碳化物、氮化物和硼化物
- 格式:ppt
- 大小:1012.50 KB
- 文档页数:15
一.名词解释:无机非金属材料:无机非金属材料是由某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物及硅酸盐、铝酸盐等物质组成的材料。
陶瓷的显微结构是指各类显微镜所能观察到的结构相.显微结构描述结构中所有的相区及所包含的缺陷。
显微结构应包括: 晶粒和气孔的尺寸大小及分布,相组成及分布,晶界特性、缺陷及裂纹,还包括组成均匀性、畴结构等等。
高温荷重软化温度耐火材料的高温荷重软化温度也称为高温荷重变形温度,表示材料在温度与荷重双重作用下抵抗变形的能力,即指耐火材料试样在固定压力下,不断升高温度,试样发生一定变形量和坍塌时的温度。
不定形耐火材料是由合理级配的粒状和粉状料与结合剂共同组成的不经成型和烧成而直接供使用的耐火材料。
复合材料是指把两种以上在宏观上不同的材料,合理的进行复合,在新制得的材料中,原来各材料的特性得到充分的应用,并且得到了单一材料所不具有的新特性。
桥氧和非桥氧的概念。
(1)桥氧(或公共氧、非活性氧):有限四面体群中连接两个Si4+的氧,其电价已饱和,一般不再与其它正离子配位。
(2)非桥氧(或非公共氧、活性氧):有限四面体群中只有一侧与Si4+相连接的氧。
热容:是质点热运动的的能量随温度变化的一个物理量,是物体温度升高1K所需要增加的热量。
温度不同,物体的热容不一定相同。
电子显微分析:是利用聚焦电子束与试样相互作用所产生的各种物理信号,分析试样物质的微区形貌、晶体结构和化学组成的分析方法,包括透射电子显微分析、扫描电子显微分析和电子探针X射线显微分析等。
玻璃的概念:一般定义:经熔融冷却基本上不结晶的无机固体物质科学定义:具有玻璃转变现象的非晶态物质无机纤维:是由矿石与焦炭按比例经高温熔融经离心而产出。
二、简答题1、简述耐火材料主晶相与基质的两种结合形态陶瓷结合(硅酸盐结合)与直接结合。
陶瓷结合又称为硅酸盐结合,其结构特征是耐火制品主晶相之间由低熔点的硅酸盐非晶质和晶质联结在一起而形成结合,如普通镁砖中硅酸盐基质与方镁石之间的结合。
无机非金属材料的分类无机非金属材料是指不含金属元素的无机材料,包括陶瓷、玻璃、高分子材料等。
根据其化学成分和结构特点,可以将无机非金属材料分为以下几类:1. 氧化物材料氧化物材料是指由氧元素和其他元素组成的化合物,如二氧化硅、氧化铝、氧化锌等。
这类材料具有高熔点、高硬度、高耐腐蚀性等特点,广泛应用于电子、光学、陶瓷等领域。
2. 碳化物材料碳化物材料是指由碳元素和其他元素组成的化合物,如碳化硅、碳化钨等。
这类材料具有高硬度、高耐磨性、高耐高温性等特点,广泛应用于切削工具、陶瓷等领域。
3. 氮化物材料氮化物材料是指由氮元素和其他元素组成的化合物,如氮化硅、氮化铝等。
这类材料具有高硬度、高耐磨性、高耐高温性等特点,广泛应用于电子、光学、陶瓷等领域。
4. 硼化物材料硼化物材料是指由硼元素和其他元素组成的化合物,如硼化硅、硼化铝等。
这类材料具有高硬度、高耐磨性、高耐高温性等特点,广泛应用于切削工具、陶瓷等领域。
5. 硅酸盐材料硅酸盐材料是指由硅元素、氧元素和其他元素组成的化合物,如石英、长石等。
这类材料具有高硬度、高耐磨性、高耐高温性等特点,广泛应用于建筑、陶瓷等领域。
6. 玻璃材料玻璃材料是指由硅元素、氧元素和其他元素组成的无定形物质,如玻璃、光纤等。
这类材料具有透明、硬度低、易加工等特点,广泛应用于光学、建筑、电子等领域。
总之,无机非金属材料具有多种不同的分类方式,每种分类方式都有其独特的特点和应用领域。
