单项式为x3y3;(3)我选择A或B题.A.∵A=2a2+4b2,B=a2−2ab,∴A+2B=2a2+4b2+2(a2−2ab)=2a2+4b2+2a2−4ab=4a2+4b2−4ab,是对称式;B.∵A=a2b−3b2c+13c2a,B=a2b−5b2c,∴3A−2B=3(a2b−3b2c+13c2a)−2(a2b−5b2c)=3a2b−9b2c+c2a−2a2b+ 10b2c=a2b+b2c+c2a,不是对称式.(1)根据对称式的定义即可求解;(2)根据对称式的定义可得x,y的次数都为3次;(3)A.先去括号,然后合并同类项,再根据对称式的定义即可求解;B.先去括号,然后合并同类项,再根据对称式的定义即可求解.本题考查的是整式的加减,正确理解对称式的定义,并进行正确判断是解题的关键.23.【答案】−7−m 2 27 2−m A n−m2m+n m+n2m+n−p【解析】解:(1)勤学小组的对折方案是:使表示−5的点与表示5的点重合,则对折点为原点.①对折后数轴上表示7的点与表示−7的点重合;②对折后数轴上表示有理数m的点与表示−m的点重合;故答案为:−7;−m;(2)善思小组的对折方案是:使表示−5的点与表示7的点重合.设对折点为x,则7−x=x−(−5),解得x=1,①对折后数轴上表示1×2−0=2的点与原点重合;对折后表示−25的点与表示1×2−(−25)=27的点重合;②对折后数轴上表示有理数m的点与表示1×2−m=2−m的点重合(用含m的式子表示).故答案为:2,27;2−m;(3)好问小组的对折方案是:使表示有理数m的点与表示有理数n的点重合(其中m<n),则对折点为m+n2.请从下面A,B两题中任选一题作答.我选择A题.A.①对折后数轴上表示有理数m的点到对折点的距离为m+n2−m=n−m2(用含m,n的式子表示);②对折后数轴上原点与表示m+n的点重合(用含m,n的式子表示).B.①该数轴对折点表示的有理数为m+n2×2−0=m+n2(用含m,n的式子表示);②对折后数轴上表示有理数p的点与表示m+n2×2−p=m+n−p的点重合(用含m,n,p的式子表示).故答案为:A;n−m2,m+n,m+n2,m+n−p.(1)①由表示−5的点与表示5的点重合可得对折点为原点,即可找出与表示7的点重合的点表示的数;②由表示−5的点与表示5的点重合可得对折点为原点,即可找出与表示m的点重合的点表示的数;(2)①由表示−5的点与表示7的点重合可得对折点为1,即可找出与原点重合的点,与表示−25的点重合的点表示的数;②由表示−5的点与表示7的点重合可得对折点为1,即可找出与有理数m的点重合的点;(3)先求出对折点为m+n,依此解答A,B两题.2本题考查了数轴、折叠的性质以及一元一次方程的应用,根据折叠的性质找出重合两点表示的数是解题的关键.。
2019-2020学年山西省太原市七年级(上)期中数学试卷一、选择题:本大题含10小题,每小题3分,共30分.1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.2.(3分)小明将父亲经营的便利店中“收入100元”记作“+100元”,那么“﹣80元”表示()A.支出20元B.支出80元C.收入20元D.收入80元3.(3分)下列几何体都是由4个相同的小立方块搭成的,其中从正面看和从左面看,形状图相同的是()A. B.C. D.4.(3分)下列计算结果正确的是()A.﹣2a+5b=3ab B.6a﹣a=6C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab25.(3分)用一个平面去截一个几何体,截面的形状是圆形,这个几何体可能是()A.正方体B.三棱锥C.五棱柱D.圆锥体6.(3分)“天宫二号”是中国载人航天工程中第一个真正意义上的空间实验室,2016年9月15日,“天宫二号”发射取得圆满成功,它的运行轨道距离地球393000米,数据393000米用科学记数法表示为()A.0.393×107米B.3.93×106米 C.3.93×105米 D.39.3×104米7.(3分)有理数a,b在数轴上对应的点的位置如图所示,下列结论成立的是()A.a+b>0 B.a+b=0 C.a+b<0 D.a﹣b>08.(3分)下列各式中,不能由a﹣b+c通过变形得到的是()A.a﹣(b﹣c)B.c﹣(b﹣a)C.(a﹣b)+c D.a﹣(b+c)9.(3分)如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7 B.6 C.5 D.410.(3分)某校去年初一招收新生x人,今年比去年增加20%,今年该校初一学生人数用代数式表示为()A.(20%+x)人 B.20%x人 C.(1+20%)x人D.人二、填空题:本大题含6个小题,每小题3分,共18分,把答案写在题中横线上.11.(3分)太原冬季某日的最高气温是3℃,最低气温为﹣12℃,那么当天的温差是℃.12.(3分)若|a|=6,则a的值等于.13.(3分)按照如图所示的运算程序,若输入的x=﹣2,则输出的值为.14.(3分)计算:(﹣1)2015+(﹣1)2016=.15.(3分)已知一组等式,第1个等式:22﹣12=2+1,第2个等式:32﹣22=3+2,第3个等式:42﹣32=4+3.…根据上述等式的规律,第n个等式用含n的式子表示为.16.(3分)如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择.A、按照小明的要求搭几何体,小亮至少需要个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为.三、解答题:本大题含8个小题,共52分,解答应写出不要的文字说明、演算步骤或推理过程.17.(12分)计算:(1)32+(﹣18)+(﹣12);(2)4×(﹣5)+12÷(﹣6);(3)(﹣+﹣)×(﹣48);(4)(﹣4﹣5)×(﹣)2﹣(﹣1)÷(﹣)3.18.(8分)(1)化简:2x2﹣5x+x2+4x;(2)先化简,再求值:2(5a2b+ab)﹣(3ab﹣a2b),其中a=1,b=﹣1.19.(4分)如图,数轴上有A、B两点.(1)分别写出A、B两点表示的数:、;(2)若点C表示﹣0.5,把点C表示在如图所示的数轴上;(3)将点B向左移动3个单位长度,得到点D,点A、B、C、D所表示的四个数用“<”连接的结果:.20.(4分)一个几何体由几个大小形状相同的小正方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小正方体的个数,请画出从正面看和从左面看的这个几何体的形状图.21.(4分)腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是分,最低分是分;(2)求腾飞小组本次数学测验成绩的平均分.22.(5分)十•一黄金周期间,某景点门票价格为:成人票每张80元,儿童票每张20元,甲旅行团有x 名成人和y 名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的.(1)甲、乙两个旅行团在该景点的门票费用分别为:甲 元;乙 元;(用含x 、y 的代数式表示)(2)若x=10,y=6,求两个旅行团门票费用的总和. 23.(6分)请阅读下列材料,并解答相应的问题: 幻方将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”、“洛书”等.例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设下面的三阶幻方中间的数字是x (其中x 为正整数),请用含x 的代数式将下面的幻方填充完整.9个数的和为S ,则S 与中间的数字x 之间的数量关系为 . (3)请在下面的A 、B 两题中任选一题作答,我选择 . 现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方.A 、幻方最中间的数字应等于 .B 、请将构造的幻方填写在下面3×3的方格中.提出问题:有两个相同的长方体纸盒,它们的长、宽、高分别是16cm 、6cm 、2cm ,现要用这两个纸盒搭成一个大长方体,怎样搭可使长方体的表面积最小?实践操作:我们发现,无论怎样放置这两个长方体纸盒,搭成的大长方体体积都不变,但是由于摆放位置的不同,它们的表面积会发生变化,经过操作,发现共有3种不同的摆放方式,如图所示:探究结论:(1)请计算图1、图2、图3中的大长方体的长、宽、高及其表面积,并填充下表:所示的长方体.).解决问题:(2)请在下面的A、B两题中任选一题作答,我选择.A、现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有种不同的方式,搭成的大长方体的表面积最小为cm2.B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有种不同的方式,搭成的大长方体的表面积最小为cm2.(用含a、b、c的代数式表示).山西省太原市七年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题含10小题,每小题3分,共30分.1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A2.(3分)小明将父亲经营的便利店中“收入100元”记作“+100元”,那么“﹣80元”表示()A.支出20元B.支出80元C.收入20元D.收入80元【解答】解:“收入100元”记作“+100元”,那么“﹣80元”表示支出80元,故选:B.3.