立体几何的综合运用练习
- 格式:doc
- 大小:321.50 KB
- 文档页数:4
立体几何练习题及答案在学习立体几何的过程中,练习题对于巩固知识、提高应用能力起着至关重要的作用。
本文将为大家提供一些立体几何的练习题,并给出详细的答案解析,以帮助读者更好地理解和掌握立体几何的知识。
一、球的表面积和体积1. 某个球的半径为3cm,求其表面积和体积。
解析:球的表面积公式为S = 4πr²,体积公式为V = (4/3)πr³。
将半径r代入公式进行计算即可。
表面积:S = 4π(3)² = 4π(9) ≈ 113.04cm²体积:V = (4/3)π(3)³ = (4/3)π(27)≈ 113.04cm³因此,该球的表面积约为113.04cm²,体积约为113.04cm³。
二、立方体的表面积和体积2. 一个立方体的边长为5cm,求其表面积和体积。
解析:立方体的表面积公式为S = 6a²,体积公式为V = a³。
将边长a代入公式进行计算即可。
表面积:S = 6(5)² = 6(25) = 150cm²体积:V = (5)³ = 5(5)(5) = 125cm³因此,该立方体的表面积为150cm²,体积为125cm³。
三、圆柱的表面积和体积3. 一个圆柱的底面半径为4cm,高度为10cm,求其表面积和体积。
解析:圆柱的表面积公式为S = 2πr² + 2πrh,体积公式为V = πr²h。
将底面半径r和高度h代入公式进行计算即可。
表面积:S = 2π(4)² + 2π(4)(10) = 2π(16) + 2π(40) ≈ 321.2cm²体积:V = π(4)²(10) = π(16)(10) ≈ 502.4cm³因此,该圆柱的表面积约为321.2cm²,体积约为502.4cm³。
第07讲几何综合——立体几何1:下图的切割点均为所在棱的中点,如果按照左图切割,那么表面积总和增加了4,那么按照右图切割,表面积总和增加_______。
2:一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(如下图所示)和正方体体积的比是多少?假设正方体的边长为1,那么每个切去的角(三棱锥)的体积为,211111322248⎛⎫⨯⨯⨯= ⎪⎝⎭所以八个角一共切去的体积,所以余下的体积是正方体体积的,118486⨯=15166-=即余下部分的体积与正方体体积的比为.5:63:如图,原正方体的棱长为12厘米,沿图中的线将正方体切掉正面的部分,求剩下不规则立体图形的体积.倾斜于上下底面的切面,把正方体一分为二.被切掉的部分的图形和剩下的部分图形关于正方形的中心是对称的.33122864(cm )÷=4:如图,正方体的棱长为,连接正方体其中六条棱的中点形成一个正六边形,而连接其中三个顶点6cm 形成一个正三角形.正方体夹在六边形与三角形之间的立体图形有 个面,它的体积是.3cm乙9乙从图中可以看出,夹在六边形与三角形之间的立体图形有2个底面和6个侧面(六边形的每一条边对应一个侧面),所以共有个面,8由于正方体是关于它的中心成中心对称的,而根据正六边形和正三角形的连法,如果从正方体中去掉以这个正三角形为底面的三棱锥以及与它相对的三棱锥后,剩下的部分正好被六边形分成2个同样的立体图形,这就是所要求的立体图形.所以所要求的立体图形的体积是:.3111666266672(cm )232⎡⎤⎛⎫⨯⨯⨯-⨯⨯⨯⨯⨯= ⎪⎢⎥⎝⎭⎣⎦5:如图,有一个棱长为2厘米的正方体。
从正方体的上面正中间下挖一个棱长为1厘米的正方体小洞;接着在小洞的底面正中间再向下挖一个棱长为厘米的小洞;第三个小洞的挖法与前面两个相同,棱长为12厘米,最后得到的额例题图形的表面积是多少平方厘米?146:如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体,这三个长方体的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比:::。
A C D E BM立体解析综合题练习11.如图,正方形ADEF 与梯形ABCD 所在平面互相垂直, 已知//,AB CD AD CD ⊥,12AB AD CD ==.(Ⅰ)求证:BF //平面CDE ;(Ⅱ)求平面BDF 与平面CDE 所成锐二面角的余弦值; (Ⅲ)线段EC 上是否存在点M ,使得平面BDM ⊥平面BDF 若存在,求出EM EC的值;若不存在,说明理由.2.已知1(2,0)F -,2(2,0)F 两点,曲线C 上的动点P 满足12123||||||2PF PF F F +=. (Ⅰ)求曲线C 的方程;(Ⅱ)若直线l 经过点(0,3)M ,交曲线C 于A ,B 两点,且12MA MB =,求直线l 的方程.立体解析综合题练习21. 在如图所示的多面体中,EA ⊥平面ABC ,DB ⊥平面ABC ,BC AC ⊥,且22====AE BD BC AC ,M 是AB 的中点. (Ⅰ)求证:CM ⊥EM ;(Ⅱ)求平面EMC 与平面BCD 所成的锐二面角的余弦值; (Ⅲ)在棱DC 上是否存在一点N ,使得直线MN 与平面EMC所成的角为60︒.若存在,指出点N 的位置;若不存在,请说明理由.2.椭圆C:22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥==(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆M: x 2+y 2+4x-2y=0的圆心,交椭圆C 于,A B 两点,且A 、B 关于点M 对称,求直线l 的方程.立体解析综合题练习31.在如图所示的几何体中,四边形ABCD 为正方形,PA ⊥平面ABCD ,PA //BE ,AB =PA =4,BE =2. (Ⅰ)求证:CE //平面PAD ;(Ⅱ)求PD 与平面PCE 所成角的正弦值; (Ⅲ)在棱AB 上是否存在一点F ,使得平面DEF ⊥平面PCE ?如果存在,求AFAB的值; 如果不存在,说明理由.2.已知抛物线C :22y px =(0p >)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(Ⅰ)求抛物线C 的方程;(Ⅱ)若直线OA ,OB 的斜率之积为12-,求证:直线AB 过x 轴上一定点.ABFED C立体解析综合题练习41.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD //BC ,AD DC ⊥,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 的中点,12,1, 3.2PA PD BC AD CD ===== (I )求证:PQ AB ⊥;(II )求直线PB 与平面PCD 所成角的正弦值; (III )求二面角P QB M --的余弦值.2.已知椭圆,其短轴的一个端点到右焦点的距离为,且点在椭圆上. 直线的斜率为,且与椭圆交于、两点.(Ⅰ)求椭圆的方程; (Ⅱ)求面积的最大值.立体解析综合题练习51.如图,棱柱ABCD —1111A B C D 的所有棱长都为2, AC BD O =,侧棱1AA 与底面ABCD 的所成角为60°,1A O ⊥平面ABCD ,F 为1DC 的中点. (Ⅰ)证明:BD ⊥1AA ;(Ⅱ)证明://OF 平面11BCC B ; (Ⅲ)求二面角D -1AA -C 的余弦值.2.已知椭圆C 两焦点坐标分别为1(2,0)F -,2(2,0)F ,一个顶点为(0,1)A -. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在斜率为(0)k k ≠的直线l ,使直线l 与椭圆C 交于不同的两点,M N ,满足AM AN =. 