在未来的发展中,无机非金属材料将继续发挥重要作用,为各个领域的发展做出贡献。
高考化学传统无机材料与新型无机材料
无机材料一般可以分为传统的和新型的两大类。
传统的无机材料主要是以SiO2及其硅酸盐化合物为主要成分制成的材料,因此又被称为硅酸盐材料,包括陶瓷、玻璃、水泥和耐火材料等。
此外,搪瓷、磨料、铸石(辉绿岩、玄武岩等)、碳素材料、非金属矿(石棉、云母、大理石等)也属于传统的无机材料。
新型无机材料则是用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种无机非金属化合物经特殊的先进工艺制成的材料。
主要包括新型陶瓷、特种玻璃、人工晶体、半导体材料、薄膜材料、无机纤维、多孔材料等。
总的来说,传统无机材料和新型无机材料在成分、制备工艺和应用领域等方面存在显著差异。
传统无机材料以硅酸盐为主要成分,历史悠久,制备工艺相对简单,但应用范围有限。
新型无机材料则更加多样化,可以通过特殊的先进工艺制备出高性能的材料,应用范围广泛,具有巨大的发展潜力。
半导体的结构类型
半导体是一种介于导体和绝缘体之间的材料,其电子结构决定了其导
电性质。
半导体的结构类型可以分为两类:共价键型和离子键型。
共价键型半导体
共价键型半导体是由元素硅(Si)和锗(Ge)构成的。
在这些材料中,原子通过共价键相互连接,形成晶格结构。
每个原子都有四个电子与
邻近原子形成共价键,因此这些材料也被称为四面体晶系。
在室温下,共价键型半导体中的电子几乎没有足够的能量跃迁到传导
带中。
只有在施加外部能量或加热时,才会激发出足够的电子跃迁到
传导带中,从而产生电流。
离子键型半导体
离子键型半导体包括硼化物、氮化物和碳化物等化合物。
这些材料由
正负离子相互连接而成,因此被称为离子晶体。
与共价键型半导体不同,在室温下离子键型半导体中就已经存在足够
数量的自由电荷载流子(即空穴和电子),因此这些材料具有较高的
导电性。
总结
总体来说,半导体的结构类型可以分为共价键型和离子键型两类。
共价键型半导体由元素硅和锗构成,原子通过共价键相互连接;离子键型半导体由硼化物、氮化物和碳化物等化合物构成,由正负离子相互连接。
两种类型的半导体在室温下都不具备足够的电流传输能力,需要外部能量激发才能产生电流。
科众陶瓷是一家专业生产加工工业陶瓷的厂家,包括氧化锆陶瓷、氧化铝陶瓷、碳化硅陶瓷等。
特种陶瓷分类很多,那下面跟随科众陶瓷一起来看看特种陶瓷分类有哪些吧。
特种陶瓷科众陶瓷生产的特种陶瓷是一种拥有优异性能的陶瓷,被广泛应用于工业等方面。
下面我们一起来看看吧。
一、特种陶瓷按照化学组成划分有:氧化物陶瓷氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。
氮化物陶瓷氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。
碳化物陶瓷碳化物陶瓷:碳化硅、碳化硼、碳化铀等。
硼化物陶瓷硼化物陶瓷:硼化锆、硼化镧等。
硅化物陶瓷硅化物陶瓷:二硅化钼等。
氟化物陶瓷氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。
硫化物陶瓷硫化物陶瓷:硫化锌、硫化铈等。
其他还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。
特种陶瓷特种陶瓷材料根据所需的特性不同,可作为机械材料、耐热材料、化学材料、光学材料、电气材料和生物医学材料,在不同的领域得到广泛的应用。