(3分)下列几何体都是由4个相同的小立方块搭成的,其中从正面看和从左面看,形状图相同的是()A. B.C. D.【解答】解:B从正面看第一层是两个小正方形,第二层左边一个小正方形,从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.4.(3分)下列计算结果正确的是()A.﹣2a+5b=3ab B.6a﹣a=6C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.5.(3分)用一个平面去截一个几何体,截面的形状是圆形,这个几何体可能是()A.正方体B.三棱锥C.五棱柱D.圆锥体【解答】解:∵用一个平面去截一个圆锥时,截面形状有圆、三角形,∴这个几何体可能是圆锥体.故选:D.6.(3分)“天宫二号”是中国载人航天工程中第一个真正意义上的空间实验室,2016年9月15日,“天宫二号”发射取得圆满成功,它的运行轨道距离地球393000米,数据393000米用科学记数法表示为()A.0.393×107米B.3.93×106米 C.3.93×105米 D.39.3×104米【解答】解:393000=3.93×105,故选:C.7.(3分)有理数a,b在数轴上对应的点的位置如图所示,下列结论成立的是()A.a+b>0 B.a+b=0 C.a+b<0 D.a﹣b>0【解答】解:根据数轴可得:a<0,b>0,且|a|<|b|,则a+b>0.故选A.8.(3分)下列各式中,不能由a﹣b+c通过变形得到的是()A.a﹣(b﹣c)B.c﹣(b﹣a)C.(a﹣b)+c D.a﹣(b+c)【解答】解:A、a﹣(b﹣c)=a﹣b+c,正确;B、c﹣(b﹣a)=c﹣b+a=a﹣b+c,正确;C、(a﹣b)+c=a﹣b+c,正确;D、a﹣(b+c)=a﹣b﹣c,不能由a﹣b+c通过变形得到,故本选项错误;故选D.9.(3分)如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7 B.6 C.5 D.4【解答】解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.10.(3分)某校去年初一招收新生x人,今年比去年增加20%,今年该校初一学生人数用代数式表示为()A.(20%+x)人 B.20%x人 C.(1+20%)x人D.人【解答】解:∵去年收新生x人,∴今年该校初一学生人数为:(1+20%)x人;故选C.二、填空题:本大题含6个小题,每小题3分,共18分,把答案写在题中横线上.11.(3分)太原冬季某日的最高气温是3℃,最低气温为﹣12℃,那么当天的温差是15℃.【解答】解:3﹣(﹣12)=15(℃)答:当天的温差是15℃.故答案为:15.12.(3分)若|a|=6,则a的值等于±6.【解答】解:∵|a|=6,∴a=±6.故答案为:±6.13.(3分)按照如图所示的运算程序,若输入的x=﹣2,则输出的值为﹣29.【解答】解:把x=﹣2代入程序中得:(﹣2)3×3﹣5=﹣24﹣5=﹣29,故答案为:﹣2914.(3分)计算:(﹣1)2015+(﹣1)2016=0.【解答】解:原式=﹣1+1=0.故答案为:0.15.(3分)已知一组等式,第1个等式:22﹣12=2+1,第2个等式:32﹣22=3+2,第3个等式:42﹣32=4+3.…根据上述等式的规律,第n个等式用含n的式子表示为(n+1)2﹣n2=n+1+n.【解答】解:∵2=1+1,3=2+1,4=3+1,…,∴第n个等式用含n的式子表示为:(n+1)2﹣n2=n+1+n.故答案为:(n+1)2﹣n2=n+1+n.16.(3分)如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择A.A、按照小明的要求搭几何体,小亮至少需要18个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为46.【解答】解:A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵小明用18个边长为1的小正方体搭成了一个几何体,∴小亮至少还需36﹣18=18个小立方体,B、表面积为:2×(8+8+7)=46.故答案为:A,18,46.三、解答题:本大题含8个小题,共52分,解答应写出不要的文字说明、演算步骤或推理过程.17.(12分)计算:(1)32+(﹣18)+(﹣12);(2)4×(﹣5)+12÷(﹣6);(3)(﹣+﹣)×(﹣48);(4)(﹣4﹣5)×(﹣)2﹣(﹣1)÷(﹣)3.【解答】解:(1)32+(﹣18)+(﹣12)=14﹣12=2(2)4×(﹣5)+12÷(﹣6)=﹣20﹣2=﹣22(3)(﹣+﹣)×(﹣48)=(﹣)×(﹣48)+×(﹣48)﹣×(﹣48)=8﹣20+2=﹣10(4)(﹣4﹣5)×(﹣)2﹣(﹣1)÷(﹣)3=(﹣9)×﹣(﹣)÷(﹣)=﹣4﹣1=﹣518.(8分)(1)化简:2x2﹣5x+x2+4x;(2)先化简,再求值:2(5a2b+ab)﹣(3ab﹣a2b),其中a=1,b=﹣1.【解答】解:(1)原式=3x2﹣x;(2)原式=10a2b+2ab﹣3ab+a2b=11a2b﹣ab,当a=1,b=﹣1时,原式=﹣11+1=﹣10.19.(4分)如图,数轴上有A、B两点.(1)分别写出A、B两点表示的数:﹣3、2;(2)若点C表示﹣0.5,把点C表示在如图所示的数轴上;(3)将点B向左移动3个单位长度,得到点D,点A、B、C、D所表示的四个数用“<”连接的结果:﹣3<﹣1<﹣0.5<2.【解答】解:(1)分别写出A、B两点表示的数:﹣3、2;(2)若点C表示﹣0.5,把点C表示在如图所示的数轴上;(3)将点B向左移动3个单位长度,得到点D,点A、B、C、D所表示的四个数用“<”连接的结果:﹣3<﹣1<﹣0.5<2,故答案为:﹣3,2;﹣3<﹣1<﹣0.5<2.20.(4分)一个几何体由几个大小形状相同的小正方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小正方体的个数,请画出从正面看和从左面看的这个几何体的形状图.【解答】解:如图所示:21.(4分)腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是100分,最低分是80分;(2)求腾飞小组本次数学测验成绩的平均分.【解答】解:(1)本次数学测验成绩的最高分是100分,最低分是80分,故答案为:100,80;(2)﹣7+(﹣10)+9+2+(﹣1)+5+(﹣8)+10=0,平均分是90+=90.22.(5分)十•一黄金周期间,某景点门票价格为:成人票每张80元,儿童票每张20元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的.(1)甲、乙两个旅行团在该景点的门票费用分别为:甲80x+20y元;乙160x+10y元;(用含x、y的代数式表示)(2)若x=10,y=6,求两个旅行团门票费用的总和.【解答】解:(1)∵成人票每张80元,儿童票每张20元,甲旅行团有x名成人和y名儿童,∴甲旅行团在该景点的门票费用=80x+20y;∵乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的,∴乙旅行团在该景点的门票费用=160x+10y.故答案为:80x+20y,160x+10y;(2)∵(80x+20y)+(160x+10y)=80x+20y+160x+10y=240x+30y,∵x=10,y=6,∴原式=240×10+30×6=2580(元).23.(6分)请阅读下列材料,并解答相应的问题:幻方将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”、“洛书”等.例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设下面的三阶幻方中间的数字是x(其中x为正整数),请用含x的代数式将下面的幻方填充完整.9个数的和为S ,则S 与中间的数字x 之间的数量关系为 9x . (3)请在下面的A 、B 两题中任选一题作答,我选择 A 和B . 现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方. A 、幻方最中间的数字应等于 7.B 、请将构造的幻方填写在下面3×3的方格中.)三阶幻方如图所示:(2)S=9x . 故答案为9x . (3)A :7; 故答案为7; B :幻方如图所示:24.(9分)综合与实践:提出问题:有两个相同的长方体纸盒,它们的长、宽、高分别是16cm、6cm、2cm,现要用这两个纸盒搭成一个大长方体,怎样搭可使长方体的表面积最小?实践操作:我们发现,无论怎样放置这两个长方体纸盒,搭成的大长方体体积都不变,但是由于摆放位置的不同,它们的表面积会发生变化,经过操作,发现共有3种不同的摆放方式,如图所示:探究结论:(1)请计算图1、图2、图3中的大长方体的长、宽、高及其表面积,并填充下表:图1所示的长方体.).解决问题:(2)请在下面的A、B两题中任选一题作答,我选择A或B.A、现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有7种不同的方式,搭成的大长方体的表面积最小为544cm2.B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b 且b=3c)种不同的方式,搭成的大长方体的表面积最小为2ab+8ac+8bc cm2.(用含a、b、c的代数式表示).【解答】解:(1)图1中,长方体的高为4,表面积=2(16×6+16×4+4×6)=368.图2中,长为32,表面积=2(32×6+32×2+6×2)=536.图3中,宽为12,表面积=2(16×12+16×2+12×2)=496.∴图1的表面积最小.故答案为368,536,496,图1;(2)我选择A或B.A、如图所示:现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有7种不同的方式,搭成的大长方体的表面积最小为2(16×6+16×8+6×8)=544cm2.故答案为7,544B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b 且b=3c)种不同的方式,搭成的大长方体的表面积最小为(2ab+8ac+8bc)cm2.(用含a、b、c的代数式表示).故答案为6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b且b=3c),2ab+8ac+8bc.。
