风力发电并网讲解
- 格式:ppt
- 大小:1.64 MB
- 文档页数:45
电力系统规划与运行管理中的风电并网技术随着全球对可再生能源的需求不断增长,风能作为一种清洁和可持续的能源,受到了广泛关注。
风电并网技术作为风能利用的关键环节,在电力系统规划与运行管理中起着重要的作用。
本文将从风电并网技术的基本原理、影响因素以及应用领域三个方面进行介绍与分析。
风电并网技术是指将分布式风电资源与传统的电力系统相连接,实现高效、安全、稳定的电力输送。
其基本原理是通过风电发电机将风能转化为电能,然后通过变流器将发电机输出的交流电转化为直流电,再通过逆变器将直流电转化为与电网频率相符的交流电,并最终与电网进行连接。
这种技术能够有效解决风电发电机的不稳定性和无功功率的问题,提高风电系统的发电能力和电网的稳定性。
风电并网技术的应用受到多个因素的影响。
首先,风电并网技术的可行性与风能资源的丰富程度和分布情况有关。
只有风能资源丰富并且分布均匀,才能够实现对风电的有效利用。
其次,电力系统的规模和结构也会对风电并网技术的应用产生影响。
大规模的电力系统可以更好地分摊电力波动带来的影响,更好地整合风电资源。
此外,电力系统的传输和配电设施的情况也会对风电并网技术的使用产生影响。
如果电力系统的设施不完善,将会限制风电并网技术的应用。
风电并网技术在电力系统规划和运行管理中有着广泛的应用领域。
首先,风电并网技术可以提供清洁的电能,减少了对传统能源的依赖,有助于实现能源结构的转型。
其次,风电并网技术可以提高电力系统的灵活性和韧性。
由于风能的波动性,风电系统可以通过与电网相连,实现风电的调度和优化。
再次,风电并网技术可以改善电力系统的经济性。
利用风能发电可以降低电力系统的运营成本,提高电力系统的效益。
最后,风电并网技术还可以提高电力系统的可靠性。
通过将分布式风电系统与传统电网相连,可以实现电力系统的互补和备份,确保电力供应的可靠性。
然而,风电并网技术在应用过程中也面临一些挑战。
首先,风电并网技术的安全性是一个重要问题。
风力发电机组并网控制与功率协调技术随着资源的匮乏和环境保护的呼声日益高涨,可再生能源成为热门话题。
风力发电作为其中的重要一环,其并网控制与功率协调技术的研究和应用显得尤为重要。
下文将从风力发电机组的并网控制和功率协调两个角度进行论述,展示风力发电的发展现状和未来趋势。
1. 风力发电机组的并网控制技术风力发电机组的并网控制是指将风力发电机组的电能输出与电网进行连接,实现发电功率的传输和利用。
1.1 并网方式及控制策略目前,常见的风力发电并网方式有直驱式和机械变速器式。
直驱式风力发电机组将风轮与发电机直接连接,无需机械传动装置,具有结构简单和可靠性高的优点。
而机械变速器式则通过机械变速装置将风轮的转速与发电机的额定转速匹配,提高发电效率。
在风力发电机组的并网控制中,需考虑风速、电网频率和功率等因素。
根据这些因素的变化,可以采用最大功率点跟踪(PPT)和恒速控制等策略,实现发电机组的最佳工作状态和最大发电功率输出。
1.2 并网保护与电网稳定性风力发电机组并网时,需考虑对电网的保护和稳定性。
并网保护主要包括过流保护、过频保护和过压保护等,通过在风力发电机组并网过程中监测和控制这些保护参数,确保电网运行的安全可靠。
另外,风力发电机组并网还需关注电网稳定性。
由于风力发电机组输出功率的波动性,可能会对电网频率和电压产生影响。
因此,需要通过有功和无功功率的控制,实现风力发电机组与电网的无缝衔接,提高电网的稳定性。
2. 风力发电机组的功率协调技术风力发电机组的功率协调是指通过合理的控制手段,使不同风力发电机组之间的功率输出协调一致,提高整个风电场的发电效率。
2.1 多机组的功率协调在大型风电场中,通常会有多台风力发电机组并列运行。