若存在,求出k 的取值范围;若不存在,说明理由.立体解析综合题练习61.如图, ABCD 是边长为3的正方形,DE ⊥平面ABCD ,DE AF //,AF DE 3=,BE 与平面ABCD 所成角为060.(Ⅰ)求证:AC ⊥平面BDE ; (Ⅱ)求二面角D BE F --的余弦值;(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.2.已知椭圆C :22221x y a b +=(0a b >>)过点(20),,且椭圆C 的离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若动点P 在直线1x =-上,过P 作直线交椭圆C 于M N ,两点,且P 为线段MN 中点,再过P 作直线l MN ⊥.证明:直线l 恒过定点,并求出该定点的坐标.:M 22221(0)x y a b a b+=>>2A (2,1)M l 22M B C M ABC ∆ABC1B 1C 1A DF1D OA BCDFE立体解析综合题练习71.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,且//AD BC ,90ABC PAD ∠=∠=︒,侧面PAD ⊥底面ABCD . 若12PA AB BC AD ===. (Ⅰ)求证:CD ⊥平面PAC ;(Ⅱ)侧棱PA 上是否存在点E ,使得//BE 平面PCD ?若存在,指出点E 的位置并证明,若不存在,请说明理由;(Ⅲ)求二面角A PD C --的余弦值.2.已知直线022=+-y x 经过椭圆)0(1:2222>>=+b a by a x C 的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点S 是椭圆上位于x轴上方的动点,直线AS ,BS 与直线4=x l :分别 交于N M ,两点.(Ⅰ) 求椭圆C 的方程;(Ⅱ)(ⅰ) 设直线AS ,BS 的斜率分别为21,k k ,求证21k k ⋅为定值; (ⅱ)求线段MN 的长度的最小值.立体解析综合题练习81.在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==, G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ; (Ⅱ) 求证:BD EG ⊥;(Ⅲ) 求二面角C DF E --的余弦2.已知椭圆()的长轴长是,且过点. (Ⅰ)求椭圆的标准方程;(Ⅱ)设直线与椭圆交于两点,为椭圆的右焦点,直线与关于轴对称.求证:直线过定点,并求出该定点的坐标.立体解析综合题练习91.在长方形11AA B B 中,124AB AA ==,C ,1C 分别是AB ,11A B 的中点(如图1). 将此长方形沿1CC 对折,使二面角11A CC B --为直二面角,D ,E 分别是11A B ,1CC 的中点(如图2). (Ⅰ)求证:1C D ∥平面1A BE ; (Ⅱ)求证:平面1A BE ⊥平面11AA B B ; (Ⅲ)求直线1BC 与平面1A BE 所成角的正弦值.2.已知直线与椭圆相交于两点,与轴相交于点,且当时,. (Ⅰ)求椭圆的方程;(Ⅱ)设点的坐标为,直线,与直线分别交于,两点. 试判断以为直径的圆是否经过点?并请说明理由.1:2222=+by a x C 0>>b a 22)221( ,C )0(≠+=k m kx y l :C N M 、F MF NF x l :1()l x my m =+∈R ()22:109x y C t t+=>,E F x B 0m =83EF =C A (3,0)-AE AF 3x =M N MN B 图(1)图(2)C 1BCAA 1B 1BCADEA 1B 1C 1MY SDN BxAOA BP CDA DFEB G C立体解析综合题练习101.如图,在直三棱柱111ABC A B C -中,5AB AC ==,D ,E 分别为BC ,1BB 的中点,四边形11B BCC 是边长为6的正方形. (Ⅰ)求证:1A B ∥平面1AC D ; (Ⅱ)求证:CE ⊥平面1AC D ; (Ⅲ)求二面角1C AC D --的余弦值. 2.如图,已知椭圆E:22221(0)x y a b a b 的离心率为32,过左焦点(3,0)F -且斜率为k 的直线交椭圆E 于A,B 两点,线段AB 的中点为M,直线l :40x ky +=交椭圆E 于C,D 两点. (Ⅰ)求椭圆E 的方程; (Ⅱ)求证:点M 在直线l 上;(Ⅲ)是否存在实数k ,使得四边形AOBC 为平行四边形?若存在求出k 的值,若不存在说明理由.。
立体几何强化训练200题·综合应用篇一、选择题1.空间五个点,没有三个点共线,但有四个点共面,这样的五个点可以确定()平面。
A.3个B.5个C.8个D.7个2.已知命题:“直线a上的两个点A,B在平面α内。
”与它不等价的命题是A.直线a在平面α内B.平面α通过直线C.直线a上只有两点在平面α内D.直线a上的所有点都在平面α内3.空间有n(n≥3)条直线,其中任意两条都相交,那么n条直线一定是A.共面B.不共面但过同一点C.过同一点或共面D.既不过同一点又不共面4.下列各个条件中,可以确定一个平面的是A.三个点B.两条不重合直线C.一个点一条直线D.不共点的两两相交的三条直线5.l是平面M的一条斜线,在l上任取两点,在M上任取三点,则五点最多可以确定面。
A.6个B.7个C.9个D.10个6.四个命题:(1)直线a在平面α内,a也在平面β内,则α,β重合。
(2)直线a,b相交,直线b,c也相交,则直线a,c也必相交。
(3)直线a,b共面,直线b,c也共面,则直线a,c也必共面。
(4)a在平面α外,则直线a与平面α内任何一点都可惟一确定一个平面。
以上四个命题中错误的命题个是A.1个B.2个C.3个D.4个7.若平面α上有三点到平面β的距离都相等,则α与β的关系是A.α与β平行B.α与β相交C.α与β平行或相交D.以上结论都不是8.条件Ⅰ:两条直线不平行;条件Ⅱ:两条直线为异面直线。
则Ⅰ是Ⅱ的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.分别与两条异面直线同时相交的两条直线A.一定是异面直线B.不可能是平行的C.不可能是相交的D.可以是平行的10.异面直线a,b分别在平面α,β内,若α∩β=l,则直线l必定是A.分别与a,b相交B.与a,b都不相交C.至少与a,b中之一相交D.至多与a,b中之一相交11.判断下列命题有几个是不正确的①分别在两个平面内的两条直线一定是异面直线。
小题综合练习(二)一、单选题1.设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂,( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβD .若//αβ,则//l m解:对于A ,l β⊥,且l α⊂,根据线面垂直的判定定理,得αβ⊥,A ∴正确; 对于B ,当αβ⊥,l α⊂,m β⊂时,l 与m 可能平行,也可能垂直,B ∴错误; 对于C ,当//l β,且l α⊂时,α与β可能平行,也可能相交,C ∴错误; 对于D ,当//αβ,且l α⊂,m β⊂时,l 与m 可能平行,也可能异面,D ∴错误. 故选:A .2.鳖臑bi ē n ào 是我国古代对四个面均为直角三角形的三棱锥的称呼.已知三棱锥是一个鳖臑,其中,,,且,,,则三棱锥的外接球的体积是 A .B .C .D .解:如图,由,,且,可得平面,则,又,且,,)A BCD -AB BC ⊥AB BD ⊥BC CD ⊥6AB =3BC =2DC =A BCD -()493π3432π49π3436πAB BC ⊥AB BD ⊥BCBD B =AB ⊥BCD AB CD ⊥BC CD ⊥AB BC B =CD AC ∴⊥则为三棱锥的外接球的直径.,,,,故三棱锥的外接球的半径为, 则三棱锥的外接球的体积是.