2019-2020 学年山西省太原市七年级学期期中考试:数学 -1-2019-2020 学年山西省太原市七年级学期期中考试:数学下列说法:①平面内,垂直于同一直线的两条直线平行。
②两条直线被第三条直线所截,内错角相等。
③如果直线。
④直线外一点与直线上各点连接的所有线段中,垂线段最短。
⑤同旁内角的角平分线互相垂直。
其中正确的是( )。
如图,用尺规作图作 、为圆心,以任意长为半径画弧①,分别交 )。
以点 为圆心, 为圆心,长为半径画弧 长为半径画弧如图,,,以点 为圆心, 以点 为圆心,长为半径画弧)。
-2-2019-2020 学年山西省太原市七年级学期期中考试:数学 水滴进如图所示的玻璃容器(水滴的速度是相同的),那么水的高度随着时间变化的图象大致是( )。
-3-2019-2020 学年山西省太原市七年级学期期中考试:数学将一根长为( )与宽 (春暖花开,美丽太原景色宜人。
一位驴友时从家出发到郊外赏花。
他所走的路程(千米)随时间(时)变化的情况如图所示。
则下面说法中错误的是( )。
在这个变化过程中,自变量是时间,因变量是路程 他在途中休息了半小时时所走的路程约 千米他从休息后直至到达目的地的平均速度约为 千米 时如图,度。
,。
,,则的度数为 。
-4-2019-2020 学年山西省太原市七年级学期期中考试:数学通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为 。
某汽车油箱余油量(则该汽车每百公里耗油量为 升。
利用公式计算: 先化简,后求值: 问题情境。
。
,其中。
-5-2019-2020 学年山西省太原市七年级学期期中考试:数学)如图①,已知与小明给出下面正确的解法:与 的位置关系是。
理由如下: 作(如图②所示),),(已知),,,(依据 ),,(依据 )。
交流反思。
上述解答过程中的 依据 , 依据 ,分别指什么?-6-2019-2020 学年山西省太原市七年级学期期中考试:数学依据 :两直线平行,同旁内角互补,依据 :,依据 :类比探究。
2019-2020学年山西省太原市七年级(上)期中数学试卷一、选择题:本大题含10小题,每小题3分,共30分.1.(3分)﹣2的相反数是()A.2 B.﹣2 C. D.2.(3分)小明将父亲经营的便利店中“收入100元”记作“+100元”,那么“﹣80元”表示()A.支出20元B.支出80元C.收入20元D.收入80元3.(3分)下列几何体都是由4个相同的小立方块搭成的,其中从正面看和从左面看,形状图相同的是()A.B.C.D.4.(3分)下列计算结果正确的是()A.﹣2a+5b=3ab B.6a﹣a=6C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab25.(3分)用一个平面去截一个几何体,截面的形状是圆形,这个几何体可能是()A.正方体B.三棱锥C.五棱柱D.圆锥体6.(3分)“天宫二号”是中国载人航天工程中第一个真正意义上的空间实验室,2016年9月15日,“天宫二号”发射取得圆满成功,它的运行轨道距离地球393000米,数据393000米用科学记数法表示为()A.0.393×107米B.3.93×106米C.3.93×105米D.39.3×104米7.(3分)有理数a,b在数轴上对应的点的位置如图所示,下列结论成立的是()A.a+b>0 B.a+b=0 C.a+b<0 D.a﹣b>08.(3分)下列各式中,不能由a﹣b+c通过变形得到的是()A.a﹣(b﹣c)B.c﹣(b﹣a)C.(a﹣b)+c D.a﹣(b+c)9.(3分)如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7 B.6 C.5 D.410.(3分)某校去年初一招收新生x人,今年比去年增加20%,今年该校初一学生人数用代数式表示为()A.(20%+x)人 B.20%x人 C.(1+20%)x人D.人二、填空题:本大题含6个小题,每小题3分,共18分,把答案写在题中横线上.11.(3分)太原冬季某日的最高气温是3℃,最低气温为﹣12℃,那么当天的温差是℃.12.(3分)若|a|=6,则a的值等于.13.(3分)按照如图所示的运算程序,若输入的x=﹣2,则输出的值为.14.(3分)计算:(﹣1)2015+(﹣1)2016= .15.(3分)已知一组等式,第1个等式:22﹣12=2+1,第2个等式:32﹣22=3+2,第3个等式:42﹣32=4+3.…根据上述等式的规律,第n个等式用含n的式子表示为.16.(3分)如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择.A、按照小明的要求搭几何体,小亮至少需要个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为.三、解答题:本大题含8个小题,共52分,解答应写出不要的文字说明、演算步骤或推理过程.17.(12分)计算:(1)32+(﹣18)+(﹣12);(2)4×(﹣5)+12÷(﹣6);(3)(﹣+﹣)×(﹣48);(4)(﹣4﹣5)×(﹣)2﹣(﹣1)÷(﹣)3.18.(8分)(1)化简:2x2﹣5x+x2+4x;(2)先化简,再求值:2(5a2b+ab)﹣(3ab﹣a2b),其中a=1,b=﹣1.19.(4分)如图,数轴上有A、B两点.(1)分别写出A、B两点表示的数:、;(2)若点C表示﹣0.5,把点C表示在如图所示的数轴上;(3)将点B向左移动3个单位长度,得到点D,点A、B、C、D所表示的四个数用“<”连接的结果:.20.(4分)一个几何体由几个大小形状相同的小正方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小正方体的个数,请画出从正面看和从左面看的这个几何体的形状图.21.(4分)腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是分,最低分是分;(2)求腾飞小组本次数学测验成绩的平均分.22.(5分)十•一黄金周期间,某景点门票价格为:成人票每张80元,儿童票每张20元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的.(1)甲、乙两个旅行团在该景点的门票费用分别为:甲元;乙元;(用含x、y的代数式表示)(2)若x=10,y=6,求两个旅行团门票费用的总和.23.(6分)请阅读下列材料,并解答相应的问题:幻方将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”、“洛书”等.例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设下面的三阶幻方中间的数字是x(其中x为正整数),请用含x的代数式将下面的幻方填充完整.x+3x﹣4x﹣2xx﹣1x﹣3(2)若设(1)题幻方中9个数的和为S,则S与中间的数字x之间的数量关系为.(3)请在下面的A、B两题中任选一题作答,我选择.现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方.A、幻方最中间的数字应等于.B、请将构造的幻方填写在下面3×3的方格中.24.(9分)综合与实践:提出问题:有两个相同的长方体纸盒,它们的长、宽、高分别是16cm、6cm、2cm,现要用这两个纸盒搭成一个大长方体,怎样搭可使长方体的表面积最小?实践操作:我们发现,无论怎样放置这两个长方体纸盒,搭成的大长方体体积都不变,但是由于摆放位置的不同,它们的表面积会发生变化,经过操作,发现共有3种不同的摆放方式,如图所示:探究结论:(1)请计算图1、图2、图3中的大长方体的长、宽、高及其表面积,并填充下表:长(cm)宽(cm)高(cm)表面积(cm2)图1166图262图3162根据上表可知,表面积最小的是所示的长方体.(填“图1”、“图2”、“图3”).解决问题:(2)请在下面的A、B两题中任选一题作答,我选择.A、现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有种不同的方式,搭成的大长方体的表面积最小为cm2.B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有种不同的方式,搭成的大长方体的表面积最小为cm2.(用含a、b、c的代数式表示).山西省太原市七年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题含10小题,每小题3分,共30分.1.(3分)﹣2的相反数是()A.2 B.﹣2 C. D.