轴对称图形知识点归纳
- 格式:doc
- 大小:14.00 KB
- 文档页数:1
关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。
折叠后重合的点是对应点,也叫做对称点。
【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。
成轴对称的两个图形一定全等。
】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。
【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。
】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。
4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。
5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。
②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。
③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。
【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。
7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。
(2)角平分线上的点到角两边的距离相等。
轴对称知识点总结 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C-轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
4.线段的垂直平分线:(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。
⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。
()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。
轴对称知识点总结轴对称是指物体具有在某一平面上的镜像对称性质。
在数学和几何学中,轴对称是一种特殊的对称形式,是对称性的重要表现形式之一。
下面将对轴对称的知识点进行总结。
一、轴对称的概念轴对称是指物体或图形在某一平面上的镜像对称性质。
这个平面被称为轴线或对称轴。
沿着轴线对物体进行镜像变换,使得物体的每一个点与镜像点相关联,二者之间的距离保持不变。
轴对称可以存在于二维图形、立体物体以及其他几何结构中。
二、轴对称的特点1. 图形的每一点都关于轴线对称,对称点在轴线上。
2. 对称图形的延长线与轴线重合,对称图形的每一条直线都是轴线上两个对称点的中垂线或垂直平分线。
3. 对称图形的面积、周长和内角和与其镜像图形相等。
4. 对称图形的对称中心与图形的每一个点距离的平方和最小。
三、轴对称的判定方法1. 观察图形是否有明显的对称形状,例如正方形、圆等。
2. 通过自身对折或平移观察是否可以重合。
3. 镜像变换:通过将图形投影到一个平面上,并观察是否与投影前的图形重合完成。
四、轴对称的应用1. 图案设计:轴对称的图案可以给人以和谐、美感的感受,常用于服装、陶瓷、织物等设计中。
2. 建筑设计:许多建筑物在设计中运用了轴对称的原则,例如古代的宫殿、寺庙等,可以使建筑更加庄重、稳定。
3. 生物学:许多生物体的结构具有轴对称性,例如动物的身体结构,植物的花朵等都存在轴对称现象,这也是生命体的一种基本特征。
4. 数学研究:轴对称是数学中的一个重要概念,广泛应用于几何、代数和图论等领域的研究中。
特别是在图论中,轴对称是许多图形算法的基础。
五、轴对称的相关定理1. 轴对称的性质可以应用于线段、角、多边形、三角形等几何概念的研究中,例如轴对称定理、轴对称三角形定理等。
2. 轴对称可以通过镜像变换来实现,这也与线性变换和矩阵运算有关。
研究轴对称问题可以进一步理解和应用线性代数等数学知识。
六、轴对称与其他对称性质的关系1. 轴对称是平移对称的一种特殊形式。
轴对称知识点轴对称知识点汇总在平平淡淡的学习中,大家最熟悉的就是知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
掌握知识点是我们提高成绩的关键!下面是本店铺为大家整理的轴对称知识点汇总,供大家参考借鉴,希望可以帮助到有需要的朋友。
轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一、等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
数学轴对称的性质知识点总结和重难点精析一、知识梳理1.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.轴对称的性质(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个关于某直线对称的图形在对应线段或延长线上相交时,交点在对称轴上;(4)对应线段平行(或或在同一直线上)且相等。
3.轴对称的应用:(1)解决与轴对称相关的问题,关键是找到对称轴,然后根据轴对称的性质,找到对称点或对称线段。
(2)确定两个点关于某直线对称的问题,可以以其中一点为对称点,连接对称轴,再找到另一个点的对应点即可。
二、重难点精析1.轴对称的性质是难点,需要灵活运用。
在学习的过程中,可以通过做大量的例题来加深对轴对称性质的理解。
2.解决与轴对称相关的问题时,找到对称轴是关键。
可以通过画图的方式,来找到对称轴,然后根据对称轴的性质解决问题。
3.对于两个点关于某直线对称的问题,可以通过以其中一点为对称点,连接对称轴,再找到另一个点的对应点来解决。
三、例题解析例1:已知A、B两点关于直线m对称,A、B两点间的距离为5cm,AB与直线m的交点为C,AC的长度为2.5cm。
求:(1)B点在A 点的什么位置?(2)B点到直线m的距离为多少?解:(1)因为A、B两点关于直线m对称,所以B点在A点的对称位置,且AB与直线m的交点为C,AC的长度为2.5cm。
因为A、B 两点间的距离为5cm,所以BC的长度也为2.5cm,因此B点在A点的正上方或正下方2.5cm处。
(2)因为B、A两点关于直线m对称,所以BC的长度等于AC的长度,即2.5cm。
因此B点到直线m的距离为2.5cm。
例2:在三角形ABC中,AB=AC=10cm,BC=8cm。
求三角形ABC 的面积。
解:过A点作AD垂直于BC于D点,因为AB=AC=10cm,所以BD=CD=4cm。
轴对称课本知识点总结一、轴对称的概念轴对称是指一个图形围绕某条中心轴线旋转180度,旋转后的图形和原图形完全重合。
在二维几何中,轴对称是一种重要的对称形式,常见于各种图形和实物之中。
二、轴对称的性质1. 轴对称图形的两个部分互相对称,互为镜像。
2. 轴对称图形的对称中心为图形的轴心。
3. 轴对称图形每一点的对应点与对称中心的距离相等。
三、轴对称的图形1. 对称图形:直线对称图形是最简单的轴对称图形,常见的有点、线段、正多边形等。
2. 音符:音符是一个常见的轴对称图形,它围绕中心轴线旋转180度后,可以和原音符完全重合。
3. 字母、数字:如字母A、M、H等和数字0、8等都是轴对称图形。
四、轴对称的判断方法1. 观察法:观察图形围绕某一条中心轴线旋转180度后是否和原图形重合。
2. 设坐标法:设定坐标轴,通过图形的对称特点来判断是否轴对称。
3. 折叠法:将图形折叠在对称轴上,判断折叠后两部分是否完全重合。
五、轴对称的应用1. 轴对称图形的设计:在各种设计中,轴对称图形的运用可以使设计更加美观。
2. 轴对称图形的制作:通过手工制作,可以制作各种轴对称图形的手工作品。
3. 轴对称图形的应用:在建筑、工程、美术、工艺等领域都有轴对称图形的应用。
六、轴对称的作用1. 保持图形的对称美:轴对称可以使图形保持一定的对称美。
2. 方便图形的绘制:对称图形通过轴对称可以方便地进行绘制和复制。
七、轴对称的练习1. 描绘轴对称图形:通过规定的对称轴来描绘对称图形。
2. 判断轴对称图形:判断给定图形是否对称,并找出对称轴。
3. 补全轴对称图形:在已知半图形的基础上补全对称图形。
八、轴对称的拓展知识1. 轴对称的组合:两个或多个轴对称图形组合成一个新的轴对称图形。
2. 轴对称的面积计算:轴对称图形的面积计算可以通过对称轴进行分割和计算。
九、轴对称的应用案例1. 建筑设计中的轴对称图形应用:在建筑设计中,轴对称图形的应用可以使建筑更加美观大方。
中考数学轴对称知识点归纳
轴对称是中考数学中的一个重要知识点,它涉及到图形的对称性,是
几何学的一个基本概念。
以下是对中考数学轴对称知识点的归纳:
首先,我们需要了解轴对称的定义:如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,这条直
线叫做对称轴。
接下来,我们探讨轴对称的性质:
1. 对称轴是一条直线,且对称轴上的点到图形上任意一点的距离相等。
2. 轴对称图形的对称点关于对称轴是等距离的。