为了协调多机组之间的功率输出,减小风力发电机组之间的相互影响,可以采用功率控制策略。
这些策略主要包括基于功率参考值的PID控制、模型预测控制(MPC)和群控制等。
2.2 风电场的功率调度风电场的功率调度是指根据电网需求和风力资源情况,合理分配和利用风力发电机组的功率输出。
陆地风电项目的并网操作与电网接入流程随着可再生能源的快速发展,陆地风电项目在全球范围内得到了广泛的关注和推广。
作为一种清洁、可再生的能源形式,风力发电广泛应用于能源供应和减少碳排放的需求之中。
然而,陆地风电项目的并网操作和电网接入流程是实施此类项目的关键环节。
本文将详细介绍陆地风电项目的并网操作和电网接入流程。
一、并网操作概述并网操作是指将风力发电场的电能输送到电网中的过程。
在风力发电场生成电能后,需要将电能输送到电网中,为供电系统提供清洁的电能。
并网操作涉及到各种关键步骤,包括配电网接入、电网调度控制、安全审查和维护等。
配电网接入是并网操作的第一个关键步骤。
通常情况下,风力发电场会建设一个升压站,将发电机产生的低压电能升压到适合输送到电网的高压电能。
升压站可能包括变压器和开关设备。
在将电能输送到升压站之前,风力发电场需要建设适当的输电线路和变电站。
电网调度控制是并网操作的第二个关键步骤。
电力系统的稳定运行需要进行调度控制,确保供电系统的负荷持续平衡。
风力发电场生成的电能将与其他能源来源的电能混合输送到电网中。
因此,电网调度将根据能源供应和负荷需求来优化电能的分配,以确保系统的稳定运行。
安全审查是并网操作的第三个关键步骤。
风力发电场在接入电网前,需要经过安全审查和评估。
这些审查包括对风力发电场的设计、施工和运行进行评估,以确保其符合电网安全标准和相关法律法规的要求。
安全审查还包括对电网的稳定性和可靠性的评估,以确保并网操作不会对整个电力系统造成负面影响。
维护是并网操作的最后一个关键步骤。
风力发电场在接入电网后,需要定期进行维护和保养,以确保其正常运行和发电效率。
维护工作包括设备检查、故障排除、备件更换等,旨在确保风力发电场的可持续发展。
二、电网接入流程电网接入是指将风力发电场与电网进行连接的过程。
在风力发电场建设完成后,接入电网成为必要的步骤,以实现电能的输送和供应。
电网接入的流程大致分为以下几个步骤:1. 建立接入协议:风力发电场的开发者需要与电网运营商建立接入协议。
风力发电并网流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!风力发电并网流程一、前期准备阶段。
在开展风力发电并网之前,有诸多准备工作需要完成。
风力发电机组的并网当平均风速高于3m/s时,风轮开头渐渐起动;风速连续上升,当v4m/s时,机组可自起动直到某一设定转速,此时发电机将按掌握程序被自动地联入电网。
一般总是小发电机先并网;当风速连续上升到7~8m/s,发电机将被切换到大发电机运行。
假如平均风速处于8~20m/s,则直接从大发电机并网。
发电机的并网过程,是通过三相主电路上的三组晶闸管完成的。
当发电机过渡到稳定的发电状态后,与晶闸管电路平行的旁路接触器合上,机组完成并网过程,进入稳定运行状态。
为了避开产生火花,旁路接触器的开与关,都是在晶闸管关断前进行的。
(一)大小发电机的软并网程序1)发电机转速已达到预置的切人点,该点的设定应低于发电机同步转速。
2)连接在发电机与电网之间的开关元件晶闸管被触发导通(这时旁路接触器处于断开状态),导通角随发电机转速与同步转速的接近而增大,随着导通角的增大,发电机转速的加速度减小。
3)当发电机达到同步转速时,晶闸管导通角完全打开,转速超过同步转速进入发电状态。
4)进入发电状态后,晶闸管导通角连续完全导通,但这时绝大部分的电流是通过旁路接触器输送给电网的,由于它比晶闸管电路的电阻小得多。