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A2.(3分)小明将父亲经营的便利店中“收入100元”记作“+100元”,那么“﹣80元”表示()A.支出20元B.支出80元C.收入20元D.收入80元【解答】解:“收入100元”记作“+100元”,那么“﹣80元”表示支出80元,故选:B.3.(3分)下列几何体都是由4个相同的小立方块搭成的,其中从正面看和从左面看,形状图相同的是()A.B.C.D.【解答】解:B从正面看第一层是两个小正方形,第二层左边一个小正方形,从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.4.(3分)下列计算结果正确的是()A.﹣2a+5b=3ab B.6a﹣a=6C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.5.(3分)用一个平面去截一个几何体,截面的形状是圆形,这个几何体可能是()A.正方体B.三棱锥C.五棱柱D.圆锥体【解答】解:∵用一个平面去截一个圆锥时,截面形状有圆、三角形,∴这个几何体可能是圆锥体.故选:D.6.(3分)“天宫二号”是中国载人航天工程中第一个真正意义上的空间实验室,2016年9月15日,“天宫二号”发射取得圆满成功,它的运行轨道距离地球393000米,数据393000米用科学记数法表示为()A.0.393×107米B.3.93×106米C.3.93×105米D.39.3×104米【解答】解:393000=3.93×105,故选:C.7.(3分)有理数a,b在数轴上对应的点的位置如图所示,下列结论成立的是()A.a+b>0 B.a+b=0 C.a+b<0 D.a﹣b>0【解答】解:根据数轴可得:a<0,b>0,且|a|<|b|,则a+b>0.故选A.8.(3分)下列各式中,不能由a﹣b+c通过变形得到的是()A.a﹣(b﹣c)B.c﹣(b﹣a)C.(a﹣b)+c D.a﹣(b+c)【解答】解:A、a﹣(b﹣c)=a﹣b+c,正确;B、c﹣(b﹣a)=c﹣b+a=a﹣b+c,正确;C、(a﹣b)+c=a﹣b+c,正确;D、a﹣(b+c)=a﹣b﹣c,不能由a﹣b+c通过变形得到,故本选项错误;故选D.9.(3分)如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7 B.6 C.5 D.4【解答】解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.10.(3分)某校去年初一招收新生x人,今年比去年增加20%,今年该校初一学生人数用代数式表示为()A.(20%+x)人 B.20%x人 C.(1+20%)x人D.人【解答】解:∵去年收新生x人,∴今年该校初一学生人数为:(1+20%)x人;故选C.二、填空题:本大题含6个小题,每小题3分,共18分,把答案写在题中横线上.11.(3分)太原冬季某日的最高气温是3℃,最低气温为﹣12℃,那么当天的温差是15 ℃.【解答】解:3﹣(﹣12)=15(℃)答:当天的温差是15℃.故答案为:15.12.(3分)若|a|=6,则a的值等于±6 .【解答】解:∵|a|=6,∴a=±6.故答案为:±6.13.(3分)按照如图所示的运算程序,若输入的x=﹣2,则输出的值为﹣29 .【解答】解:把x=﹣2代入程序中得:(﹣2)3×3﹣5=﹣24﹣5=﹣29,故答案为:﹣2914.(3分)计算:(﹣1)2015+(﹣1)2016= 0 .【解答】解:原式=﹣1+1=0.故答案为:0.15.(3分)已知一组等式,第1个等式:22﹣12=2+1,第2个等式:32﹣22=3+2,第3个等式:42﹣32=4+3.…根据上述等式的规律,第n个等式用含n的式子表示为(n+1)2﹣n2=n+1+n .【解答】解:∵2=1+1,3=2+1,4=3+1,…,∴第n个等式用含n的式子表示为:(n+1)2﹣n2=n+1+n.故答案为:(n+1)2﹣n2=n+1+n.16.(3分)如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择 A .A、按照小明的要求搭几何体,小亮至少需要18 个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为46 .【解答】解:A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵小明用18个边长为1的小正方体搭成了一个几何体,∴小亮至少还需36﹣18=18个小立方体,B、表面积为:2×(8+8+7)=46.故答案为:A,18,46.三、解答题:本大题含8个小题,共52分,解答应写出不要的文字说明、演算步骤或推理过程.17.(12分)计算:(1)32+(﹣18)+(﹣12);(2)4×(﹣5)+12÷(﹣6);(3)(﹣+﹣)×(﹣48);(4)(﹣4﹣5)×(﹣)2﹣(﹣1)÷(﹣)3.【解答】解:(1)32+(﹣18)+(﹣12)=14﹣12=2(2)4×(﹣5)+12÷(﹣6)=﹣20﹣2=﹣22(3)(﹣+﹣)×(﹣48)=(﹣)×(﹣48)+×(﹣48)﹣×(﹣48)=8﹣20+2=﹣10(4)(﹣4﹣5)×(﹣)2﹣(﹣1)÷(﹣)3=(﹣9)×﹣(﹣)÷(﹣)=﹣4﹣1=﹣518.(8分)(1)化简:2x2﹣5x+x2+4x;(2)先化简,再求值:2(5a2b+ab)﹣(3ab﹣a2b),其中a=1,b=﹣1.【解答】解:(1)原式=3x2﹣x;(2)原式=10a2b+2ab﹣3ab+a2b=11a2b﹣ab,当a=1,b=﹣1时,原式=﹣11+1=﹣10.19.(4分)如图,数轴上有A、B两点.(1)分别写出A、B两点表示的数:﹣3 、 2 ;(2)若点C表示﹣0.5,把点C表示在如图所示的数轴上;(3)将点B向左移动3个单位长度,得到点D,点A、B、C、D所表示的四个数用“<”连接的结果:﹣3<﹣1<﹣0.5<2 .【解答】解:(1)分别写出A、B两点表示的数:﹣3、2;(2)若点C表示﹣0.5,把点C表示在如图所示的数轴上;(3)将点B向左移动3个单位长度,得到点D,点A、B、C、D所表示的四个数用“<”连接的结果:﹣3<﹣1<﹣0.5<2,故答案为:﹣3,2;﹣3<﹣1<﹣0.5<2.20.(4分)一个几何体由几个大小形状相同的小正方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小正方体的个数,请画出从正面看和从左面看的这个几何体的形状图.【解答】解:如图所示:21.(4分)腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是100 分,最低分是80 分;(2)求腾飞小组本次数学测验成绩的平均分.【解答】解:(1)本次数学测验成绩的最高分是 100分,最低分是 80分,故答案为:100,80;(2)﹣7+(﹣10)+9+2+(﹣1)+5+(﹣8)+10=0,平均分是90+=90.22.(5分)十•一黄金周期间,某景点门票价格为:成人票每张80元,儿童票每张20元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的.(1)甲、乙两个旅行团在该景点的门票费用分别为:甲80x+20y 元;乙160x+10y 元;(用含x、y的代数式表示)(2)若x=10,y=6,求两个旅行团门票费用的总和.【解答】解:(1)∵成人票每张80元,儿童票每张20元,甲旅行团有x名成人和y名儿童,∴甲旅行团在该景点的门票费用=80x+20y;∵乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的,∴乙旅行团在该景点的门票费用=160x+10y.故答案为:80x+20y,160x+10y;(2)∵(80x+20y)+(160x+10y)=80x+20y+160x+10y=240x+30y,∵x=10,y=6,∴原式=240×10+30×6=2580(元).23.(6分)请阅读下列材料,并解答相应的问题:幻方将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”、“洛书”等.例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设下面的三阶幻方中间的数字是x(其中x为正整数),请用含x的代数式将下面的幻方填充完整.x+3x﹣4x﹣2xx﹣1x﹣3(2)若设(1)题幻方中9个数的和为S,则S与中间的数字x之间的数量关系为9x .(3)请在下面的A、B两题中任选一题作答,我选择A和B .现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方.A、幻方最中间的数字应等于7 .B、请将构造的幻方填写在下面3×3的方格中.【解答】解:(1)三阶幻方如图所示:(2)S=9x.故答案为9x.(3)A:7;故答案为7;B:幻方如图所示:24.(9分)综合与实践:提出问题:有两个相同的长方体纸盒,它们的长、宽、高分别是16cm、6cm、2cm,现要用这两个纸盒搭成一个大长方体,怎样搭可使长方体的表面积最小?实践操作:我们发现,无论怎样放置这两个长方体纸盒,搭成的大长方体体积都不变,但是由于摆放位置的不同,它们的表面积会发生变化,经过操作,发现共有3种不同的摆放方式,如图所示:探究结论:(1)请计算图1、图2、图3中的大长方体的长、宽、高及其表面积,并填充下表:长(cm)宽(cm)高(cm)表面积(cm2)图1166 4 368图232 62536图31612 2496根据上表可知,表面积最小的是图1 所示的长方体.