3. 轴对称图形的对称点连线与对称轴垂直。
在中考数学中,轴对称的应用主要体现在以下几个方面:
1. 判断图形是否为轴对称图形。
2. 确定图形的对称轴。
3. 利用轴对称性质解决几何问题,如求图形的面积、周长等。
4. 利用轴对称进行图形的变换,如图形的平移、旋转等。
在解题过程中,我们需要注意以下几点:
- 观察图形的特点,判断是否存在对称轴。
- 利用对称轴将图形划分为对称的部分,简化问题。
- 在需要求图形面积或周长时,可以利用对称性将问题转化为求对称
部分的面积或周长,再进行计算。
最后,通过练习典型的轴对称问题,可以加深对轴对称概念的理解和
应用。
例如,解决一些常见的轴对称问题,如计算对称图形的面积,
或者通过对称性简化复杂的几何图形问题。
结束语:轴对称是中考数学中一个基础而重要的概念,掌握其定义、性质和应用对于解决几何问题至关重要。
通过不断的练习和思考,可以提高解决轴对称问题的能力。
轴对称知识点汇总轴对称是数学中的一个重要概念,它在几何学、代数学等领域中起着重要作用。
本文将对轴对称的基本概念、性质和应用进行详细的介绍。
一、轴对称的定义和基本概念轴对称,又称对称轴,是指图形中的一条线,使得图形关于该线对称。
具体来说,如果将图形沿着某条线对折,两边完全重合,那么这条线就是图形的轴对称线。
任何一个图形都可以有多个轴对称线,有些图形可能甚至有无穷多条轴对称线。
而有些图形则没有轴对称线。
对于有轴对称线的图形,它们的轴对称线可以是水平线、垂直线、或者斜线。
二、轴对称的性质1. 轴对称图形的性质:轴对称图形的两侧是完全相同的,对称轴是图形中的一部分,把图形分成了两个完全相同的部分。
2. 轴对称线上的点:对于一个轴对称图形,轴对称线上的点在折叠时会与它们在轴对称线的对称点重合。
3. 轴对称与图形的变换:轴对称是一种图形的变换方式,通过轴对称变换可以将图形变成它自身。
4. 轴对称图形的不变性:轴对称图形具有不变性,即通过轴对称变换后的图形与原来的图形完全相同。
三、轴对称的应用1. 几何学中的应用:轴对称的概念在几何学中有广泛的应用。
例如,我们可以利用轴对称性质判断一个图形是否是轴对称图形,可以利用轴对称线进行图形的构造等。
2. 统计学中的应用:在统计学中,轴对称性质可以用于数据的处理和分析。
通过利用图形的轴对称性,我们可以找到数据的对称特征,进而进行统计推断和预测。
3. 计算机图形学中的应用:轴对称性质在计算机图形学中也有广泛的应用。
通过利用轴对称性质,可以对图像进行压缩、旋转和对称变换等操作。
四、轴对称的例题解析为了更好地理解轴对称的概念和应用,接下来将通过几个例题进行解析。
例题一:判断图形是否具有轴对称性质,并找出它的轴对称线。
解析:首先观察图形,如果把图形沿某条线对折后,两边完全重合,那么这条线就是图形的轴对称线。
如果通过观察发现存在这样的轴对称线,那么该图形具有轴对称性质。
例题二:给定一个轴对称图形和一个点P,求点P关于轴对称线的对称点P'。
第二章 轴对称图形(知识归纳+题型突破)1、从生活中提炼轴对称模型,归纳轴对称的概念。
2、通过图形变换理解轴对称图形的性质,在生活中运用轴对称解决问题。
【知识点1】轴对称的概念把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形___关于这条直线对称___,也称这两个图形___成轴对称___,这条直线叫做___对称轴___,两个图形中的对应点叫做___对称点___.【知识点2】轴对称图形的概念把一个图形沿着某一条直线折叠,如果直线两旁的部分能够___互相重合___,那么称这个图形是___轴对称图形___,这条直线就是___对称轴___.【知识点3】轴对称与轴对称图形的区别与联系名称两个图形成轴对称轴对称图形图形图形个数针对两个图形而言,是两个图形的一种特殊位置关系针对一个图形而言,是某个图形的一种特殊几何性质对称轴只有一条对称轴可以有一条或多条、甚至无数条对称轴对称点在两个图形上在同一个图形上区别验证沿某条直线折叠后,两个图形能够沿某条直线折叠后,直线两旁的部重合分能够互相重合联系(1)沿对称轴折叠后能够重合;(2)如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形(1)沿对称轴折叠后,对称轴两旁的部分能够互相重合;(2)如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称【知识点4】线段的轴对称性线段___是___轴对称图形,线段的___垂直平分线___是它的对称轴.【知识点5】垂直平分线的性质线段垂直平分线上的点___到线段两端的距离相等___.