故选:.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周十尺,高六尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为10尺,米堆的高为6尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算堆放的米约为A .17斛B .25斛C .41斛D .58斛解:设米堆所在圆锥的底面半径为尺,则,,米堆的体积为(尺, 米堆的斛数为(斛. 故选:.4.已知四棱锥中,四边形为等腰梯形,,,是等边三角形,且若点在四棱锥的外接球面上运动,记点到AD A BCD -6AB =3BC =2DC =7AD ∴=A BCD -72A BCD -347343()326V ππ==D ()r 12104r π⨯=20r π=∴2211120()666.674312V r h πππ=⨯=⨯⨯⨯≈3)∴66.67411.62≈)C S ABCD -ABCD //AD BC 120BAD ∠=︒SAD ∆SA AB ==P S ABCD -P平面的距离为,若平面平面,则的最大值为ABCD解:依题意,,取的中点,则是等腰梯形外接圆的圆心,是的外心, 作平面,平面,则是人锥的外接球的球心,且,, 设四棱锥的外接球半径为, 则, 则,当四棱锥的体积最大时,.故选:.5.已知正四面体的棱长为,,分别是,上的点,过作平面,使得,均与平行,且,到的距离分别为2,4,则正四面体的外接球被所截得的圆的面积为A .B .C .D .ABCD d SAD ⊥ABCD d ()12123MBC π∠=BC E E ABCD F SAD ∆OE ⊥ABCD OF ⊥SAB O S ABCD -3OF DE ==2AF =S ABCD -R 22213R SF OF =+=1OE DF ==∴S ABCD -1max d R OE =+=A A BCD -M N AC AD MN αAB CD αAB CD αA BCD -α()11π18π26π27π解:将正四面体补形成棱长为6的正方体, 则的外接球球心即为正方体的中心, 故球的半径, 因为,均与平行, 故与面,平行,到面,的距离分别为2和4, 因为到面的距离为3, 故此时到的距离为1,故被球所截圆半径从而截面圆的面积为. 故选:.6.已知长方体,,,是的中点,点在长方体内部或表面上,且平面,则动点的轨迹所形成的区域面积是A .6B .C .D .9解:如图所示,,,,,分别为,,,,的中点,则,,A BCD -APBQ ECFD -A BCD -O O R ==AB CD ααAPBQ ECFD αAPBQ ECFD O APBQ O ααO r 226r ππ=C 1111ABCD A B C D -2AB AD ==14AA =M 1BB P //MP 11AB D P ()E F G H N 11B C 11C D 1DD DA AB 11////EF B D NH 1////MN B A FG所以平面平面,所以动点的轨迹是六边形及其内部. 因为,,所以,,到, 所以.故选:.7.在棱长为1的正方体1111ABCD A B C D -中,M,N 分别为棱AB ,11C D 的中点.平面α过1B ,M 两点,且//BN α.设平面α截正方体所得截面面积为S ,且将正方体分成两部分的体积比为12:V V ,有如下结论:①34S =,②98S =,③12:1:3V V =,④12:7:17V V =,则下列结论正确的是( ) A .①③B .①④C .②③D .②④解:取AD 的中点H ,连结HM ,1HD ,11B D , 由题意得//BD MH ,BD ⊂/平面11HMB D ,MH ⊂平面11HMB D ,//MEFGHN 11AB D P MEFGHN 2AB AD ==14AA =EF HN ==EM MN FG GH ===GM =E GM 229EFGH S S ===梯形D//BD ∴平面11HMB D ,∴平面α即平面11HMB D ,∴截面11HMB D 为等腰梯形,由已知可得11B D =2MH =,11MB HD ==其面积为19(2248S =⨯=.故选:D .8.在三棱锥P ABC -中,PA ⊥平面ABC ,120BAC ∠=︒,AP 2AB AC ==,则三棱锥P ABC -的外接球的表面积是( )A .92π B . C .18π D .40π解:设ABC ∆的外接圆半径为r ,外接圆心为1O ,过点1O 做底面ABC 的垂线,则球心在垂线上,设球心为O ,连接1OO ,1AO ,1CO ,得到Rt △1OO C ,如图所示:120BAC ∠=︒,2AB AC ==,∴由余弦定理,得222cos1202AB AC BC AB AC+-︒=,解得BC =,在ABC ∆中由正弦定理,得2sin120BCr =︒,2r ∴=,设三棱锥P ABC -的外接球的半径为R ,则在Rt △1OO C ,中,OCR =,112OO PA ==12CO r ==, ∴222R r =+,∴292R =, ∴三棱锥P ABC -的外接球的表面积是2944182R ππ=⨯=, 故选:C .9.设四面体的六条棱的长分别为1,1,1,1和,且长为的棱异面,则的取值范围是A. B . C .D .解:设四面体的底面是,,,顶点为, 在三角形中,因为两边之和大于第三边可得:(1) 取中点,是中点,直角三角形全等于直角,所以在三角形中,a a a ()BCD BC a =1BD CD ==A AD =BCD 02a <<BC E E ACE DCE AED AE ED =两边之和大于第三边得 (负值0值舍)(2)由(1)(2)得.另解;可设,,,可得、为等腰直角三角形,可得,即有, 故选:.10.如图,四棱锥的底面为正方形,底面,则下列结论中不正确的是A .B .平面C .与平面所成的角等于与平面所成的角∴0a <0a <<AD a =1AB AC BD CD ====BC =ABC ∆BCD∆AE DE ==0a <<A S ABCD -SD ⊥ABCD ()AC SB ⊥//AB SCD SA SBD SC SBDD .与所成的角等于与所成的角 解:底面,底面为正方形,连接,则,根据三垂线定理,可得,故正确;,平面,平面, 平面,故正确; 底面,是与平面所成的角,是与平面所成的,而,,即与平面所成的角等于与平面所成的角,故正确; ,与所成的角是,与所成的角是,而这两个角显然不相等,故不正确; 故选:. 二、多选题11.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1AB 、1BC 的中点,下列结论中正确的是( )AB SC DC SA SD ⊥ABCD ABCD ∴BD BD AC ⊥AC SB ⊥A //AB CD AB ⊂/SCD CD ⊂SCD //AB ∴SCD B SD ⊥ABCD ASO ∠SA SBD CSO ∠SC SBD SAO CSO ∆≅∆ASO CSO ∴∠=∠SA SBD SC SBD C //AB CD AB ∴SC SCD ∠DC SA SAB ∠DDA .EF 与1BB 垂直 B .EF 与平面11BCC B 垂直C .EF 与1CD 所成的角为45︒D .