(填“图1”、“图2”、“图3”).解决问题:(2)请在下面的A、B两题中任选一题作答,我选择A或B .A、现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有7 种不同的方式,搭成的大长方体的表面积最小为544 cm2.B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b 且b=3c)种不同的方式,搭成的大长方体的表面积最小为2ab+8ac+8bc cm2.(用含a、b、c的代数式表示).【解答】解:(1)图1中,长方体的高为4,表面积=2(16×6+16×4+4×6)=368.图2中,长为32,表面积=2(32×6+32×2+6×2)=536.图3中,宽为12,表面积=2(16×12+16×2+12×2)=496.∴图1的表面积最小.故答案为368,536,496,图1;(2)我选择 A或B.A、如图所示:现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有7种不同的方式,搭成的大长方体的表面积最小为2(16×6+16×8+6×8)=544cm2.故答案为7,544B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b 且b=3c)种不同的方式,搭成的大长方体的表面积最小为(2ab+8ac+8bc)cm2.(用含a、b、c的代数式表示).故答案为6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b且b=3c),2ab+8ac+8bc.。
山西省太原市2019-2020学年七年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.4的绝对值可表示为()A. −4B. |4|C. √4D. 142.下面是几个城市某年一月份的平均温度,其中平均温度最低的城市是()A. 桂林11.2℃B. 广州13.5℃C. 北京−4.8℃D. 南京3.4℃3.下列几何体的截面不可能是长方形的是()A. 正方体B. 三棱柱C. 圆柱D. 圆锥4.下列运算正确的是( )A. −x3+3x2=x2B. 3a2b−3ba2=0C. −3(a+b)=−3a+3bD. 3y2−2y2=15.化简x−12(x−1)的结果是()A. 12x+12B. 12x−12C. 32x−1 D. 12x+16.小亮在观察如图所示的热水瓶时,从左面看得到的图形是()A. B. C. D.7.一个三位数,百位上是a,十位上是b,个位上是c,则这个三位数是().A. abcB. a+b+cC. 100a+10b+cD. cba8.据统计,2016年1月6日中国股市第一次采用熔断机制当日蒸发市值达到4.28万亿元,4.28万亿用科学记数法可表示为()A. 4.28×1013B. 4.28×1012C. 4.28×1011D. 4.28×10109.某公交车原坐有22人,经过4个站点时上、下车情况如下(上车为正,下车为负):(+4,−2),(−5,+6),(−3,+2),(+1,−7),则车上还有()A. 14人B. 18人C. 24人D. 26人10.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么图㊿中的白色小正方形地砖的块数是()A. 150B. 200C. 355D. 505二、填空题(本大题共5小题,共15.0分)11.在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”,这里把雨滴看成了点,用数学知识解释这一现象:________.12.如图是一个计算程序,若输入的值为−1,则输出的结果应为______.13.当x=1时,代数式x的值是________.x+214.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:数字123456789形式纵式|||||||||||||||横式千位用横式,以此类推,遇零则置空.示例如图:,则表示的数是______.15.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为______.三、计算题(本大题共2小题,共14.0分)16.计算:(1)(−13)+(−5)(2)(−12)×(12−53+34)17.先化简,再求值:2x3+4x−13x2−(x+3x2−2x3),其中x=−3;四、解答题(本大题共6小题,共48.0分)18.计算:−20+(−14)−(−18)−13.19.某种T形零件尺寸如图所示(左右宽度相同)求:(1)阴影部分的周长是多少?(用含有x,y的代数式表示)(2)阴影部分的面积是多少?(用含有x,y的代数式表示)(3)当x=3,y=2时,计算阴影部分的面积?20.如图,分别画出从正面、左面、上面看到的几何体的形状图.________ ________ ________从正面看从左面看从上面看21.一架直升机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,规定上升为正,下降为负,求:(1)这时真升机的高度是多少米?(2)直升机每上升1米耗油112(3x2−110+4x)毫升,毎下降1米耗油718(x2−x−18)毫升(其中x>1),问这架直升机在上升和下降的过程中共耗油多少毫升?(3)若x是小于−(−92)的最大整数,求(2)问中的值.22.(1)若我们定义aⓝb=4ab−a÷6,其中符号“ⓝ’是我们规定的一种运算符号,例如,6ⓝ2=4×6×2−6÷6=48−1=47.若xⓝ2=15,求x的值.(2)a,b,c,d为有理数,现规定一种运算:|a bc d |=ad−bc,那么当|24(1−x)5|=18时,求x的值.23.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,则点A,C所对应的数分别为______和______,p的值为______.若以C为原点,p的值为______;(2)若原点O在图中数轴上点C的右边,且CO=28,求p;(3)若原点O在图中数轴上点C的右边,且CO=a,求p(用含a的代数式表示).(4)若原点O在图中数轴上线段BC上,且CO=a,求p(用含a的代数式表示).利用此结果计算当a=0.5时,p的值.-------- 答案与解析 --------1.答案:B解析:解:4的绝对值可表示为|4|,故选:B.根据绝对值的意义,可得答案.本题考查了实数的性质,利用绝对值的表示法是解题关键.2.答案:C解析:本题考查了有理数的大小比较的应用,注意:负数都小于一切正数,通过做此题培养了学生的理解能力.比较有理数−4.8、3.4、11.2、13.5的大小,即可得出答案.解:∵−4.8<3.4<11.2<13.5,∴平均温度最低的城市是北京,故选C.3.答案:D解析:根据选项中的几个几何体截面的可能性,逐一判断.本题考查了截一个几何体.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.解:A、易知正方体的截面有可能为长方形,不符合题意,本选项错误;B、三棱柱的截面可以是长方形,如用平行于一条侧棱的平面截得的截面为长方形,不符合题意,本选项错误;C、圆柱的轴截面为长方形,不符合题意,本选项错误;D、圆锥的轴截面为三角形,其它截面可以为圆、椭圆,不可能是长方形,符合题意,本选项正确.故选:D.4.答案:B解析:根据合并同类项的法则判断A、B、D;根据去括号法则判断C.【详解】A、−x3与3x2不是同类项,不能合并,故本选项错误;B、3a2b−3ba2=0,故本选项正确;C、−3(a+b)=−3a−3b,故本选项错误;D、3y2−2y2=y2,故本选项错误;故选:B.本题考查了整式的加减,掌握去括号与合并同类项法则是解题的关键.5.答案:A解析:解:原式=x−12x+12=12x+12.故选:A.原式去括号合并即可得到结果.此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.6.答案:B解析:解:从左面看得到的图形是.故选B.根据几何体可以想象出从左面看得到的图形,注意所看到的棱要都表示到图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.答案:C解析:本题考查列代数式问题,关键是知道百位上的数字放在百位就乘以100,10位上的数字乘以10,加上个位上的数字就是这个三位数.根据一个三位数=百位上的数×100+十位上的数×10+个位上的数求解即可.∵一个三位数,百位上是a,十位上是b,个位上是c,∴这个三位数是100a+10b+c.故选C.8.答案:B解析:解:4.28万亿=4280000000000=4.28×1012.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.9.答案:B解析:本题考查了正数与负数,有理数加法,利用上车为正,下车为负,根据某公交车原坐有22人,经过4个站点时上、下车情况,即可求得答案.解:22+4−2−5+6−3+2+1−7=18,则车上还有18人.故选B.10.答案:C解析:解:由图形可知图ⓝ的地砖有(7n+5)块,当n=50时,7n+5=350+5=355.故选:C.由图形可知图ⓝ的地砖有(7n+5)块,依此代入数据计算可求图㊿中的白色小正方形地砖的块数.考查了规律型:图形的变化,解决这类问题首先要从简单图形入手,抓住随着“层数”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.11.