二、根据性能及用途的不同,特种陶瓷可分为结构材料用陶瓷(主要是用于耐磨损、高强度、耐热、耐热冲击、高刚性、低热膨胀性和隔热等结构陶瓷材料) 和功能陶瓷(包括电磁功能、光电功能和生物—化学功能等陶瓷制品和材料,另外还有核陶瓷材料和其他功能材料等)两大类。
此外,为了改善陶瓷的性能,有时要在陶瓷基体中添加各种纤维、晶须、超细微粒等,这样就构成了多种陶瓷基复合材料。
以上就是有关于特种陶瓷分类的相关信息,你了解特种陶瓷分类了吗?更多关于特种陶瓷分类的内容欢迎咨询科众陶瓷。
氮化硼氮化硼(BN)是一种由相同数量的氮原子和硼原子组成的双化合物,因此它的实验式是BN。
氮化硼和碳是等电子的,并和碳一样,氮化硼是多形的:其中一形体类似于钻石而另一个则类似于石墨。
类似于钻石的形体是现时所知的几乎最硬的物质,即立方氮化硼;类似于石墨的形体是一种十分实用的润滑剂,即六方氮化硼。
一.六方氮化硼1.1简介形态相似于石墨的氮化硼,也称六方氮化硼、h-BN、α-BN或g-BN (graphitic BN),有时也称“白石墨”,它是最普遍使用的氮化硼形态。
和石墨相似,六方形态是由许多片六边形组成。
这些薄片层与层之间的相关结构(registry)不同,但是从石墨的排列模式中看出,这是由于硼原子在氮原子上面使氮化硼的原子变成椭圆的。
如此结构反映出硼—氮链的极性。
氮化硼中较低的共价性质,使它成为导电性相对于石墨较低的半金属,电在它六边形薄片中pi-链的网络中流通。
六方氮化硼的缺乏颜色,显示较低的电子离域性,表示其能隙较大。
六方氮化硼在极低和极高(900℃)的温度甚至是氧气下都是一种很好的润滑剂,它在石墨的导电性和与其它物质的化学反应造成困难时特别有用。
由于它的润滑机理并不涉及到层面之间的水分子,氮化硼润滑剂还可以在真空下使用,如在太空作业时。
六方氮化硼在空气中高达1000℃、真空中1400℃和在惰性气体中2800℃都仍然稳定,也是其中一种导热性最好的绝缘体。
它对多数物质都不产生化学反应,也不被许多融化物质所沾湿(如:铝、铜、锌、铁和钢、铬、硅、硼、冰晶石、玻璃和卤化盐)。
1.2制备工艺:①国内传统的合成方法是无水硼砂与氯化铵或尿素等混合后,1000℃下在管式炉中于氨气保护下反应,再经水洗、酸洗得到氮化硼产品。
Na2B4O7+2NH4Cl+NH3=4BN+2NaCl+7H2O②使用无水硼砂和三聚氰胺作为硼源及氮源进行反应,制得氮化硼,其反应式为:此方法与上述方法合成出的产品有所不同,其合成出的六方结晶形态不完整,有些外国厂商认为此方法合成出的氮化硼为六方乱层结构(hexagonal turbostratic crystals),也简称为t-BN,由于该种氮化硼的结晶在低温下不完整,当在高温(1600-2000℃)下,其结晶反而会生长的较大且完整,因此该方法生产出的产品如经过高温精制工序,会生成3-5微米的较大结晶。
无机材料:无机材料指由无机物单独或混合其他物质制成的材料。
通常指由硅酸盐、铝酸盐、硼酸盐、磷酸盐、锗酸盐等原料和/或氧化物、氮化物、碳化物、硼化物、硫化物、硅化物、卤化物等原料经一定的工艺制备而成的材料。
分类:无机材料一般可以分为传统的和新型的无机材料两大类。
传统的无机材料是指以二氧化硅及其硅酸盐化合物为主要成分制备的材料,因此又称硅酸盐材料。
新型无机材料是用氧化物、氮化物、碳化物、硼化物、硫化物、硅化物以及各种非金属化合物经特殊的先进工艺制成的材料。
无机非金属:具有机械功能、热功能和部分化学功能为无机非金属结构用材料,分为氧化物和非氧化物,结构包括单晶、多晶、玻璃、复合材料和涂层及薄膜。
鼓励开发具有较大市场、产业化技术较成熟和经济效益好的新型无机结构材料。
高性能结构陶瓷高性能结构陶瓷具有比强度高、耐高温、耐磨损、耐腐蚀等优越性能。