//EF 平面ABCD解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为2,则(2E ,1,1),(1F ,2,1),(2B ,2,0),1(2B ,2,2),(0D ,0,0),1(0C ,2,2),(1EF =-,1,0),1(0BB =,0,2),∴10EF BB =,EF ∴与1BB 垂直,故A 正确;(1EF =-,1,0),(0CB =,2,0),2EF CB =,EF ∴与CB 不垂直,EF ∴与平面11BCC B 不垂直,故B 错误;(1EF =-,1,0),1(0C D =,2-,2)-,1111cos 2||||2EF C D EF C D EF C D ∴<>===-,EF ∴与1C D 所成的角为60︒,故C 错误;(1EF =-,1,0),平面ABCD 的法向量(0n =,0,1),0EF n =,EF ⊂/平面ABCD ,//EF ∴平面ABCD ,故D正确.故选:AD .12.如图,四棱锥P ABCD∆是等边三角形,底面ABCD -中,平面PAD⊥底面ABCD,PAD是菱形,且60∠=︒,M为棱PD的中点,N为菱形ABCD的中心,下列结论正确的有BAD()A.直线PB与平面AMC平行B.直线PB与直线AD垂直C.线段AM与线段CM长度相等D.PB与AM所成角的余弦值为4解:如图,连接MN,可知//PB面AMC,故A正确;MN PB,由线面平行的判定定理得//在菱形ABCD中,60∆为等边三角形.∠=︒,则BADBAD设AD的中点为O,连接OB,OP,则OP AD=,⊥,又OP OB O⊥,OB AD由线面垂直的判定定理得出AD⊥平面POB,PB⊂平面POB,AD PB∴⊥,故B正确;平面PAD ⊥平面ABCD ,由面面垂直的性质可得POB ∆为直角三角形,设4AD =,则OP OB ==,PB ∴=12MN PB =在MAN ∆中,AM AN ==MN =cos AMN ∠=故异面直线PB 与AM . 在MAN ∆中,222AM AN MN ≠+,则ANM ∠不是直角,则AMC ∆不是等腰三角形,即AM 与CM 长度不等,故C 错误,D 正确. 故选:ABD .13.在长方体1111ABCD A B C D -中,M ,P 是平面11DCC D 内不同的两点,N ,Q 是平面ABCD 内不同的两点,且M ,P ,N ,Q CD ∉,E ,F 分别是线段MN ,PQ 的中点.则下列结论正确的是( )A .若//MN PQ ,则//EF CDB .若E ,F 重合,则//MP CDC .若MN 与PQ 相交,且//MP CD ,则NQ 可以与CD 相交 D .若MN 与PQ 是异面直线,则EF 不可能与CD 平行解:若//MN PQ ,则M 、N 、P 、Q 四点共面γ,当MN PQ <时,平面11DCC D 、平面ABCD 、平面γ两两相交有三条交线,分别为MP 、NQ 、CD , 则三条交线交于一点O ,则CD 与平面γ交于点O ,则EF 与CD 不平行,故A 错误; 若E 、F 两点重合,则//MP NQ ,M 、N 、P 、Q 四点共面γ,平面11DCC D 、平面ABCD 、平面γ两两相交有三条交线,分别为MP 、NQ 、CD , 由//MP NQ ,得////MP NQ CD ,故B 正确;若MN 与PQ 相交,确定平面γ,平面11DCC D 、平面ABCD 、平面γ两两相交有三条交线, 分别为MP 、NQ 、CD ,//MP CD ,////MP NQ CD ∴,则NQ 与CD 不可能相交,故C 错误;当MN 与PQ 异面时,如图,连接NP ,取NP 中点G ,连接EG ,FG ,则//EG MP ,MP ⊂平面11DCC D ,EG ⊂/平面11DCC D 、则//EG 平面11DCC D ,假设//EF CD ,CD ⊂平面11DCC D 、EF ⊂/平面11DCC D ,//EF ∴平面11DCC D ,又EFEG E =,∴平面//EFG 平面11DCC D ,同理可得,平面//EFG 平面ABCD ,则平面11//DCC D 平面ABCD ,与平面11//DCC D 平面ABCD CD =矛盾,则假设错误,EF 不可能与CD 平行,故D 正确.故选:BD .14.已知空间中两条直线,所成的角为,为空间中给定的一个定点,直线过点a b 50︒P l P且与直线和直线所成的角都是,则下列选项正确的是 A .当时,满足题意的直线不存在B .当时,满足题意的直线有且仅有1条C .当时,满足题意的直线有且仅有2条D .当时,满足题意的直线有且仅有3条解:过点作,,则相交直线、确定一平面.与夹角为或,设直线与、均为角,作面于点,于点,于点,记,或,则有.因为,所以.当时,由,得;当时,由,得. 故当时,直线不存在; 当时,直线有且仅有1条; 当时,直线有且仅有2条; 当时,直线有且仅有3条; 当时,直线有且仅有4条; 当时,直线有且仅有1条.a b (090)θθ︒<︒()15θ=︒l 25θ=︒l 40θ=︒l 60θ=︒l O 1//a a 1//b b 1a 1b α1a 1b 50︒130︒OA 1a 1b θAB ⊥αB 1BC a ⊥C 1BD b ⊥D 1AOB θ∠=22(25BOC θθ∠==︒65)︒12cos cos cos θθθ=1090θ︒︒20cos cos θθ225θ=︒0cos cos25θ︒2590θ︒︒265θ=︒0cos cos65θ︒6590θ︒︒25θ<︒l 25θ=︒l 2565θ︒<<︒l 65θ=︒l 6590θ︒<<︒l 90θ=︒l故,,均正确,错误. 故选:.三、填空题15.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB BC ==,11CC =,则异面直线1AB 与1BC 所成角的余弦值为 .解:连接1B C ,交1BC 于点O ,则点O 为1B C 的中点,取AC 的中点D ,连接BD 、OD ,1//OD AB ∴,BOD ∴∠即为异面直线1AB 与1BC 所成角.120ABC ∠=︒,2AB BC ==,11CC =,1BD ∴=,112OD AB ==112OB BC = 在BOD ∆中,由余弦定理知,2225513cos 25OB OD BD BOD OB OD +-+-∠===.故答案为:35.A B C D ABC16.在正方体1111ABCD A B C D -中,点1E ,1F 分别为11A B ,11A C 的中点,则下列说法正确的是 .①1//BE 平面1AFC ②1//DF 平面1AE C ③1CE ⊥平面1?ABF ④1A C ⊥平面11AF D解:由正方体1111ABCD A B C D -中,点1E ,1F 分别为11A B ,11A C 的中点,知:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为2,对于①,(2B ,2,0),1(2E ,1,2),(2A ,0,0),1(1F ,1,2),(0C ,2,0),1(0BE =,1-,2),1(1AF =-,1,2),(2AC =-,2,0),设平面1AFC 的法向量(n x =,y ,)z , 则120220n AF x y z n AC x y ⎧=-++=⎪⎨=-+=⎪⎩,取1x =,得(1n =,1,0), 110BE n =-≠,1BE ∴与平面1AFC 不平行,故①错误; 对于②,(0D ,0,0),1(1DF =,1,2),1(0AE =,1,2),(2AC =-,2,0),设平面1AE C 的法向量(m a =,b ,)c ,则120220m AE b c m AC a b ⎧=+=⎪⎨=-+=⎪⎩,取1c =,得(2m =-,2-,1),12DF m =-,1DF ∴与平面1AE C 不平行,故②错误;对于③,1(2CE =,1-,2),(0AB =,2,0),12CE AB =-,1CE ∴与平面1ABF 不垂直,故③错误;对于④,1(2A ,0,2),1(2A C =-,2,2)-,1(1AF =-,1,2),1(2AD =-,0,2),112240A C AF =+-=,11440A C AD =-=,11AC AF ∴⊥,11AC AD ⊥, 又11AF AD A =,1A C ∴⊥平面11AF D ,故④正确.