答案:点动成线解析:本题考查点、线、面、体之间的关系,掌握点动成线,线动成面,面动成体是解题关键.根据点与线之间的关系分析即可.解:把雨点看成点,则可用“点动成线”解释这一现象.故答案为点动成线.12.答案:7解析:本题考查了代数式求值.解答本题的关键就是弄清楚题图给出的计算程序.根据图表列出代数式[(−1)2−2]×(−3)+4,再按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解:依题意,所求代数式为(a2−2)×(−3)+4=[(−1)2−2]×(−3)+4=[1−2]×(−3)+4=−1×(−3)+4=3+4=7.故答案为7.13.答案:13解析:本题考查了求代数式的值,将x=1代入代数式直接进行求值即可.解:将x=1代入代数式xx+2,原式=11+2=13,故答案为13.14.答案:9167解析:解:根据算筹计数法,表示的数是:9167 故答案为:9167.根据算筹计数法来计数即可.本题考查了算筹计数法,理解题意是解题的关键.15.答案:6解析:考查了几何体的展开图,正确理解无盖长方体的展开图,与原来长方体的之间的关系是解决本题的关键,长方体的容积=长×宽×高.首先求出无盖长方体盒子的长、宽、高,再根据长方体的容积公式求出盒子的容积.解:观察图形可知长方体盒子的长=5−(3−1)=3,宽=3−1=2,高=1,则盒子的容积=3×2×1=6.故答案为6.16.答案:解:(1)原式=−(13+5)=−18;(2)原式=−12×12+12×53−12×34=−6+20−9=5.解析:(1)根据有理数的加法进行计算即可;(2)根据乘法的分配律进行计算即可.本题考查了有理数的混合运算,掌握运算法则是解题的关键.17.答案:解:原式=2x3+4x−13x2−x−3x2+2x3=4x3−103x2+3x,当x=−3时,原式=−108−30−9=−147.解析:原式去括号合并得到最简结果,把x的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.18.答案:解:原式=(−20)+(−14)+18+(−13)=−(20+14+13)+18=−47+18=−(47−18)=−29.解析:本题考查了有理数的加减混合运算,熟练记住加法运算法则和减法法则.根据减去一个数等于加上这个数的相反数,再进行计算即可.19.答案:解:(1)阴影部分的周长是2(y+x+x+0.5x)+2y⋅2=5x+6y;(2)阴影部分的面积是y(2x+0.5x)+0.5x⋅2y=3.5xy;(3)当x=3,y=2时,阴影部分的面积是3.5×3×2=21.解析:(1)根据图形求出周长即可;(2)根据长方形的面积公式求出即可;(3)把x、y的值代入,即可求出答案.本题考查了列代数式和求代数式的值,能根据题意列出代数式是解此题的关键.20.答案:解:如下图:解析:此题主要考查了三视图的画法,正确利用观察角度不同分别得出符合题意的图形是解题关键.分别画出从正面、左面、上面看到的几何体的形状图,得出答案.21.答案:解:(1)直升机上升了20×60=1200(米),直升机下降了12×120=1440(米),则这时直升机的高度是450+1200−1440=210(米).(2)直升机上升的过程中耗油量为:1200×112(3x2−110+4x)=100(3x2−110+4x)(升),直升机下降的过程中耗油量为:1440×718(x2−x−18)=560(x2−x−18)(升),故这架直升机在上升和下降的过程中共耗油为:100(3x2−110+4x)+560(x2−x−18)=(860x2−160x−80)(升).(3)∵x是小于−(−92)的最大整数,∴x=4.则当x=4时,860x2−160x−80=860×42−160×4−80=13040.解析:本题考查正数与负数、列代数式及求代数式的值.(1)先求出直升机上升、下降的米数,再根据上升为正,下降为负求解;(2)分别求出直升机上升、下降的耗油量,相加即得一共的耗油量;(3)小于−(−9)的最大整数为4,将x=4代入(2)中得到的式子即可求解.222.答案:解:(1)∵xⓝ2=15,∴4x×2−x÷6=15,.解得:x=9047(2)由题意可得:10−4×(1−x)=18,解得:x=3解析:本题考查的是有理数的混合运算,新定义有关知识.(1)根据新定义进行计算即可;(2)根据题意直接进行计算即可.23.答案:(1)−2;1;−1;−4;(2)根据题意知,C的值为−28,B的值为−29,A的值为−31,则p=−28−29−31=−88;(3)根据题意知,C的值为−a,B的值为−a−1,A的值为−a−3,则p=−a−a−1−a−3=−3a−4;(4)根据题意知,C的值为a,B的值为−(1−a)=a−1,A的值为a−3,p=a+a−1+a−3=3a−4,当a=0.5时,p=3×0.5−4=−2.5.解析:(1)根据以B为原点,则C表示1,A表示−2,进而得到p的值;根据以C为原点,则A表示−3,B 表示−1,进而得到p的值;(2)根据原点O在图中数轴上点C的右边,且CO=28,可得C表示−28,B表示−29,A表示−31,据此可得p的值.(3)若原点O在图中数轴上点C的右边,且CO=a,可得C的值为−a,B的值为−a−1,A的值为−a−3,据此可得p的值;(4)若原点O在图中数轴上线段BC上,且CO=a,可得C的值为a,B的值为−(1−a)=a−1,A 的值为a−3,据此得出p的值,代入计算可得答案.本题主要考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.解:(1)若以B为原点,则点A所对应的数为−2、点C对应的数为1,此时p=−2+0+1=−1;若以C为原点,则点A所对应的数为−3、点B对应的数为−1,此时p=−3−1+0=−4;故答案为:−2、1、−1、−4;(2)见答案.(3)见答案.(4)见答案.。
2019-2020学年七上数学期中模拟试卷含答案说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(每小题3分,共18分,每小题只有一个正确选项.) 1.-12017的相反数的倒数是( ) A .1 B .-1 C .2017 D .-2017 2.下面计算正确的是( )A .2233x x -=B . 235325a a a +=C .33x x +=D . 10.2504ab ab -+=3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为0000人,这个数用科学记数法表示为( )A .44×108B .4.4×109C .4.4×108D .4.4×10104.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c 5.已知整式252x x -的值为6,则整式2256x x -+的值为( ) A .9 B .12 C .18 D .246.某同学做了一道数学题:“已知两个多项式为A 和B ,B=3x ﹣2y ,求A ﹣B 的值.”他误将“A﹣B”看成了“A +B”,结果求出的答案是x ﹣y ,那么原来的A ﹣B 的值应该是( ) A .﹣5x+3y B . 4x ﹣3yC .﹣2x+yD .2x ﹣y二、填空题(每小题3分,共18分)7. 数轴上的A 点与表示数2的B 点距离是5个单位长度,则A 点表示的数为8.a 是一个三位数,b 是一个两位数,如果把b 放在a 的左边,那么构成的五位数可表示为 9.已知单项式31n m axy ++与单项式22112m n x y +-是同类项(a ≠0),那么mn= 10.观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=,……,用你所发现的规律写出:72017的个位数字是11.已知22017(1)0x y -++=,则xy =12.下列语句:①没有绝对值为﹣3的数;②﹣a 一定是一个负数;③倒数等于它本身的数是1;④单项式42610x ⨯的系数是6;⑤ 32x xy y -+是二次三项式其中正确的有0b ac三、(本大题共五个小题,每小题6分,共30分)13.计算.(1)()()36 1.55 3.2514.454⎛⎫---+++- ⎪⎝⎭(2)48)245834132(⨯+--14.化简:222(32)4(21)x xy x xy ----15.已知│a│=2,│b│=5,且ab<0,求a +b 的值16.已知有理数a ,b ,c 在数轴上的对应点如图所示,化简:a b b c c a -+---.17.已知多项式22(26)(251)x ax y bx x y +-+--+- (1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式22222()(2)a ab b a ab b -+-++,再求它的值.四、(本大题共三个小题,每小题8分,共24分)18.魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是-2,那么他告诉魔术师的结果应该是 ;(2)如果小聪想了一个数并告诉魔术师结果为96,那么魔术师立刻说出小聪想的那个数是 ; (3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.19.先化简,再求值:)(3)(3)22(22222222y y x x y x y x +++--,其中1-=x ,2=y20.已知 1232+-=a a A ,2352+-=a a B ,求B A 32-五、(本大题共两个小题,每小题9分,共18分)(1)若9月30日游客为2万,则10月2日游客的人数为多少?