储层五敏性实验
- 格式:doc
- 大小:185.00 KB
- 文档页数:18
2020年22期方法创新科技创新与应用Technology Innovation and Application储层敏感性流动实验评价方法在储层保护中的作用研究李亚群(中国石油大港油田公司,天津300280)储层敏感性是储层伤害和储层保护的重要研究内容,而岩心实验分析是确定储层敏感性最权威的手段。
本次利用岩心对M 断块开展储层敏感性流动实验研究,通过得出的敏感性结论,指导M 断块今后在实施钻井、注水开发及实施增产措施时,入井液匹配性选择,对开展储层保护工作具有指导意义[1-4]。
1油田概况M 断块储层岩性主要为含砾不等粒长石砂岩、岩屑长石砂岩和长石岩屑砂岩,泥质胶结为主,储层孔隙度9.7-27.4%,平均17.3%,渗透率14.26-769.51md ,平均276.5md ,为中孔中高渗储层。
粘土矿物主要为伊利石,其次为绿泥石,再次为高岭石。
根据胶结物及粘土矿物成分分析,该区储层可能存在一定程度的储层敏感性问题。
2储层敏感性实验评价2.1水流速敏实验初始水流量0.124cm 3/min ,初始渗透率81.06×10-3μm 2,随着水流量的增加,渗透率逐渐增大,当水流量为2.007cm 3/min ,渗透率达到最大,为97.88×10-3μm 2,后随着水流量的增大,渗透率逐渐减小,最终渗透率85.43×10-3μm 2。
实验结果表明该区储层无速敏。
(表1)2.2水敏实验M 断块水敏实验测试结果如表2所示。
实验结果显示该区储层表现为弱水敏,需要进行盐敏实验确定临界矿化度。
摘要:在油田勘探、开发的整个过程中,都会有不同流体进入储层,这些流体与储层发生物理、化学作用,造成储层伤害,导致油田产量降低。
储层敏感性研究是实现储层保护,减小储层伤害的必要手段。
本次通过实验手段,在M 断块开展储层敏感性研究,确定研究区为无速敏、弱水敏、弱碱敏、中等偏弱酸敏储层,指导今后在区内开展钻井、注水及储层改造措施时储层保护工作。
储层的敏感性特征及开发过程中的变化摘要:由于储层岩石和流体的性质,储层往往存在多种敏感性,即速敏、水敏、盐敏、酸敏、碱敏、应力敏感性和温度敏感性等七种敏感性。
不同的敏感性产生的条件和产生的影响都有各自的特点。
本文主要从三个部分研究分析了储层的敏感性特征。
即:粘土矿物的敏感性;储层敏感性特征;储层敏感性在开发过程中的变化。
通过这三个方面的研究,希望能给生产实际提供理论依据,进而指导合理的生产。
关键词:粘土矿物;储层;敏感性1.粘土矿物的敏感性特征随着对储层研究进一步加深,除了进行常规的空隙结构和空隙度、渗透率、饱和度等的研究外,还必须对储层岩心进行敏感性分析,以确定储层与入井工作液接触时,可能产生的潜在危险和对储层可能造成伤害的程度。
由于各种敏感性多来至于砂岩中粘土矿物,因此它们的矿物组成、含量、分布以及在空隙中的产出状态等将直接影响储层的各种敏感性。
1.1 粘土含量在粒度分析中粒径小于5um者皆称为粘土,其含量即为粘土总含量。
当粘土矿物含量在1%~5%时,则是较好的油气层,粘土矿物超过10%的一般为较差的油气层[1]。
1.2 粘土矿物类型粘土矿物的类型较多,常见的有蒙皂石、高岭石、绿泥石、伊利石以及它们的混层粘土[2]。
粘土矿物的类型和含量与物源、沉积环境和成岩作用阶段有关。
不同类型的粘土矿物对流体的敏感性不同,因此要分别测定不同储集层出现的粘土矿物类型,以及各类粘土矿物的相对含量。
目前多彩采用X射线衍射法分析粘土矿物。
常见粘土矿物及其敏感性如表1所示。
1.3 粘土矿物的产状粘土矿物的产状对储层内油气运动影响较大,其产状一般分为散状(充填式)、薄层状(衬底状)和搭桥状[1]。