并网过程中,电流一般被限制在大发电机额定电流以下,如超出额定电流时间持续 3.0s,可以断定晶闸管故障,需要平安停机。
由于并网过程是在转速达到同步转速四周进行的,这时转差不大,冲击电流较小,主要是励磁涌流的存在,持续30~40ms。
因此无需依据电流反馈调整导通角。
晶闸管根据0°、15°、30°、45°、60°、75°、90°、180°导通角依次变化,可保证起动电流在额定电流以下。
晶闸管导通角由0°大到180°完全导通,时间一般不超过6s,否则被认为故障。
晶闸管完全导通1s后,旁路接触器吸合,发出吸合命令1s内应收到旁路反馈信号,否则旁路投入失败,正常停机。
永磁直驱风力发电机组并网发电原理
永磁直驱风力发电机组并网发电是一种新型的发电技术,它利用风力将机组的转矩转化为电能,并将该电能输出到电网中。
永磁直驱风力发电机组是一种特殊的发电机组,它采用永磁材料制造的发电机,可以将风力转换为电能,而无需使用变速箱和传动轴。
永磁直驱风力发电机组可以输出一定的功率,其输出电能可以用于发电。
并网发电是指将发电机组输出的电能输入到电网中,实现了发电和用电之间的互联互通。
发电机组可以将连续的电能输出到电网中,供用户使用,从而实现发电。
永磁直驱风力发电机组并网发电的优点是结构简单,可靠性高,运行维护成本低,可以有效地利用风能,实现节能环保,并可以获得较大的发电量,可以节约大量的能源费用,给社会带来更多的经济效益。
永磁直驱风力发电机组并网发电不仅可以节省能源,而且可以缓解电网负荷,提高电网的可靠性和安全性,进一步推动可再生能源的发展。
总之,永磁直驱风力发电机组并网发电是一项重要的发电技术,它具有结构简单、可靠性高、运行维护成本低等优点,
可以节省能源,缓解电网负荷,提高电网可靠性和安全性,进一步推动可再生能源的发展,给社会带来更多的经济效益。
第一章绪论风能是一种清洁的、储量极为丰富的可再生能源,它和存在于自然界的矿物质燃料能源,如煤、石油、天然气等不同,它不会随着其本身的转化和利用而减少,因此可以说是一种取之不尽、用之不竭的能源。
而矿物质燃料储量有限,正在日趋减少,况且其带来的严重的污染问题和温室效应正越来越困扰着人们。
因此风力发电正越来越引起人们的关注。
[1]1风力发电概述1.1风力发电现状与展望全球风能资源极为丰富,技术上可以利用的资源总量估计约53×106亿kWh /年。
作为可再生的清洁能源,受到世界各国的高度重视。
近20年来风电技术有了巨大的进步,发展速度惊人。
而风能售价也已能为电力用户所承受:一些美国的电力公司提供给客户的风电优惠售价已达到2~2.5美分/kWh,此售价使得美国家庭有25%的电力可以通过购买风电获得。
2004年欧洲风能协会和绿色和平组织签署了《风力12——关于2020年风电达到世界电力总量的12%的蓝图》的报告,“风力12%”的蓝图展示出风力发电已经成为解决世界能源问题的不可或缺的重要力量。
按照风电目前的发展趋势,预计2008~2012年期间装机容量增长率为20%,以后到2015年期间为15%,2017~2020年期间为10%。
其推算的结果2010年风电装机1.98亿KW,风电电量0.43×104亿kWh,2020年风电装机12.45亿KW,风电电量3.05×104亿kWh,占当时世界总电消费量25.58×104亿kWh的11.9%。
[2]世界风电发展有如下特点:(1)风电单机容量不断扩大。
风电机组的技术沿着增大单机容量、提高转换效率的方向发展。
风机的单机容量已从600KW发展到2000~5000KW,如德国在北海和易北河口已批量安装了单机5000KW的风机,丹麦已批量建设了单机容量2000~2200KW的风机。
新的风电机组叶片设计和制造广泛采用了新技术和新材料,有效地改善并提高了风力发电总体设计能力和水平。
2MW风力发电并网系统设计及配置引言风力发电是一种清洁、可持续的能源,因其简单、高效的发电方式而受到广泛关注。