几何语言:∵MN 是线段AB 的垂直平分线(或MN ⊥AB 于点D ,且AD = BD ),∴CA = CB.【知识点6】垂直平分线的判定定理到线段两端距离相等的点在线段的___垂直平分线___上.几何语言:∵CA = CB ,∴点C 在线段AB 的垂直平分线上.【知识点7】角的轴对称性角___是___轴对称图形,___角平分线所在的直线___是它的对称轴.【知识点8】角平分线的性质角平分线上的点___到角两边的距离相等___.几何语言:∵PF平分∠APB(或∠APF=∠BPF),EC⊥PA于C,ED⊥PB于D,∴EC=ED.【知识点9】角平分线的判定定理角的内部到___角两边距离___相等的点在角的平分线上.几何语言:∵EC⊥PA于C,ED⊥PB于D,EC=ED,∴点E在∠APB的平分线上.【知识点10】等腰三角形的轴对称性等腰三角形___是___轴对称图形,对称轴是___顶角平分线所在直线___.【知识点11】等边对等角等边对等角:等腰三角形的两底角相等.几何语言:在△ABC中∵AB=AC∴∠B=∠C(等边对等角)【知识点12】三线合一三线合一:等腰三角形___底边上的高线___、___底边上的中线___、___顶角平分线___重合.几何语言:在△ABC中∵AB=AC,∠BAD=∠CAD∴AD⊥BC,BD=CD【知识点13】等腰三角形的判定等角对等边:有两个角___相等___的三角形是等腰三角形.几何语言:在△ABC中∵∠B=∠C∴AB=AC(等角对等边)题型一轴对称图形的识别【例1】作出下列各图形的一条对称轴【答案】见解析【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.【详解】解:根据分析画各图的对称轴如下:【例2】如果正三角形有n条对称轴,那么n=.【答案】3【分析】根据轴对称的定义进行判断即可.巩固训练:1.图中的图形为轴对称图形,该图形的对称轴的条数为()A.2B.4C.6D.8【答案】C【分析】根据轴对称图形的概念求解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【详解】解:由图可知,该图形有6条对称轴;故选:C2.对称轴最多的图形是()A.圆B.长方形C.正方形D.等边三角形【答案】A【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此解答即可.【详解】解:圆有无数条对称轴,长方形有2条对称轴,正方形有4条对称轴,等边三角形有3条对称轴;故选:A.3.某校学生为校运动会设计会标,在以下四个标志中,不是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的概念逐项判断即可解答.【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选:C.题型二镜面对称问题【例3】如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是()A.4:00B.8:00C.12:20D.12:40【答案】B【分析】镜子中的时间和实际时间关于钟表上过6和12的直线对称,作出相应图形,即可得到准确时间.【答案】3265巩固训练:4.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的()A.B..D .【答案】C “”题型三 轴对称的性质【例6】如图,ABC V 与A B C ¢¢¢V 关于直线MN 对称,BB ¢交MN 于点O ,下列结论①AB A B ¢¢=;②OB OB ¢=;③AA BB ¢¢∥中,正确的有( )A .3个B .2个C .1个D .0个【答案】A 【分析】根据轴对称的性质解答.【详解】解:∵ABC V 与A B C ¢¢¢V 关于直线MN 对称,BB ¢交MN 于点O ,∴AB A B ¢¢=,OB OB ¢=,AA BB ¢¢∥,综上,三个选项都正确,故选:A .【例7】如图,已知点A 、B 是直线MN 同侧两点,点A ¢、A 关于直线MN 对称.连接A B ¢交直线MN 于点P ,连接AP .若5cm A B ¢=,则AP BP +的长为( )A .10cmB .8cmC .5cmD .无法确定【答案】C 【分析】根据轴对称的性质得到A P AP ¢=,由AP BP A P BP A B ¢¢+=+=即可得到答案.【详解】解:∵点A ¢、A 关于直线MN 对称,连接A B ¢交直线MN 于点P ,连接AP .∴A P AP ¢=,∴5cm AP BP A P BP A B ¢¢+=+==,即AP BP +的长为5cm .故选:C【例8】如图,P 在AOB Ð内,点C 、D 分别是点P 关于AO 、BO 的对称点.