在三种粘土矿物类型中,以分散式储渗条件最好;薄层式次之;搭桥式由于孔喉变窄变小,其储渗条件最差。
除此之外,还有高岭石叠片状,伊/蒙混层的絮凝状等,而且集中粘土矿物的产状类型也不是单一出现的,有时是以某种类型为主,与其它几种类型共存。
储集层敏感性及五敏试验1.基本概念所谓储集层敏感性,是指储集层岩石的物性参数随环境条件(温度,压力)和流动条件(流速,酸,碱,盐,水等)而变化的性质。
岩石的物性参数,我们主要研究孔隙度和渗透率。
衡量储集层岩石的敏感程度我们常用敏感指数来,敏感指数被定义为在条件参数变化一定数值时,岩石物性减小的百分数,习惯上用SI 来表示。
我们以渗透率这个物性参数为例,给出其一个基本公式:i ik p K K K SI -= (1-1)上标表示岩石物性参数,用下标表示条件参数。
上式定义的是渗透率对地层压力的敏感指数。
敏感指数的物理含义是指条件参数变化一定数值以后,岩石物性参数损失的百分数(主要是孔隙度和渗透率)。
所以我们要想了解油藏的敏感指数就必须了解条件参数的变化幅度,从而我们可以求出敏感指数。
在实际矿场中,渗透率比孔隙度更能影响储集层产能。
因此渗透率的研究尤为重要。
储集层渗透率因为地层压力的改变而呈现出的敏感性质,称作储集层的压力敏感,压力敏感指数用符号P SI 表示。
由以上可以知道下面的概念。
储集层渗透率因为地层温度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用T SI 表示。
储集层渗透率因为渗流速度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用v SI 表示。
储集层渗透率因为注入液体的盐度的改变而呈现出的敏感性质,称作储集层的盐度敏感,简称盐敏,用salSI 表示。
储集层渗透率因为注入液体的酸度的改变而呈现出的敏感性质,称作储集层的酸度敏感,简称酸敏,用aciSI 表示。
储集层渗透率因为注入液体的碱度的改变而呈现出的敏感性质,称作储集层的碱度敏感,简称酸敏,用alk SI 表示。
储集层渗透率因为注入淡水而呈现出的敏感性质,称作储集层的水敏性质,简称水敏,用w SI 表示。
其中我们最常用的就是五敏:速敏,水敏,盐敏,酸敏,碱敏,实验室常做五敏实验来判断油藏性质。
如果一个油藏水敏,那么我们一定要对其做盐敏实验。
煤层气储层敏感性实验研究一、本文概述随着能源需求的日益增长,煤层气作为一种清洁、高效的能源,其开发利用受到了广泛关注。
然而,在煤层气储层开发过程中,储层敏感性问题常常会对开发效果产生重要影响。
本文旨在对煤层气储层的敏感性进行系统的实验研究,分析不同因素对储层敏感性的影响,为煤层气储层的合理开发提供理论支持和实践指导。
本文首先介绍了煤层气储层敏感性的基本概念和研究意义,阐述了储层敏感性对煤层气开发的影响。
接着,详细描述了实验材料、实验方法以及实验过程,包括实验设备、实验步骤、实验条件等。
在实验结果分析部分,本文将通过实验数据,对储层敏感性进行定量评估,并深入探讨不同因素对储层敏感性的影响机制。
本文总结了实验研究的主要结论,提出了针对性的建议,以期为我国煤层气储层的合理开发提供有益的参考。
通过本文的实验研究,旨在深入理解煤层气储层的敏感性特征,揭示储层敏感性对煤层气开发的影响规律,为煤层气储层的科学开发提供理论支撑和实践指导。
本文的研究结果也可为其他类似储层的敏感性研究提供借鉴和参考。
二、煤层气储层敏感性实验研究方法煤层气储层敏感性实验研究是评估煤层气储层对各种外部因素(如压力、温度、化学处理等)响应程度的关键手段。
本研究采用了一系列实验方法,系统地探讨了煤层气储层的敏感性特征。