由于技术进步,结构陶瓷的性能提高,使其对传统金属材料的优势日益显示出来,国际上使用结构陶瓷部件已经形成很大的市场。
本年度重点支持:(1)航空、汽车、火车等交通车辆用的陶瓷零部件;(2)现代工业用耐高温、耐磨损、耐腐蚀等高性能陶瓷结构件;(3)可替代进口和特殊用途的高性能陶瓷结构件;(4)电子陶瓷高温烧结用高级窑具材料与制品。
无机非金属功能材料无机非金属功能材料是指具有电导性、半导体性、光电性、压电性、铁电性、耐腐蚀、化学吸附性、吸气性、耐辐射性等许多功能的一类材料。
这类材料品种多,具有技术含量高、产品更新换代快、附加值高、经济效益明显的特点。
本年度重点支持:电子功能陶瓷材料微电子工业是世界经济发展的一个热点。
我国已将微电子产业列入“十五”的发展重点,电子功能陶瓷是微电子器件的基本材料之一,用途广泛。
本年度重点支持:(1)大规模集成电路用新型封装材料和高频绝缘用新型高性能绝缘陶瓷;(2)可代替进口的新型微波陶瓷和陶瓷电容器用介电陶瓷与铁电陶瓷;(3)大规模集成电路用高性能贴片元件专用电子陶瓷原料与制品。
一、名词解释1.无机非金属材料无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物、以及硅酸盐、铝酸盐、磷酸盐、硼酸盐和非氧化物等物质组成的材料。
是除金属材料和有机高分子材料以外的所有材料的统称。
2.玻璃玻璃是由熔融物冷却、硬化而得到的非晶态固体。
其内能和构形熵高于相应的晶体,其结构为短程有序,长程无序。
3.水泥凡细磨成粉末状,加入适量水后成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石等散粒或纤维材料牢固地胶结在一起的水硬性胶凝材料,统称为水泥。
4.陶瓷陶瓷是以无机非金属天然矿物或化工产品为原料,经原料处理、成型、干燥、烧成等工序制成的产品。
是陶器和瓷器的总称。
5.澄清剂凡在玻璃熔制过程中能分解产生气体,或能降低玻璃黏度,促进排除玻璃液中气泡的物质称为澄清剂。
6.胶凝材料凡能在物理、化学作用下,从浆体变成坚固的石状体,并能胶结其它物料而具有一定机械强度的物质,统称为胶凝材料,又称胶结料。
7.烧成烧成通常是指将初步密集定形的粉块(生坯)经高温烧结成产品的过程。
其实质是将粉料集合体变成致密的、具有足够强度的烧结体,如砖瓦、陶瓷、耐火材料等。
8.玻璃形成体能单独形成玻璃,在玻璃中能形成各自特有的网络体系的氧化物,称为玻璃的网络形成体。
如SiO2,B2O3 和P2O5 等。
9.水硬性胶凝材料在拌水后既能在空气中硬化又能在水中硬化的材料称为水硬性胶凝材料,如各种水泥等。
10.玻璃的化学稳定性玻璃抵抗水、酸、碱、盐、大气及其它化学试剂等侵蚀破坏的能力,统称为玻璃的化学稳定性。
11.凝结时间水泥从加水开始到失去流动性,即从流体状态发展到较致密的固体状态,这个过程所需要的时间称凝结时间。
12.玻璃调整体凡不能单独生成玻璃,一般不进入网络而是处于网络之外的氧化物,称为玻璃的网络外体。
它们往往起调整玻璃一些性质的作用。
常见的有Li2O, Na2O, K2O,MgO,CaO, SrO和BaO 等。
金属陶瓷名词解释(实用版)目录一、金属陶瓷的定义与特点二、金属陶瓷的分类三、金属陶瓷的应用领域四、金属陶瓷的发展前景正文一、金属陶瓷的定义与特点金属陶瓷,又称陶瓷金属或金属陶瓷复合材料,是一种将金属与陶瓷结合起来的新型材料。
它既具有金属的高强度、良好的导电性和导热性等优点,又具有陶瓷的高硬度、高耐磨性和高耐腐蚀性等特点。
因此,金属陶瓷在许多领域具有广泛的应用前景。