(2)请判断7天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?(3)求这一次黄金周期间该风景区接待游客总人数.(假设每天游客都不重复)22.已知含字母x ,y 的多项式是:()()()22223223241x y xy x y xy x ⎡⎤++--+---⎣⎦(1)化简此多项式;(2)小红取x ,y 互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y 的值等于多少?(3)聪明的小刚从化简的多项式中发现,只要字母y 取一个固定的数,无论字母x 取何数,代数式的值恒为一个不变的数,请你通过计算求出小刚所取的字母y 的值六、(本大题共一个小题,共12分)23.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),操作一:(1)折叠纸面,使1表示的点与1表示的点重合,则3表示的点与______表示的点重合;操作二:(2) 折叠纸面,使2表示的点与6表示的点重合,请你回答以下问题:① -5表示的点与数_____表示的点重合;②若数轴上A 、B 两点之间距离为20,其中A 在B 的左侧,且A 、B 两点经折叠后重合,求A 、B 两点表示的数各是多少?③ 已知在数轴上点M 表示的数是m ,点M 到第②题中的A 、B 两点的距离之和为30,求m 的值.七年级数学试题答案温馨提示:1.本试卷共有五个大题,23个小题; 2.全卷满分120分,考试时间120分钟。
七年级(上)期中数学模拟试卷一、选择题:本大题含10小题,每小题3分,共30分.1.(3分)﹣2的相反数是()A.2 B.﹣2 C. D.2.(3分)小明将父亲经营的便利店中“收入100元”记作“+100元”,那么“﹣80元”表示()A.支出20元B.支出80元C.收入20元D.收入80元3.(3分)下列几何体都是由4个相同的小立方块搭成的,其中从正面看和从左面看,形状图相同的是()A.B.C.D.4.(3分)下列计算结果正确的是()A.﹣2a+5b=3ab B.6a﹣a=6C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab25.(3分)用一个平面去截一个几何体,截面的形状是圆形,这个几何体可能是()A.正方体B.三棱锥C.五棱柱D.圆锥体6.(3分)“天宫二号”是中国载人航天工程中第一个真正意义上的空间实验室,2016年9月15日,“天宫二号”发射取得圆满成功,它的运行轨道距离地球393000米,数据393000米用科学记数法表示为()A.0.393×107米B.3.93×106米C.3.93×105米D.39.3×104米7.(3分)有理数a,b在数轴上对应的点的位置如图所示,下列结论成立的是()A.a+b>0 B.a+b=0 C.a+b<0 D.a﹣b>08.(3分)下列各式中,不能由a﹣b+c通过变形得到的是()A.a﹣(b﹣c)B.c﹣(b﹣a)C.(a﹣b)+c D.a﹣(b+c)9.(3分)如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7 B.6 C.5 D.410.(3分)某校去年初一招收新生x人,今年比去年增加20%,今年该校初一学生人数用代数式表示为()A.(20%+x)人B.20%x人C.(1+20%)x人D.人二、填空题:本大题含6个小题,每小题3分,共18分,把答案写在题中横线上.11.(3分)太原冬季某日的最高气温是3℃,最低气温为﹣12℃,那么当天的温差是℃.12.(3分)若|a|=6,则a的值等于.13.(3分)按照如图所示的运算程序,若输入的x=﹣2,则输出的值为.14.(3分)计算:(﹣1)2015+(﹣1)2016= .15.(3分)已知一组等式,第1个等式:22﹣12=2+1,第2个等式:32﹣22=3+2,第3个等式:42﹣32=4+3.…根据上述等式的规律,第n个等式用含n的式子表示为.16.(3分)如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择.A、按照小明的要求搭几何体,小亮至少需要个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为.三、解答题:本大题含8个小题,共52分,解答应写出不要的文字说明、演算步骤或推理过程.17.(12分)计算:(1)32+(﹣18)+(﹣12);(2)4×(﹣5)+12÷(﹣6);(3)(﹣+﹣)×(﹣48);(4)(﹣4﹣5)×(﹣)2﹣(﹣1)÷(﹣)3.18.(8分)(1)化简:2x2﹣5x+x2+4x;(2)先化简,再求值:2(5a2b+ab)﹣(3ab﹣a2b),其中a=1,b=﹣1.19.(4分)如图,数轴上有A、B两点.(1)分别写出A、B两点表示的数:、;(2)若点C表示﹣0.5,把点C表示在如图所示的数轴上;(3)将点B向左移动3个单位长度,得到点D,点A、B、C、D所表示的四个数用“<”连接的结果:.20.(4分)一个几何体由几个大小形状相同的小正方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小正方体的个数,请画出从正面看和从左面看的这个几何体的形状图.21.(4分)腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是分,最低分是分;(2)求腾飞小组本次数学测验成绩的平均分.22.(5分)十•一黄金周期间,某景点门票价格为:成人票每张80元,儿童票每张20元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的.(1)甲、乙两个旅行团在该景点的门票费用分别为:甲元;乙元;(用含x、y的代数式表示)(2)若x=10,y=6,求两个旅行团门票费用的总和.23.(6分)请阅读下列材料,并解答相应的问题:幻方将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”、“洛书”等.例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设下面的三阶幻方中间的数字是x (其中x 为正整数),请用含x 的代数式将下面的幻方填充完整.9个数的和为S ,则S 与中间的数字x 之间的数量关系为 .(3)请在下面的A 、B 两题中任选一题作答,我选择 . 现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方. A 、幻方最中间的数字应等于.B 、请将构造的幻方填写在下面3×3的方格中.提出问题:有两个相同的长方体纸盒,它们的长、宽、高分别是16cm 、6cm 、2cm ,现要用这两个纸盒搭成一个大长方体,怎样搭可使长方体的表面积最小? 实践操作:我们发现,无论怎样放置这两个长方体纸盒,搭成的大长方体体积都不变,但是由于摆放位置的不同,它们的表面积会发生变化,经过操作,发现共有3种不同的摆放方式,如图所示:探究结论:(1)请计算图1、图2、图3中的大长方体的长、宽、高及其表面积,并填充下表:所示的长方体.“图3”).解决问题:(2)请在下面的A、B两题中任选一题作答,我选择.A、现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有种不同的方式,搭成的大长方体的表面积最小为cm2.B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有种不同的方式,搭成的大长方体的表面积最小为cm2.(用含a、b、c的代数式表示).参考答案与试题解析一、选择题:本大题含10小题,每小题3分,共30分.1.(3分)﹣2的相反数是()A.2 B.﹣2 C. D.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选A2.(3分)小明将父亲经营的便利店中“收入100元”记作“+100元”,那么“﹣80元”表示()A.支出20元B.支出80元C.收入20元D.收入80元【解答】解:“收入100元”记作“+100元”,那么“﹣80元”表示支出80元,故选:B.3.(3分)下列几何体都是由4个相同的小立方块搭成的,其中从正面看和从左面看,形状图相同的是()A.B.C.D.【解答】解:B从正面看第一层是两个小正方形,第二层左边一个小正方形,从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:B.4.(3分)下列计算结果正确的是()A.﹣2a+5b=3ab B.6a﹣a=6C.4m2n﹣2mn2=2mn D.3ab2﹣5b2a=﹣2ab2【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、系数相加字母及指数不变,故D正确;故选:D.5.(3分)用一个平面去截一个几何体,截面的形状是圆形,这个几何体可能是()A.正方体B.三棱锥C.五棱柱D.圆锥体【解答】解:∵用一个平面去截一个圆锥时,截面形状有圆、三角形,∴这个几何体可能是圆锥体.故选:D.6.(3分)“天宫二号”是中国载人航天工程中第一个真正意义上的空间实验室,2016年9月15日,“天宫二号”发射取得圆满成功,它的运行轨道距离地球393000米,数据393000米用科学记数法表示为()A.0.393×107米B.3.93×106米C.3.93×105米D.39.3×104米【解答】解:393000=3.93×105,故选:C.7.