我们采用了渗透率测试技术,通过改变储层压力、温度等条件,实时监测渗透率的变化情况。
这一技术能够直观反映储层在外部条件变化下的渗透性能,是评估储层敏感性的重要指标之一。
为了深入研究储层敏感性机理,我们采用了扫描电子显微镜(SEM)和射线衍射(RD)等微观分析手段。
这些技术能够揭示储层微观结构的变化,包括孔隙结构、矿物成分等,从而深入理解储层敏感性的内在原因。
我们还采用了化学处理实验,通过模拟储层中可能遇到的化学环境(如酸碱溶液、氧化剂等),研究储层对这些化学因素的响应情况。
这一方法有助于评估储层在开采过程中的稳定性,预测潜在的风险因素。
储层敏感性(“五敏”)
几乎所有井的油层都会受到不同程度的损害,油层损害必然导致产能损失及产量下降。
储层对于各种类型地层损害的敏感性程度,即为储层敏感性。
1、速敏性是指因流体流动速度变化引起地层微粒运移、堵塞喉道,导致渗透率下降的现象。
速敏性研究的目的是在于了解储层的临界流速及渗透率的变化与储层中液体流动速度的关系。
地层微粒是指地层中包括粘土微粒和其它矿物的碎屑微粒在内的所有可移动微粒,它的存在是引起速敏性的内因。
2、水敏性储层中粘土矿物及其它自生矿物在原始地层条件下处于一种含有一定矿化度的盐水环境中,当淡水或低矿化度的水进入地层后,由于环境条件的改变,这些矿物就会发生膨胀、分散、脱落和运移,减小或堵塞储层喉道,造成储层渗透率降低,地层这种遇淡水降低渗透率的现象称水敏性。
3、酸敏性:用各种酸液处理地层,已成为油气田开发改造过程中的常用措施,它可以清除井筒附近地层的酸溶性堵塞,溶蚀岩石矿物,扩大油气流通通道,改善油气层渗流能力。
在酸处理过程中,如果酸液选择或施工程序不合理,也会对地层造成损害。
酸液进入地层后,与地层中的酸敏性矿物发生反应,产生沉淀或释放出微粒,使地层渗透率下降的现象称为酸敏性。
4、碱敏性是指碱性工作液进入储层后,与储层岩石或储层液体接触,并使储层渗流能力下降的现象。
5、压敏性:应力敏感性是指岩石渗透率随有效应力(或称净围压)的增加而下降的现象。
考虑温度因素的储层敏感性预测方法近年来,随着石油资源的日益枯竭和环境污染的加剧,对油气储层的有效开发和管理日益成为焦点。
而储层敏感性预测是油气勘探开发中关键的一环,其能够为储层优化开发和管理提供科学依据和指导。
而在考虑储层温度因素的情况下,预测储层敏感性的方法就显得尤为重要。
储层敏感性是指储层岩石对采油活动的敏感程度,这种敏感程度反映了岩石物性与采油活动之间的相互影响关系。
储层敏感性预测方法可以通过分析储层岩石的物性参数及层位结构、耐受破坏能力等方面,对储层对采油活动的响应进行定量分析和评估。
传统的储层敏感性预测方法主要以地质统计分析为主,忽略了温度因素对储层敏感性的影响。
实际上,储层温度是影响储层敏感性的重要因素之一。
温度会改变储层岩石的物性参数和层位结构,从而影响储层的响应。
针对这种情况,本文提出了一种考虑储层温度因素的敏感性预测方法,其主要包括以下步骤:(1)储层物性参数测试和分析首先,对储层进行物性测试,包括孔隙度、渗透率、饱和度、流体粘度等参数的测定,并对测得的数据进行分析和处理。
这些参数是决定储层敏感性的关键因素,可以通过统计分析等手段研究其变化规律和敏感性关系。
(2)搜集和分析温度数据通过地质勘探和测井工作,获取储层的温度数据,分析其分布规律和变化趋势。
同时,将获得的温度数据与物性参数进行匹配,以研究温度对物性参数变化的影响,进而评估储层敏感性。
(3)储层敏感性评估模型构建针对以上收集和分析的数据,可以建立储层敏感性评估模型,该模型可以通过统计学方法建模,并考虑到温度对储层敏感性的影响,从而对储层敏感性进行更加准确的预测和评估。