故答案为:④.17.在正方体1111ABCD A B C D -中,E ,F 分别为线段11A B ,AB 的中点,O 为四棱锥11E C D DC -的外接球的球心,点M ,N 分别是直线1DD ,EF 上的动点,记直线OC 与MN所成的角为θ,则当θ最小时,tan θ= . 解:如图,设P ,Q 分别是棱CD 和11C D 的中点,则四棱锥11E C D DC -的外接球即三棱柱11DFC D EC -的外接球,三棱柱11DFC D EC -是直三棱柱,∴其外接球球心O 为上、下底面三角形外心G 和H 连结的中点,由题意,MN 是平面1DD EF 内的一条动直线, 记直线OC 与MN 所成角为θ,则θ的最小值是直线OC 与平面1DD EF 所成角,即问题转化为求直线OC 与平面1DD EF 所成角的正切值,不妨设正方体1111ABCD A B C D -中棱长为2,则2EQ =,1ED =△11EC D 为等腰三角形,∴△11EC D外接圆直径为11152sin 2ED GE EC D ===∠, 则54GE =,53244GQ PH =-==, 如图,以D 为原点,DA ,DC ,1DD 所在直线为x ,y ,z 轴,建立空间直角坐标系,则(0D ,0,0),1(0D ,0,2),(0C ,2,0),(2F ,1,0),(O 34,1,1), 1(0DD =,0,2),(2DF =,1,0),3(4OC =-,1,1)-,设平面1DD EF 的法向量(n x =,y ,)z ,则12020n DD z n DF x y ⎧==⎪⎨=+=⎪⎩,取1x =,得(1n =,2-,0),则||sin ||||5n OC n OC θ==tan 42θ=.∴当θ最小时,tan θ..18.已知正四棱锥P ABCD -的底面边长为高为其内切球与面PAB 切于点M ,球面上与P 距离最近的点记为N ,若平面α过点M ,N 且与AB 平行,则平面α截该正四棱锥所得截面的面积为 .解:取AB ,CD 中点Q ,R ,连结PQ ,PR ,QR ,取QR 中点S ,连结PS , 则RQ AB ⊥,S 为正方形ABCD 的中心,四棱锥P ABCD -是正四棱锥,PS ∴⊥平面ABCD ,PS ∴=在Rt PSQ ∆中,PQ同理,PR =PQR ∴∆是正三角形,∴正四棱锥P ABCD -内切球的球心为正PQR ∆的内心O ,内切球的半径是正PQR ∆的内切圆半径为内切球与平面PAB 的切点M 为正PQR ∆内切圆与直线PQ 的切点,M ∴为PQ 中点,球面上与P 距离最近的点为连结OP 与球面的交点,即在OP 之间,且ON =N ∴为OP 中点,连结MN 并延长交PR 于I ,平面α过M ,N ,I 与直线AB 平行, 设平面α分别与平面PAB ,平面PCD 交于EF ,GH ,AB ⊂平面PAB ,//EF AB ∴,又//AB CD ,CD α∴⊂/,//CD α∴,同理可证//GH CD ,//EF GH ∴,连结GF ,HE ,则梯形EFGH 为所求的截面, RQ AB ⊥,PS AB ⊥,PSRQ S =,AB ∴⊥平面PQR ,IM ⊂平面PQR ,AB IM ∴⊥,//AB EF ,EF IM ∴⊥,连结OQ ,则OQ 为POS ∠的角平分线,30PQO ∴∠=︒,M ,N 是PQ ,PO 的中点,//MN OQ ∴,30PMI PQO ∴∠=∠=︒,而60MPI ∠=︒,90PIM ∴∠=︒,cos30MI PM ∴=︒=sin304PRPI PM =︒==,又//HG CD ,4CDHG ∴==,∴截面梯形EFGH 的面积为11()22S MI EF GH =+=⨯故答案为:。
高二专题分类-立体几何与空间向量(四)空间向量与立体几何的综合应用一.选择题1.(2021·北京八中高二期末)正方体1111ABCD A B C D -中,AC 和1A D 所成角的大小是( ) A .30B .45C .60D .752.(2021·北京市朝阳区北京教育学院朝阳分院高二期中)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ 的值为( )A .2aB .212aC .214aD 2 3.(2021·北京昌平区·昌平一中高二月考)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,点E 是SB 的中点,则直线AE ,SD 所成角的余弦值为( )A .3B C D .134.(2021·北京西城·)如图,在正方体1111ABCD A B C D -中,E 为CD 的中点,则直线1A E 与BC 所成角的余弦值为( )A .25B .35C .13D .235.(2020·北京和平街第一中学高二月考)已知向量()2,0,1n =为平面α的法向量,点()1,2,1A -在α内,点()1,2,2P -在α外,则点P 到平面α的距离为( )A B C .D6.(2021·北京八中高二期末)如图,正方体1111ABCD A B C D -的棱长为1,点E 为1DD 的中点,点P 为BDE 内部一动点,P 点到平面1111D C B A 的正射影为点Q ,则Q 到点A 的距离的最小值为( )AB C D .17.(2021·北京师范大学昌平附属学校)正方体1111ABCD A B C D -中,点E 为1BB 中点,平面1A EC 与平面ABCD 所成二面角的余弦值为( )A B C D 8.(2021·北京高二期末)在空间直角坐标系Oxyz 中,已知点(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D ,则直线AD 与BC 所成角的大小是___.二.填空题9.(2020·北京市广渠门中学)已知平面α的一个法向量()2,2,1n =--,点()1,3,0A --在平面α内,则点()2,1,4P -到平面α的距离为_________.10.(2021·北京朝阳·高二期末)如图,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1.则A 1C 与平面C 1BD _______(填“垂直”或“不垂直”);A 1C 的长为_______.11.(2021·北京昌平区·昌平一中高二月考)如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足BC 1⃗⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =1,则BC 1⃗⃗⃗⃗⃗⃗⃗ 与BM ⃗⃗⃗⃗⃗⃗ 的夹角最大值为___________.12.(2021·北京昌平区·昌平一中高二月考)如图,正方体1111ABCD A B C D -的棱长为2,E 为1BB 的中点,则异面直线1BC 与1D E 所成的角为___________.13.(2021·北京人大附中高二期末)如图,若正三棱柱111ABC A B C -的底面边长为8,对角线1B C 的长为10,点D 为AC 的中点,则点1B 到平面1C BD 的距离为_____,直线1AB 与直线BD 所成角的余弦值为________.14.(2021·北京高二期末)如图,在四面体ABCD 中,其棱长均为1,M ,N 分别为BC ,AD 的中点.若MN ⃗⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ +zAD ⃗⃗⃗⃗⃗ ,则x y z ++=________;直线MN 和CD 的夹角为________.15.