本文将介绍2MW风力发电并网系统的设计和配置。
系统设计1. 风力发电机组:选用2MW的风力发电机组,具备高风速启动功能,能够有效利用风能进行发电。
2. 主变压器:选择适当的主变压器,将发电机的电压调整到与电网匹配的电压。
3. 逆变器:采用高效的逆变器,将直流电能转换为交流电能,并与电网同步。
4. 电网连接:将逆变器输出的交流电能通过电缆与电网连接,实现对发电功率的输送。
系统配置1. 地理条件:选择合适的地理环境来布置风力发电机组,避开高山、建筑物等遮挡风力的障碍物。
2. 风能资源评估:通过风能测量仪器对风速、风向等参数进行精确测量,评估风能资源的可利用程度。
3. 基础设施建设:根据风力发电机组的布置要求,进行场地平整、基础设施建设等工作。
4. 电力设备配套:配置主变压器、逆变器等电力设备,确保系统运行的稳定性和可靠性。
5. 并网调试:进行针对风力发电并网系统的调试工作,确保系统与电网的稳定连接。
系统优势1. 清洁能源:风力发电系统减少对化石燃料的依赖,减少二氧化碳等温室气体的排放,有助于改善环境质量。
2. 可再生性:风力是一种可再生能源,取之不尽,利用后再生。
3. 经济效益:风力发电系统投入成本相对较低,并有长期的经济效益。
4. 节能效果:风力发电系统能够有效利用自然风能进行发电,节约能源消耗。
结论2MW风力并网系统的设计与配置需要合适的风力发电机组选择、电力设备配置和系统优势的充分考虑。
这样的系统将为社会提供清洁、可持续的能源,并对环境和经济产生积极影响。
直驱式永磁同步风力发电机组并网与保护一、并网条件和方式1.并网条件永磁同步风力发电机组并联到电网时,为了防止过大的电流冲击和转矩冲击,风力发电机各相端电压的瞬时值要与电网端对应相电压的瞬时值完全一致,满足的条件:①波形相同;②幅值相同;③频率相同;④相序相同;⑤相位相同。
并网时因风力发电机旋转方向不变,只要使发电机的各相绕组输出端与电网各相互相对应,条件④就可以满足;而条件①可由发电机设计、制造和安装保证;因此并网时主要完成其他3个条件的检测和控制,其中频率相同必须满足。
2.并网方式(1)自动准同步并网。
满足上述理想并联条件的并网方式称为准同步并网,在这种并网方式下,并网瞬间不会产生冲击电流,电网电压不会下降,也不会对定子绕组和其他机械部件造成冲击。
永磁同步风力发电机组的起动与并网过程如下:当发电机在风力机带动下的转速接近同步转速时,励磁调节器给发电机输入励磁电流,通过调节励磁电流使发电机输出的端电压与电网电压相近。
在风力发电机的转速几乎达到同步转速、发电机的端电压与电网电压的幅值大致相同,并且断路器两端的电位差为零或很小时,控制断路器合闸并网。
永磁同步风力发电机并网后通过自整步作用牵入同步,使发电机电压频率与电网一致。
以上的检测与控制过程一般通过微机实现。
(2)自同步并网。
自动准同步并网的优点是合闸时没有明显的电流冲击,缺点是控制与操作复杂、费时。
当电网出现故障而要求迅速将备用发电机投入时,由于电网电压和频率出现不稳定,自动准同步法很难操作,往往采用自同步法实现并网运行。
自同步并网的方法是,同步发电机的转子励磁绕组先通过限流电阻短接,发电机中无励磁磁场,用原动机将发电机转子拖到同步转速附近(差值小于5%)时,将发电机并入电网,再立刻给发电机励磁,在定子、转子之间的电磁力作用下,发电机自动牵入同步。
由于发电机并网时转子绕组中无励磁电流,因而发电机定子绕组中没有感应电动势,不需要对发电机的电压和相角进行调节和校准,控制简单,并且从根本上排除不同步合闸的可能性。
风电场并网运行管理关键技术解析随着清洁能源的重要性日益凸显,风电作为一种可再生能源,在能源结构调整中扮演着越来越重要的角色。
而风电场的并网运行管理则是保障其稳定运行和发挥最大效益的关键。