(4)预测模型验证建立模型后,需要对模型进行验证,以确定模型的准确性和可靠性。
其中,可以通过地球物理数据和实际开采数据和采油实验数据作为参考,评估模型的准确性、稳定性和预测效果。
综上所述,考虑温度因素的储层敏感性预测方法可以更全面地评估储层的响应,提高储层的开发和管理效率,具有重要的研究价值。
储集层敏感性及五敏试验1.基本概念所谓储集层敏感性,是指储集层岩石的物性参数随环境条件(温度,压力)和流动条件(流速,酸,碱,盐,水等)而变化的性质。
岩石的物性参数,我们主要研究孔隙度和渗透率。
衡量储集层岩石的敏感程度我们常用敏感指数来,敏感指数被定义为在条件参数变化一定数值时,岩石物性减小的百分数,习惯上用SI 来表示。
我们以渗透率这个物性参数为例,给出其一个基本公式:i ik p K K K SI -= (1-1)上标表示岩石物性参数,用下标表示条件参数。
上式定义的是渗透率对地层压力的敏感指数。
敏感指数的物理含义是指条件参数变化一定数值以后,岩石物性参数损失的百分数(主要是孔隙度和渗透率)。
所以我们要想了解油藏的敏感指数就必须了解条件参数的变化幅度,从而我们可以求出敏感指数。
在实际矿场中,渗透率比孔隙度更能影响储集层产能。
因此渗透率的研究尤为重要。
储集层渗透率因为地层压力的改变而呈现出的敏感性质,称作储集层的压力敏感,压力敏感指数用符号P SI 表示。
由以上可以知道下面的概念。
储集层渗透率因为地层温度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用T SI 表示。
储集层渗透率因为渗流速度的改变而呈现出的敏感性质,称作储集层的温度敏感,简称热敏,用v SI 表示。
储集层渗透率因为注入液体的盐度的改变而呈现出的敏感性质,称作储集层的盐度敏感,简称盐敏,用salSI 表示。
储集层渗透率因为注入液体的酸度的改变而呈现出的敏感性质,称作储集层的酸度敏感,简称酸敏,用aciSI 表示。
储集层渗透率因为注入液体的碱度的改变而呈现出的敏感性质,称作储集层的碱度敏感,简称酸敏,用alk SI 表示。
储集层渗透率因为注入淡水而呈现出的敏感性质,称作储集层的水敏性质,简称水敏,用w SI 表示。
其中我们最常用的就是五敏:速敏,水敏,盐敏,酸敏,碱敏,实验室常做五敏实验来判断油藏性质。
如果一个油藏水敏,那么我们一定要对其做盐敏实验。
通过做五敏实验,我们可以有选择的去选择钻井液和射孔液,以防止对储层造成伤害。
2.储集层敏感机理储集层岩石是由固体骨架颗粒和粒间孔隙构成的,储集层渗透率的大小反映了岩石孔隙的性质,而孔隙又主要受到骨架颗粒尺度及排列方式的影响。
如果在条件改变时,骨架颗粒的尺度和排列方式没有发生变化,岩石的渗透率一定不会发生变化,即储集层不会敏感;如果在条件改变时,骨架颗粒尺度及排列方式发生了变化,进而改变了岩石的孔隙性质,岩石的渗透率一定会发生变化,即储层出现了敏感。
储集层的敏感机制大概有以下几种类型:2.1速敏速敏是岩石骨架颗粒排列方式的改变由此导致油田储集层渗透率改变的情形。
在岩石骨架颗粒中,有一些尺度极小的颗粒,它们杂乱无章的分布在岩石的空隙中,它们在流体低速流动时并不会有明显的改变,对储集层的渗透率产生太大的影响。
但是,如果流速增大,这些颗粒的排列方式将发生显著改变,颗粒将发生运移,从而堵塞流体运动的通道,致使岩石的渗透率降低。
从而影响油井的产量,这就是速敏的原则。
产生速敏的固体颗粒往往是一些特定的粘土矿物成分,如高岭石等。
高岭石英文名为kaolinite,是长石和其它硅酸岩矿物天然蚀变的产物,是一种含水的铝硅酸岩。
它们总是以极微小的微晶或隐晶状态存在,并以致密块状或土状集合体产生。