二、金属陶瓷的分类根据组成和性能特点,金属陶瓷主要分为以下几类:1.氧化物金属陶瓷:以氧化物为主要成分的金属陶瓷,如氧化铝、氧化锆等。
这类陶瓷具有良好的耐高温性能和抗氧化性能。
2.氮化物金属陶瓷:以氮化物为主要成分的金属陶瓷,如氮化硅、氮化钛等。
这类陶瓷具有高硬度、高耐磨性和高耐腐蚀性能。
3.碳化物金属陶瓷:以碳化物为主要成分的金属陶瓷,如碳化硅、碳化钨等。
这类陶瓷具有高硬度、高热导率和高抗磨损性能。
4.硼化物金属陶瓷:以硼化物为主要成分的金属陶瓷,如硼化钛、硼化硅等。
这类陶瓷具有高硬度、高耐磨性和高耐热性能。
三、金属陶瓷的应用领域金属陶瓷在许多领域都有广泛的应用,如航空航天、汽车、电子、化工、医疗等。
以下是一些具体的应用实例:1.航空航天领域:金属陶瓷在航空航天领域的应用包括发动机喷嘴、涡轮叶片等部件,可以提高发动机的热效率和寿命。
2.汽车领域:金属陶瓷在汽车领域的应用包括刹车盘、活塞环等部件,可以提高汽车的安全性能和降低磨损。
3.电子领域:金属陶瓷在电子领域的应用包括芯片封装材料、电热元件等,可以提高电子产品的性能和可靠性。
4.化工领域:金属陶瓷在化工领域的应用包括高温耐磨部件、防腐部件等,可以提高设备的使用寿命和降低维护成本。
5.医疗领域:金属陶瓷在医疗领域的应用包括人工关节、牙科种植体等,可以提高医疗器械的性能和安全性能。
四、金属陶瓷的发展前景随着科学技术的不断发展,金属陶瓷在各个领域的应用将越来越广泛。
未来,金属陶瓷的研究重点将集中在提高其性能、降低成本和扩大应用范围等方面。
增强体非外部加入,而是由基体组分间自生反应合成的金属基复合材料。
原位(自生)反应可制备碳化物、氧化物、硼化物和氮化物等颗粒增强的铝基、钛基、铜基、镁基、镍基以及金属间化合物为基体的金属基复合材料。
反应合成的增强相主要是颗粒或晶须。
1967年开始用自蔓延高温合成,随后发展了XD法,气—液反应法。
自蔓延高温合成是将反应元素粉末均匀混合、压实,从某一局部位置点燃,产生形成增强颗粒的放热反应,并蔓延到整体。
XD法通过熔剂辅助的放热反应形成增强颗粒。
气—液反应法是在金属熔液中通入可反应的气体,形成增强相。
与其他复合材料相比,这类复合材料有以下优点:①增强体与基体界面干净、无污染,界面结合好;②无界面反应,热稳定性好;③增强颗粒细小,可达到亚微米甚至纳米级。
由于反应颗粒细小,复合材料的塑性明显提高,满足一般结构件的使用要求。
由XD法制备的20%体积比TiC/201复合材料,屈服强度为420MPa,弹性模量为105GPa。
而相应的201基体铝合金则分别为365MPa 和71GPa。
力学性能明显提高,成本较高。
XD法制备的碳化钛颗粒增强的201铝基复合材料被用于制造导弹弹翼。
传统复合材料制备方法有粉末冶金法、喷射成型法和各种铸造技术即模压铸造、流变铸造和混砂铸造等[。
所有这些方法是将事先制备好的增强相加入处于熔融状态或粉末状态的基体材料中,于是传统的增强相被称为外加的。
外加法制备的复合材料存在增强体颗粒尺寸粗大、热力学不稳定、界面结合强度低等缺点。
为了克服这些缺点,近年来出现了原位合成技术即在一定条件,通过化学反应,在基体内原位生成一种或几种增强相(如TiB2、Al2O3、TiC 等) ,从而达到强化的目的。
这种方法可得到增强颗粒尺寸细小、热力学性能稳定、界面无污染、结合强度高的复合材料,是一种有前途的颗粒增强复合材料制造工艺。
颗粒增强体金属基复合材料中起增强作用的颗粒。
是金属基复合材料三大类增强体中的一类。
常用的有:SiC、Al2O3、石墨、TiC、TiB2、B4C等,可分为软性颗粒(如石墨、云母)和硬质陶瓷颗粒(如SiC、Al2O3)。