本文将就风电场并网运行管理的关键技术进行解析,探讨其在风电产业发展中的作用和挑战。
1. 风电场的并网接入技术风电场的并网接入是指将风电场与电网相连接,使其能够向电网输送电能。
在并网接入中,关键技术包括:- 输电线路规划设计:根据风电场的地理位置和电网负荷情况,合理规划输电线路,确保输电效率和稳定性。
- 变流器技术:利用变流器将风力发电机产生的交流电转换为适合电网输送的直流电,实现风电场与电网的匹配。
- 并网控制技术:采用先进的并网控制系统,实现风电场与电网的同步运行,保障电网稳定性。
2. 风电场的运行监控与维护技术风电场的运行监控与维护是保障风电设备安全稳定运行的重要环节。
关键技术包括:- 远程监控系统:通过远程监控系统实时监测风电机组的运行状态和电力输出,及时发现和处理异常情况。
- 预防性维护技术:利用大数据分析和智能诊断技术,预测风电设备的故障和损坏,提前进行维护,降低停机率,提高风电场的可靠性和可用性。
- 定期检修与保养:制定科学的检修计划,定期对风电设备进行检修和保养,延长设备寿命,提高运行效率。
3. 风电场的功率调度与优化技术风电场的功率调度与优化是实现风电资源最大化利用的关键。
关键技术包括:- 预测技术:利用气象数据和风电场历史运行数据,对风力发电的产能进行精准预测,为功率调度提供依据。
- 多元能源协调调度技术:将风电与其他能源(如太阳能、水力等)进行协调调度,实现能源互补和平稳供应。
- 储能技术:采用储能设备(如电池、压缩空气储能等),存储风电场的过剩电能,以应对风力波动带来的不稳定性,提高风电的可调度性和稳定性。
4. 风电场的安全管理技术风电场的安全管理是保障人员和设备安全的重要保障。
关键技术包括:- 安全监测与预警系统:建立完善的安全监测与预警系统,实时监测风电场的安全运行状态,及时预警并采取应对措施。
现今,许多国家都把风电作为一种清洁的可再生能源去鼓励发展。
在中国,风电市场更是取得了长足的进步。
此前,中国最初的风电发展规划是到2010年和 2020年,风电装机容量分别达到5GW和30GW。
而现在,这一目标已经调整为2010年装机容量达到10GW,并正在考虑将2020年的目标至少翻番,甚至达到90GW。
目前,越来越多的风电正在接入电网,但大量的风电接入电网会使电网面临一系列的挑战。
其中,电网故障导致风电场的解列就是面临的重要挑战之一。
很多风资源丰富的地区相对偏远,当地的电源少、负荷低,风电并网处的电网较弱。
当高比例的风电接入到弱电网,系统稳态运行和有扰动时,会影响系统和风电场运行的安全稳定性。
为了将此风险最小化,甚至加以避免,在风电场项目的最初阶段开展并网研究,对于保证风场的全部发电能够安全可靠地输送到电网是非常重要的。
风电并网:规范标准先行目前,针对风电比例增加带来的一系列负面问题,不同国家采取了不同的措施。
在美国,现在的并网标准要求对每个风电项目都包含风场特性指标;而欧洲的风电相对成熟,对风电的并网早已有了具体的标准和规范。
当然,通过可执行的并网标准,可以确定对风场的特性要求和保证风场的全部发电能够有效的传输到电网。
这些可执行的标准包含:风电场并网点电压和无功容量的范围;风电场的调节方式(最有效的方式是电压调节方式);低电压穿越能力,以保证风电场的风机在系统扰动时不跳机;减出力和/或有功功率变化率的要求等。
我们认为,开展并网研究是正确并网的基础,它可以保证风电场在运行期间的全部风电能够有效输送到电网。
其中,除了对稳态和暂态运行方式的研究外,还必须分析风电场在电网扰动时保持在线的能力。
通过这一些系列的分析,我们可以研究风电场在不同的运行条件、控制方式和故障方式下,风电场对电网的影响;在不违反电网运行要求下,将全部功率输送到电网;同时可以识别风电对当地电网引起的潜在问题;也可识别可能引起风电场可靠运行的潜在问题等。