(2020·北京市第十二中学高二期中)在长方体1111ABCD A B C D -中,4AB AD ==,11AA =,点P 在底面1111D C B A 上.(1)若点P 与点1A 重合,则点P 到平面11BDD B 的距离是__________. (2)若点P 到直线AD 和11C D 的距离相等,则1PC 的最小值是__________.参考答案1.C 【分析】连接1B C ,即可得到11//A D B C ,则1B CA ∠(或补角)即为异面直线AC 和1A D 所成角,再根据正方体的性质计算可得; 【详解】解:如图连接1B C ,在正方体1111ABCD A B C D -中,因为11//A B CD ,且11=A B CD ,所以四边形11A B CD 为平行四边形,所以11//A D B C , 所以1B CA ∠(或补角)即为异面直线AC 和1A D 所成角, 显然1AB C 为等边三角形,所以160B CA ∠=. 故选:C.2.C 【分析】由题意可知,空间四边形ABCD 相邻两边的夹角都为60︒,所以把,,AB AC AD 看成空间向量的基底,将,AE AF 用基底表示化简可得答案 【详解】11()22AB AC AE AF AD ⋅=+⋅1()4AB AD AC AD =⋅+⋅ 22211(cos60cos60)44a a a ︒︒=+= 故选:C3.C 【分析】由题意画出图形,连接AC ,BD ,交于O ,连接,EO SO ,可得//EO SD ,则AEO ∠为直线AE 与直线SD 所成的角,证明AC ⊥平面SBD ,AC OE ⊥,则求解直角三角形得答案.【详解】解:如图,连接AC ,BD ,交于O ,连接,EO SO ,则SO ⊥平面ABCD ,又AC ⊂平面ABCD ,所以SO AC ⊥, 因为正四棱锥S ABCD -的侧棱长与底面边长都相等,则AC BD ⊥, 又BD SO O ⋂=,所以AC ⊥平面SBD , 又OE ⊂平面SBD ,所以AC OE ⊥,在SBD 中,O 为BD 的中点,点E 是SB 的中点,所以//EO SD ,则直线AE 与直线SD 所成的角为AEO ∠或其补角, 设正四棱锥S ABCD -的棱长为2,则AO =AE =在Rt AOE 中,1EO .cosEO AEO AE ∴∠==即直线AE ,SD 故选:C .4.D 【分析】设正方体的棱长为2,建立空间直角坐标系,利用向量法求解直线1A E 与BC 所成的角即可. 【详解】解:设正方体的棱长为2,如图所示建立空间直角坐标系, 则1(2A ,0,2),(0E ,1,0),(0C ,2,0),(2B ,2,0), 则1(2,1,2),(2,0,0)A E BC =--=- 所以111cos ,||||A E BC A EBC A E BC ⋅<>=42323==⨯, 所以异面直线1A E 与直线BC 所成角的余弦值为23,故选:D .5.A 【分析】利用点到平面距离公式的向量求法即可求解. 【详解】因为()1,2,1A -,()1,2,2P -, 所以()2,0,3PA =-,因为平面α的法向量为()2,0,1n =,所以点P 到平面α的距离为242PA n d n⋅-==, 故选:A.6.B 【分析】建立空间直角坐标系,用向量法求AQ 的距离,再由表达式研究最小值即可 【详解】由题可知,Q 点在线段11B D 上运动,且Q 不与11,B D 重合,如图以D 为原点,1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系, 则易知(1,0,0)A ,又11B D 为1111D C B A 的对角线,故可设(,,1),(01)Q a a a <<,则AQ =令2222t a a =-+,则易知12a =时,2222t a a =-+所以AQ 故选:B 7.C 【分析】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得平面1A EC 与平面ABCD 所成二面角的余弦值. 【详解】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()12,0,2A 、()2,2,1E 、()0,2,0C ,所以,()10,2,1EA =-,()2,0,1CE =, 设平面1A CE 的法向量为(),,m x y z =,则12020m EA y z m CE x z ⎧⋅=-+=⎨⋅=+=⎩,取1x =,可得()1,1,2m =--,易知平面ABCD 的一个法向量为()0,0,1n =,所以,cos ,6m n m n m n⋅<>===⨯⋅,易知,平面1A EC 与平面ABCD 故选:C. 8.60︒ 【分析】利用空间向量求夹角公式直接求解. 【详解】(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D(0,2,2),(1,0,1)BC AD ∴=-=-21cos ,20AD BC AD BC AD BC⋅∴===⋅又空间中两直线夹角范围为(0,90⎤⎦,故,60AD BC = 所以直线AD 与BC 所成角的大小是60︒ 故答案为:60︒9.23【分析】由题意算出()1,4,4AP =-,根据向量()2,2,1n =--是平面α的一个法向量,算出向量AP 在n 上的投影的绝对值,即可得到P 到α的距离.【详解】解:根据题意,可得()()1,3,0,1,4,2A P ---,()1,4,4AP =-, 又平面α的一个法向量()2,2,1n =--,点A 在α内,()2,1,4P ∴-到α的距离等于向量AP 在n 上的投影的绝对值,()()1242412P n A -⨯-+⨯-∴⨯=-=+ 即(232AP n d n===- 故答案为:23【点睛】本题给出平面的法向量和平面上的一点,求平面外一点到平面的距离;着重考查了向量的数量积公式和点到平面的距离计算等知识,属于中档题.10.垂直【分析】设CB a =,CD b =,1CC c =,可得出1CA a b c =++,计算得出1110CA BD CA BC ⋅=⋅=,可得出1CA BD ⊥,11CA BC ⊥,利用线面垂直的判定定理可证得结论成立,求1CA 的平方即可求A 1C 的长.【详解】设CB a =,CD b =,1CC c =,由题意可得1CA a b c =++,则()()()2211CA BD CA CD CB a b c b a b a c b c a ⋅=⋅-=++⋅-=-+⋅-⋅cos60cos600c b c a =⋅-⋅=,1CA BD ∴⊥,同理可证11CA BC ⊥,1BD BC B ⋂=,故1CA ⊥平面1C BD .∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1,11CD CB CC ∴===,222221111()2()1112()6222CA a b c a b c a b b c a c ∴=++=+++⋅+⋅+⋅=+++++=1CA →∴=即A 1C .11.60【分析】以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤,根据空间向量的数量积运算得x z =,再根据空间向量的夹角运算和二次函数的性质可得答案.【详解】解:以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,如图所示:∠M 是左侧面ADD 1A 上的一个动点,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤, 1(1,1,0),(0,1,1),B C =,1(1,0,1),(1,1,)BC BM x z ∴=-=--,111BC BM x z ∴⋅=-+=,即x z =,又1||2,||(BC BM x ===设1BC 与BM 的夹角为θ,1cos 2θ∴== 设2()1f x x x =-+,()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以13(0)1,()24f f ==,3()14f x ≤≤,所以1cos 2θ≤≤1BC 与BM 的夹角最大值为60.