(3分)有理数a,b在数轴上对应的点的位置如图所示,下列结论成立的是()A.a+b>0 B.a+b=0 C.a+b<0 D.a﹣b>0【解答】解:根据数轴可得:a<0,b>0,且|a|<|b|,则a+b>0.故选A.8.(3分)下列各式中,不能由a﹣b+c通过变形得到的是()A.a﹣(b﹣c)B.c﹣(b﹣a)C.(a﹣b)+c D.a﹣(b+c)【解答】解:A、a﹣(b﹣c)=a﹣b+c,正确;B、c﹣(b﹣a)=c﹣b+a=a﹣b+c,正确;C、(a﹣b)+c=a﹣b+c,正确;D、a﹣(b+c)=a﹣b﹣c,不能由a﹣b+c通过变形得到,故本选项错误;故选D.9.(3分)如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7 B.6 C.5 D.4【解答】解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.10.(3分)某校去年初一招收新生x人,今年比去年增加20%,今年该校初一学生人数用代数式表示为()A.(20%+x)人B.20%x人C.(1+20%)x人D.人【解答】解:∵去年收新生x人,∴今年该校初一学生人数为:(1+20%)x人;故选C.二、填空题:本大题含6个小题,每小题3分,共18分,把答案写在题中横线上.11.(3分)太原冬季某日的最高气温是3℃,最低气温为﹣12℃,那么当天的温差是15 ℃.【解答】解:3﹣(﹣12)=15(℃)答:当天的温差是15℃.故答案为:15.12.(3分)若|a|=6,则a的值等于±6 .【解答】解:∵|a|=6,∴a=±6.故答案为:±6.13.(3分)按照如图所示的运算程序,若输入的x=﹣2,则输出的值为﹣29 .【解答】解:把x=﹣2代入程序中得:(﹣2)3×3﹣5=﹣24﹣5=﹣29,故答案为:﹣2914.(3分)计算:(﹣1)2015+(﹣1)2016= 0 .【解答】解:原式=﹣1+1=0.故答案为:0.15.(3分)已知一组等式,第1个等式:22﹣12=2+1,第2个等式:32﹣22=3+2,第3个等式:42﹣32=4+3.…根据上述等式的规律,第n个等式用含n的式子表示为(n+1)2﹣n2=n+1+n .【解答】解:∵2=1+1,3=2+1,4=3+1,…,∴第n个等式用含n的式子表示为:(n+1)2﹣n2=n+1+n.故答案为:(n+1)2﹣n2=n+1+n.16.(3分)如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择 A .A、按照小明的要求搭几何体,小亮至少需要18 个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为46 .【解答】解:A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×32=36个,∵小明用18个边长为1的小正方体搭成了一个几何体,∴小亮至少还需36﹣18=18个小立方体,B、表面积为:2×(8+8+7)=46.故答案为:A,18,46.三、解答题:本大题含8个小题,共52分,解答应写出不要的文字说明、演算步骤或推理过程.17.(12分)计算:(1)32+(﹣18)+(﹣12);(2)4×(﹣5)+12÷(﹣6);(3)(﹣+﹣)×(﹣48);(4)(﹣4﹣5)×(﹣)2﹣(﹣1)÷(﹣)3.【解答】解:(1)32+(﹣18)+(﹣12)=14﹣12=2(2)4×(﹣5)+12÷(﹣6)=﹣20﹣2=﹣22(3)(﹣+﹣)×(﹣48)=(﹣)×(﹣48)+×(﹣48)﹣×(﹣48)=8﹣20+2=﹣10(4)(﹣4﹣5)×(﹣)2﹣(﹣1)÷(﹣)3=(﹣9)×﹣(﹣)÷(﹣)=﹣4﹣1=﹣518.(8分)(1)化简:2x2﹣5x+x2+4x;(2)先化简,再求值:2(5a2b+ab)﹣(3ab﹣a2b),其中a=1,b=﹣1.【解答】解:(1)原式=3x2﹣x;(2)原式=10a2b+2ab﹣3ab+a2b=11a2b﹣ab,当a=1,b=﹣1时,原式=﹣11+1=﹣10.19.(4分)如图,数轴上有A、B两点.(1)分别写出A、B两点表示的数:﹣3 、 2 ;(2)若点C表示﹣0.5,把点C表示在如图所示的数轴上;(3)将点B向左移动3个单位长度,得到点D,点A、B、C、D所表示的四个数用“<”连接的结果:﹣3<﹣1<﹣0.5<2 .【解答】解:(1)分别写出A、B两点表示的数:﹣3、2;(2)若点C表示﹣0.5,把点C表示在如图所示的数轴上;(3)将点B向左移动3个单位长度,得到点D,点A、B、C、D所表示的四个数用“<”连接的结果:﹣3<﹣1<﹣0.5<2,故答案为:﹣3,2;﹣3<﹣1<﹣0.5<2.20.(4分)一个几何体由几个大小形状相同的小正方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小正方体的个数,请画出从正面看和从左面看的这个几何体的形状图.【解答】解:如图所示:21.(4分)腾飞小组共有8名同学,一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣7,﹣10,+9,+2,﹣1,+5,﹣8,+10.(1)本次数学测验成绩的最高分是100 分,最低分是80 分;(2)求腾飞小组本次数学测验成绩的平均分.【解答】解:(1)本次数学测验成绩的最高分是100分,最低分是80分,故答案为:100,80;(2)﹣7+(﹣10)+9+2+(﹣1)+5+(﹣8)+10=0,平均分是90+=90.22.(5分)十•一黄金周期间,某景点门票价格为:成人票每张80元,儿童票每张20元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的.(1)甲、乙两个旅行团在该景点的门票费用分别为:甲80x+20y 元;乙160x+10y 元;(用含x、y的代数式表示)(2)若x=10,y=6,求两个旅行团门票费用的总和.【解答】解:(1)∵成人票每张80元,儿童票每张20元,甲旅行团有x名成人和y名儿童,∴甲旅行团在该景点的门票费用=80x+20y;∵乙旅行团的成人数是甲旅行团的2倍,儿童数是甲旅行团的,∴乙旅行团在该景点的门票费用=160x+10y.故答案为:80x+20y,160x+10y;(2)∵(80x+20y)+(160x+10y)=80x+20y+160x+10y=240x+30y,∵x=10,y=6,∴原式=240×10+30×6=2580(元).23.(6分)请阅读下列材料,并解答相应的问题:幻方将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”、“洛书”等.例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设下面的三阶幻方中间的数字是x (其中x 为正整数),请用含x 的代数式将下面的幻方填充完整.9个数的和为S ,则S 与中间的数字x 之间的数量关系为 9x .(3)请在下面的A 、B 两题中任选一题作答,我选择 A 和B . 现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方.A 、幻方最中间的数字应等于 7 .B 、请将构造的幻方填写在下面3×3的方格中.)三阶幻方如图所示:(2)S=9x.故答案为9x.(3)A:7;故答案为7;B:幻方如图所示:24.(9分)综合与实践:提出问题:有两个相同的长方体纸盒,它们的长、宽、高分别是16cm、6cm、2cm,现要用这两个纸盒搭成一个大长方体,怎样搭可使长方体的表面积最小?实践操作:我们发现,无论怎样放置这两个长方体纸盒,搭成的大长方体体积都不变,但是由于摆放位置的不同,它们的表面积会发生变化,经过操作,发现共有3种不同的摆放方式,如图所示:探究结论:(1)请计算图1、图2、图3中的大长方体的长、宽、高及其表面积,并填充下表:表面积最小的是图1 所示的长方体.“图3”).解决问题:(2)请在下面的A、B两题中任选一题作答,我选择A或B .A、现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有7 种不同的方式,搭成的大长方体的表面积最小为544 cm2.B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b且b=3c)种不同的方式,搭成的大长方体的表面积最小为2ab+8ac+8bc cm2.(用含a、b、c的代数式表示).【解答】解:(1)图1中,长方体的高为4,表面积=2(16×6+16×4+4×6)=368.图2中,长为32,表面积=2(32×6+32×2+6×2)=536.图3中,宽为12,表面积=2(16×12+16×2+12×2)=496.∴图1的表面积最小.故答案为368,536,496,图1;(2)我选择A或B.A、如图所示:现在有4个小长方体纸盒,每个的长、宽、高都分别是16cm、6cm、2cm,若将这4个纸盒搭成一个大长方体,共有7种不同的方式,搭成的大长方体的表面积最小为2(16×6+16×8+6×8)=544cm2.故答案为7,544B、现在有4个小长方体纸盒,每个的长、宽、高都分别是a、b、c、a>2b 且b>2c,若用这4个长方体纸盒搭成一个大长方体,共有6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b且b=3c)种不同的方式,搭成的大长方体的表面积最小为(2ab+8ac+8bc)cm2.(用含a、b、c的代数式表示).故答案为6(a≠3b且b≠3c)或7(a=3b或b=3c)或8(a=3b且b=3c),2ab+8ac+8bc.。