此外,一些外来颗粒随液体侵入地层,也会造成机械堵塞,如钻井,完井过程中工作液的虑失作用。
2.2水敏(颗粒膨胀)在岩石骨架颗粒中,有一些尺度极小的颗粒,它们往往都是一些粘土矿物成分。
其中一些粘土矿物成分,比如蒙脱石,这类具有特殊的物质结构,这部分粘土矿物在原始状态下于高矿物地层水处于一种平衡状态,它们的存在并不影响孔隙中流体的流动。
但是,如果外来流体进入改变了地层水原来的矿度及其化学成分,这些粘土矿物将打破原来的平衡,通过阳离子交换进行吸水或排水,从而使自身体积发生膨胀或萎缩。
颗粒膨胀将减少流体通过的孔隙通道,致使储集层渗透率降低;颗粒萎缩将增大流体通过的孔隙通道,致使储集层渗透率升高。
由于地层水的环境所致,而外来流体的矿化度通常很低,因此层中粘土颗粒吸水发生膨胀,使储层造成伤害的概率比较大。
蒙脱石,又名微晶高岭石,是一种层状结构,片状结构的硅酸岩晶体,因其最初发现于法国的蒙脱域而著名。
当温度达到100-200摄氏度时,蒙脱石的水分子会逐渐跑掉,失水后的蒙脱石可以重新吸收水分子,并且膨胀超过原体积的几倍。
在矿场上,粘土颗粒膨胀对储层的影响程度与岩石的粘土含量有很大关系。
当粘土含量较低是,并不会对储层造成较大的伤害,而较高的粘土含量,则是储层伤害的潜在因素。
当粘土含量小于5%时,储层受到伤害的可能性较小;当粘土含量超过5%时,储层受伤害的可能性也随之増大。
2.3化学反应化学反应导致储层敏感性变化的方式很多,并且反应原理不同。
有些化学反应生成了沉淀,随着流体的流动,堵塞了岩石孔隙,从而降低了岩石渗透率;而有些化学反应则溶蚀了骨架颗粒,扩大了岩石孔隙,从而提高储层渗透率。
现场上比较注重的酸敏和碱敏实验,皆属于这种情况。
所谓的酸敏,就是酸液就入储层后与酸敏物质发生反应,产生沉淀或释放颗粒,使储层渗透率下降的可能性及其程度。
所谓的碱敏,就是碱液进入储层后与碱敏物质发生反应,产生沉淀,从而使储层渗透率降低的情况。
下面我们举例来说明。
在岩石孔隙中,地层水溶解了大量物质,若外来流体(钻井液或注入水)与地层水不配伍,则发生化学反应,生成的沉淀就会都会堵塞孔隙,从而降低储集层渗透率。
注水开发过程中,常会因为携带的二氧化碳与地层水发生反应,生成不溶解的碳酸钙在底层中甚至管线中结构,从而影响油气生产。
一些含铁的粘土矿物(如绿泥石),遇酸沉淀,也会导致储层敏感。
此外,有些化学反应可以提高储层渗透率。
若外来流体与岩石中的固体矿物发生化学反应,并将其溶解,结果使储层孔隙变大,从而提高了储层渗透率。
比如我们提高采收率常常会采用的酸化方法,就是利用化学反应提高储层渗透率。
2.4机械变形岩石中的固体骨架颗粒,受到应力作用即产生变形。
如果应力作用变大,储层岩石就会被压缩;如果应力作用减少,储层岩石就会膨胀。
储层岩石的上覆地层压力通常不会发生变化。
但是,孔隙中流体压力则随着流体的采出而降低,随着流体的注入而升高。
根据应力平衡方程,地层压力等于流体压力与孔隙压力之和。
如果流体压力降低,骨架应力就增大,骨架颗粒因此而压缩,孔隙度因此而减小,储层渗透率因此而降低。
若流体压力升高,骨架应力则减小,骨架颗粒因此而膨胀,孔隙度因此而增大,储层渗透率因此而升高。
(所谓的应变,是指在外力作用下,骨架不能产生位移,它的几何形状和尺寸将发生变化,这种形变称为应变。
骨架发生形变是,在其内部产生了大小相等但方向相反的反作用力,把分布内力在一点的集度称为应力。
)温度对储层敏感性的影响,也是通过骨架颗粒的机械变形作用来实现的。
温度升高,骨架颗粒膨胀,孔隙度因此而增大,储层渗透率因此而升高。
温度降低,骨架颗粒压缩,孔隙度减小,储层渗透率因此而降低。