故答案为:60.12.4π. 【分析】连接1BC ,证明11//BC AD ,则1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,从而可的答案.【详解】解:连接1BC ,由正方体的性质可知,11//AB C D ,且11AB C D =,所以11ABC D 是平行四边形,所以11//BC AD ,所以1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,在1AD E △中,113,D E AD AE ==则22211111cos 2AD D E AE AD E AD D E +-∠===⋅ 即异面直线1BC 与1D E又因异面直线1BC 与1D E 所成的角的范围为0,2π⎛⎤ ⎥⎝⎦, 所以异面直线1BC 与1D E 所成的角为4π. 故答案为:4π.13 【分析】设1B C 与1BC 交于点O ,连接1AC ,可证得1//AB 平面1C BD ,求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,然后利用11A BC D C ABD V V --=进行计算求解;由于1//AB DO ,直线1AB 与直线BD 所成的角为ODB ∠,利用余弦定理进行计算求解即可.【详解】设1B C 与1BC 交于点O ,连接1AC ,在正三棱柱111ABC A B C -中,显然点O 为1B C 的中点,又点D 为AC 的中点, 所以1//AB DO ,又DO ⊂平面1C BD ,1AB ⊄平面1C BD ,所以1//AB 平面1C BD ,所以求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,因为8BD =,16CC ==,1C D所以有22211BD C D BC +=,所以1BD C D ⊥,所以112BC D S =⨯△易得BD AC ⊥,所以142ABD S =⨯=△ 设点A 到平面1C BD 的距离为h ,由11A BC D C ABD V V --=,即111133BC D ABD S h S C C ⨯⨯=⨯⨯△△,所以有11633h ⨯=⨯,解得:h = 因为1//AB DO ,所以直线1AB 与直线BD 所成的角为ODB ∠,因为1BD C D ⊥,O 为1B C 的中点,所以1152DO BC ==,而BD =所以22222255cos2OD BD OB ODB OD BD+-+-∠===⨯..【点睛】关键点点睛:求线面距离通常可以转化为求三棱锥的高,而求三棱锥的高通常利用等体积法进行求解.14.12-. 4π 【分析】利用空间向量的线性运算把MN 用,,AB AC AD 表示即可得,,x y z ,再由向量的数量积得向量夹角,从而得异面直线所成的角.【详解】由已知得MN 1122MB BA AN CB AB AD =++=-+11111()22222AB AC AB AD AB AC AD =--+=--+,又MN xAB y AC z AD =++且,,AB AC AD 不共面,∠12x y ==-,12z =,∠12x y z ++=-, ABCD 是棱长为1的正四面体,∠111cos602AB AC ⋅=⨯⨯︒=,同理12AB AD AC AD ⋅=⋅=,2222111111444222MN MN AB AC ADAB AC AB AD AC AD ==+++⋅-⋅-⋅44444== CD AD AC =-,111()()222MN CD AB AC AD AD AC ⋅=--+⋅-22111111222222AB AD AB AC AC AD AC AD AD AC =-⋅+⋅-⋅++-⋅11111114442242=-+-++-=, ∠12cos ,2MN CD MN CD MN CD ⋅<>===,∠,4MN CD π<>=, ∠异面直线MN 和CD 所成的角为4π. 【点睛】 关键点点睛:本题考查空间向量基本定理,考查用向量法求异面直线所成的角.在空间任意不共面的三个向量可作为空间的一个基底,空间所有向量都可用基底表示,且表示方法唯一,因此在用同一个基底用两种不同方法表示出同一向量时,两种表示法中对应的系数相等.由此结合向量的运算法则可表示得结论.同样用向量法求异面直线所成的角,可以直接计算,不需要作图与证明.15. 3【分析】(1)若点P 与点1A 重合,在平面1111D C B A 内,过P 作11PE B D ⊥,证明PE ⊥平面11BDD B ,则PE 为点P 到平面11BDD B 的距离,利用等面积法求解; (2)以1D 为坐标原点建立空间直角坐标系,设()(),,00,0P x y x y >≤,得()2210,0x y x y +=>≤,再由两点间的距离公式写出1PC ,利用配方法求最小值.【详解】解:(1)如图,若点P 与点1A 重合,在平面1111D C B A 内,过1A 作111A E B D ⊥, ∠平面1111A B C D ⊥平面11BB D D ,平面1111A B C D 平面1111BB D D B D =,∠1A E ⊥平面11BDD B ,则1A E 为点P 到平面11BDD B = (2)以1D 为坐标原点建立如图所示空间直角坐标系.设()(),,00,0P x y x y >≤y ,即()2210,0x y x y +=>≤,P 的轨迹为双曲线的部分, ()14,0,0C ,则1PC = ∠当2x =时,1PC 的最小值是3.故答案为:3.。
立体几何体的相交与投影综合练习题在几何学中,立体几何体的相交与投影是一项重要的内容。
通过研究几何体的相交关系和投影方式,我们可以更好地理解三维物体在二维平面上的呈现形式。
本文将为您提供一些立体几何体相交与投影的综合练习题,以帮助您巩固相关知识。
一、相交的几何体1. 练习题:在三维空间中,有一个正方体和一个长方体相交,求它们的相交面积。
解答:正方体的边长为a,长方体的长、宽、高分别为b、c、d。
根据几何知识,两个立体几何体相交面积等于它们共有的平面图形的面积。
在该题中,正方体与长方体相交的面为一个长方形,长为a和b 的较小值,宽为b和c的较小值。
则相交面积为较小值之积,即min(a,b) * min(b,c)。
2. 练习题:一个锥形和一个球体相交,求它们的相交体积。
解答:锥形的底面半径为r,高为h,球体的半径为R。
相交的部分可以视为一个圆锥体,其底面半径为r,高为h。
根据几何知识,圆锥体的体积等于其底面半径的平方乘以高再乘以1/3。
则相交体积为π * r^2 * h / 3。
二、投影的几何体3. 练习题:一个长方体沿x轴正方向投影到yz平面,求投影后的形状。
解答:长方体的边长分别为a、b、c。
在投影过程中,x轴正方向的线段与yz平面垂直投影后,变为一个点;y轴和z轴方向的线段在投影过程中保持不变。
因此,投影后的形状是在yz平面上的一个矩形,长为b,宽为c。
4. 练习题:一个正方体同时沿x、y、z轴方向投影到xy、yz、zx平面,求投影后的形状。
解答:正方体的边长为a。
在投影过程中,三个轴方向的线段都与相应平面垂直投影后,变为一个点。
因此,投影后的形状是在xy平面上的一个正方形,边长为a。
三、相交和投影综合5. 练习题:一个球体和一个柱体相交,且柱体的高度等于球体的直径,求它们的相交体积。