当然,在温度变化过程中,岩石中的粘土矿物也可能发生一些物理或化学变化,如脱水等,进而影响储集层渗透率。
3.储层伤害常见来源。
储层伤害原因主要是由储层本身的岩性,物性及油气水流体性质等内在因素和在井下施工作业时,引起储层微观结构原始状态发生改变,而是得储层原始渗透率降低。
它的内因是储层的潜在伤害因素。
因此外来流体与储层的岩石以及地层流体之间的配伍性决定伤害类型和伤害程度。
储层伤害主要包括两大方面:一是由于外来流体与储层岩石不配伍造成的伤害,包括:外来固相颗粒的堵塞与侵入;敏感性伤害;储层内部微粒运移造成的伤害;出砂;细菌堵塞。
二是外来流体与地层流体不配伍造成的伤害,包括:乳化堵塞;无机垢堵塞;有机垢堵塞;铁锈与腐蚀产物的堵塞;地层内部固相沉淀的堵塞。
凡是受外界条件影响而导致储层渗透率降低的储层特性均属储层本身潜在的伤害因素,它包括岩石骨架颗粒成分,胶结类型,孔隙结构,储层敏感性矿物,岩石表面性质以及储层流体性质等。
4.储层岩石敏感性评价实验4.1速敏评价实验由于岩石孔隙中的微小固体颗粒会附着在骨架的颗粒,在流速极低时,流体的冲力不足不足以将它们脱落并使其移动,因此储层岩石在极低流速时并不敏感。
但是,随着流速的增加,流体的冲力也不断增大。
当流速超过一定限度时,流体的冲力超过了其附着力,颗粒脱落下来并开始移动,最后在孔隙吼道停留下来并堵塞孔隙,从而降低岩石渗透率,致使储层产生敏感。
在矿场上,我们把储层开始产生敏感的最小流速,称作储集层敏感的临界流V表示。
速,用e速敏评价实验的目的是确定临界流量,避免颗粒运移对地层造成的伤害,在有助于保护油气层的同时确定合理的注采速度。
4.2.水敏评价实验水敏评价的目的是为了了解外来流体的矿化的与储层中粘土物质不配伍时,引起粘土矿物水化膨胀,分散,运移而导致储层渗透率下降的现象及其程度。
水敏实验是通过粘土膨胀实验阳离子交换量来测定来实现的。
粘土膨胀实验是测量储层敏感性的评价实验的一项辅助实验,它是通过测定岩样水化后的线膨胀率来评价岩石的膨胀性及膨胀程度,可间接反应粘土矿物对储层潜在伤害的影响程度。
岩石中膨胀性粘土含量越高,表现出膨胀性越强,由粘土矿物引起的储层水敏性,盐敏性伤害也将越严重。
阳离子交换容量是粘土矿物的重要性质之一,不同粘土矿物的阳离子交换容量不同。
膨胀行粘土矿物含量越高,其阳离子交换容量越大。
阳离子容量测定试验也是储层敏感性评价试验的一项辅助试验,通通过测定岩样阳离子交换容量,也可间接反应粘土矿物对储层潜在伤害的影响程度。
岩石中膨胀性粘土含量越高,表现出阳离子交换容量也就越大,由粘土矿物引起的储层水敏性,盐敏性伤害也将越严重。
4.3.盐敏评价实验储集层岩石孔隙中的地层水,不仅矿化度非常高,其中的矿物成分也非常复杂。
当注入流体的盐度与地层水十分接近时,储层岩石就不会产生敏感,即储层渗透率不会因为注入流体而有所降低。
但是,当注入流体的盐度与地层水差别较大时,储层岩石就会产生敏感,即储层岩石渗透率会因注入外来流体而有所降低。
把储集层开始产生敏感的最大盐度,称作储集层敏感的临界盐度。
我们在实验室做盐敏评价实验就是要找到临界盐度,已使在实际油气生产过程中,将注入流体的盐度控制在临界盐度之上,以免是储集层产生降低油气生产的能力。
储集层水敏性质与储集层盐敏的性质是联系在一起的,如果储层水敏,那么下一步我们一定要做盐敏实验。
4.4酸敏性评价实验酸敏性评价的目的在于了解酸化液与储层岩石的配伍性,即反映它是改善地层还是伤害地层,了解其对地层的改善程度或伤害程度,以便优选酸液配方,提高酸化效果,减小对储层伤害度。
4.5.碱敏性评价实验碱敏性评价的目的是了解岩心渗透率随流体PH值变化而变化的现象,找出使渗透率明显下降的临界PH值。