解答:球体的半径为R,柱体的底面半径为r,高度为2R。
相交的部分为柱体的上半部分。
根据几何知识,柱体的体积为底面积的乘以高度。
高三数学习题集:立体几何的应用立体几何是数学中一个重要的分支,也是高中数学中的一部分内容。
它通过研究空间中的图形与体的形状、位置关系等,帮助我们理解和应用几何概念,并在实际生活中找到问题的解决方案。
本文将为高三学生提供一些立体几何应用的习题,帮助他们巩固相关知识,提升解题能力。
1. 计算体积:已知一个长方体的底面积为20平方厘米,高为10厘米,求长方体的体积是多少?2. 计算表面积:一个正方体的边长为5厘米,求该正方体的总表面积。
3. 体积的应用:甲、乙两个柱体的底面半径都为4厘米,高分别为10厘米和15厘米,求两个柱体的体积之比。
4. 直方体的应用:甲的纸盒长20厘米、宽15厘米、高10厘米,乙的纸盒长28厘米、宽18厘米、高16厘米,请比较两个纸盒的体积。
5. 圆柱的应用:一个圆柱的底面半径为6厘米,高为9厘米,求其体积和侧面积。
6. 圆台的应用:一个圆台的底面半径为8厘米,上底面半径为6厘米,高为10厘米,求其体积和全面积。
7. 球的应用:一个球的表面积为200平方厘米,求其半径和体积。
8. 锥的应用:一个锥的高为12厘米,底面半径为5厘米,在底面上削去一个半径为3厘米的小圆锥,求大锥的体积。
通过解答以上习题,我们可以提升对立体几何的应用能力,加深对体积、表面积等概念的理解。
这些题目既可以巩固基础知识的掌握,又能锻炼思维能力和解题技巧。
总结:立体几何的应用领域广泛,包含了对不同几何体的体积、表面积的计算,以及一些实际问题的解决等。
通过解答相关习题,我们可以提升对立体几何知识的理解和应用能力,为日后的学习和实际生活中遇到的问题提供更好的解决方案。
在高三数学学业中,合理地运用立体几何知识,学生可以更加灵活地思考问题,提升解决数学问题的能力。
高中立体几何练习题几何学是数学中非常重要的一个分支,而立体几何则是其中的一个重要部分。
在高中阶段,学生需要掌握各种与立体几何相关的概念和定理,并且能够运用这些知识解决实际问题。
本文将为大家提供一些高中立体几何的练习题,以帮助大家巩固知识和提高解题能力。
练习题一:三棱柱1. 一个三棱柱的底面是一个等边三角形,边长为8cm,高度为10cm。
求该三棱柱的体积和表面积。
2. 一个三棱柱的体积是72cm³,底面边长为6cm。
求该三棱柱的高度和表面积。
练习题二:四棱柱和四棱锥1. 一个正四棱柱的底面是一个边长为4cm的正方形,高度为6cm。
求该四棱柱和与之相似的正四棱锥的体积比值。
2. 一个四棱柱的底面是一个边长为10cm的正方形,高度为8cm。
求该四棱柱和与之相似的四棱锥的表面积比值。
练习题三:球体和圆柱1. 一个半径为4cm的球从中间切割,得到两个半球。
求这两个半球的表面积之和。
2. 一个圆柱的底面半径为3cm,高度为10cm。
在底面上画一个直径,求这个直径与圆柱的侧面交点处的高度和侧面的面积。
练习题四:棱台和棱锥1. 一个棱台的上底是一个边长为6cm的正三角形,下底是一个边长为12cm的正六边形,高度为8cm。
求该棱台的体积和表面积之和。
2. 一个棱台的上底是一个边长为8cm的正方形,下底是一个边长为12cm的正六边形,高度为10cm。
求该棱台的体积和表面积的比值。
以上仅为一些高中立体几何的练习题,希望能够帮助大家巩固知识并提高解题能力。
在解答这些题目时,可以根据已学习的定理和公式进行计算,并注意单位和精度的问题。
同时也要灵活运用几何思维和建模能力,将实际问题转化为几何图形,从而更好地解决问题。
祝各位同学在立体几何学习中取得好成绩!。
高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。
立体几何综合运用练习
一、填空题
1设α、β、γ是三个不重合的平面,m、n是不重合的直线,给出下列命题:
①若α⊥β,β⊥γ,则α⊥γ;②若m∥α,n∥β, α⊥β,则m⊥n;③若α∥β,γ∥β,则α∥γ;④若m、
n在γ内的射影互相垂直,则m⊥n,
其中错误命题有个.
2关于直线m、n与平面α、β,有下列四个命题:①m∥α,n∥β且α∥β,则m∥n;②m⊥α,n⊥β且
α⊥β,则m⊥n;③m⊥α,n∥β且α∥β,则m⊥n;④m∥α,n⊥β且α⊥β,则m∥n.
其中真命题的序号是.
3如图所示,半径为2的半球内有一内接正六棱锥P—ABCDEF,则此正六棱锥的体积为.
4设a,b,c是空间中互不重合的三条直线,
①若a∥b,b∥c,则a∥c;
②若a⊥b,b⊥c,则a∥c;
③若a与b相交,b与c相交,则a与c相交;
④若a⊂平面α,b⊂平面β,则a,b一定是异面直线;
⑤若a,b与c成等角,则a∥b。
上述命题中正确的(只填序号).
5若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是(填序号).
①若α∥β,l⊂α,n⊂β,则l∥n
②若α⊥β,l⊂α,则l⊥β
③若l⊥n,m⊥n,则l∥m
④若l⊥α,l∥β,则α⊥β
二、解答题
6.在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:(1)直线EF∥平面ACD;
(2)平面EFC⊥平面BCD.
7.如图,在三棱柱111ABC A B C -中,四边形11A ABB 为菱形,160A AB ∠=︒,四边形11BCC B 为矩形,若
AB BC ⊥且4AB =,3BC =
⑴求证:平面1ACB ⊥平面1ACB ; ⑵求三棱柱111ABC A B C -的体积。
8.如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,M ,N 分别为A 1B ,B 1C 1的中点.
(1)求证BC ∥平面MNB 1; (2)求证平面A 1CB ⊥平面ACC 1A 1.
9.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧面PAD 是正三角形, 且平面PAD ⊥底面ABCD. (1) 求证:PBC AD 平面||
(2)求证:AB ⊥平面PAD
(3)设AB=1,求四棱锥P —ABCD 的体积.
C 1
B 1
A 1
C
B
A A
B
C M
N
A 1
B 1
C 1 (第9题)
10.如图四边形ABCD 是菱形,PA ⊥平面ABCD , Q 为PA 的中点. 求证:⑴ PC ∥平面QBD ;⑵ 平面QBD ⊥平面PAC .
11.如图,在四棱锥P ABCD -中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,60BAD ∠=︒,N 是PB 中点,过A 、
N 、D 三点的平面交PC 于M .(1) 求证://DP ANC 平面
(2)求证:M 是PC 中点; (3)求证:平面PBC ⊥平面ADMN
12.如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE.
B
A
C
D
P
Q
O
D
A
B
C
P
M
N
B
C
A
D
E
F M
13.在几何体ABCDE 中,2
BAC π
∠=
,DC ⊥平面ABC ,EB ⊥平面ABC ,AB =AC =BE =2,CD =1.
(Ⅰ)设平面ABE 与平面ACD 的交线为直线l ,
求证:l ∥平面BCDE ; (Ⅱ)设F 是BC 的中点,求证:平面AFD ⊥平面AFE ; (Ⅲ)求几何体ABCDE 的体积.
14.如图,四边形ABCD 是正方形,PB ⊥平面ABCD , MA ⊥平面ABCD ,PB =AB =2MA .
求证:(Ⅰ)平面AMD ∥平面BPC ;(Ⅱ)平面PMD ⊥平面PBD ;
B
A
C
D
E
A B
C
D
P
M。