如果PMN V 的周长为12,则CD 的长为( )A .6B .12C .15D .18【答案】B 【分析】先根据轴对称的性质得到CM PM DN PN ==,,再根据三角形周长公式得到12PM MN PN ++=,则12CD CM MN DN PM MN PN =++=++=.【详解】解:∵点C 、D 分别是点P 关于AO 、BO 的对称点,∴CM PM DN PN ==,,∵PMN V 的周长为12,∴12PM MN PN ++=,∴12CD CM MN DN PM MN PN =++=++=,故选B .巩固训练:∴PMN V 的周长为121215PM PN MN MN PM P N PP ++++===.故答案为:15.8.如图,ABC V 和ADE V 关于直线l 对称,已知15AB =,10DE =,70D Ð=°.求B Ð的度数及BC 、AD 的长度.【答案】70B Ð=°,10BC =、15AD =【分析】根据轴对称的性质,对应边相等,对应角相等即可得出答案.【详解】解:ABC QV 和ADE V 关于直线l 对称,AB AD \=,BC DE =,B D Ð=Ð,又15AB =Q ,10DE =,70D Ð=°.70B \Ð=°,10BC =,15AD =,题型四 折叠问题【答案】90°【分析】根据折叠的性质得到Ð求解即可.【详解】∵将长方形纸片按如图方式折叠,A.17B.10【答案】A【分析】由折叠的性质可得AD=V沿直线DE 【详解】解:∵将ABC巩固训练:A .角平分线B .高线【答案】C 【分析】根据折叠的性质可得:【详解】解:∵将ABC V 折叠,使点∴D 为BC 中点,∴AD 是ABC V 的中线;【答案】24°/24度【详解】解:∵将长方形纸片∴90,E B EAC Ð=Ð=°Ð∴180EAB EFC Ð=Ð=°-【答案】55°/55度【详解】解:如图,由翻折不变性可知:2ÐÐ=∵宽度相等的纸条边缘平行,∴13Ð=Ð,12\Ð=Ð,题型五 垂直平分线的性质【例12】甲、乙、丙三家分别位于ABC V 的三个顶点处,现要建造一个核酸检测点,使得三家到核酸检测点的距离相等,则核酸检测点应建造在 ( )A .三边垂直平分线的交点B .三条角平分线的交点C .三条高的交点D .三条中线的交点【答案】A【分析】根据线段垂直平分线的性质即可解答.【详解】解:∵线段的垂直平分线的点到线段的两个端点的距离相等,∴这三家到核酸检测点距离相等,核酸检测点的建造位置是在ABC V 三边的垂直平分线上,故选A .【例13】如图,在ABC V 中,AB AC ^,3AB =,5BC =,4AC =,EF 垂直平分BC ,点P 为直线EF 上的任意一点,则ABP V 周长的最小值是( )A.7B.6C.12D.8【答案】A【详解】解:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,即A、P、C三点共线时,AP+BP的值最小,∵EF垂直平分BC,∴AD=CD,∴AD+BD=AD+CD=AC=4,∴△ABP周长的最小值是AB+AC=3+4=7,故A正确.故选:A.【例14】如图,在△ABC中,AB=7,BC=5,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上任意一点,△BCF的周长的最小值是( )A.2B.12C.5D.7【答案】B【分析】由于A,C关于直线DE为对称,所以F和D重合时,FC FB最小,最小值等于AB,即可求得BCF D 的周长的最小值.【详解】解:DE Q 是线段AC 的垂直平分线,A \,C 关于直线DE 为对称,F \和D 重合时,FC FB +最小,即BCF D 的周长的最小值,DE Q 是线段AC 的垂直平分线,DC DA \=,FC FB \+的最小值7DC DB AB =+==,BCF \D 的最小周长7512FC FB BC =++=+=,故选:B .【例15】已知ABC V 中120BAC Ð=°,26BC =,AB 、AC 的垂直平分线分别交BC 于E 、F ,与AB AC ,分别交于点D 、G .求:(1)EAF Ð的度数.(2)求AEF △的周长.【答案】(1)60°(2)26【分析】(1)根据线段的垂直平分线的性质得到AE BE =,CF AF =,得出等腰三角形即可;(2)根据线段的垂直平分线的性质得到AE BE =,CF AF =,这样就将AEF △的周长转化为线段BC 的长.【详解】(1)AB Q 、AC 的垂直平分线分别交BC 于E 、FAE BE \=、CF AF =,B EAB \Ð=Ð,C FACÐ=Ð()180B C BAC\Ð+Ð=°-Ð180120=°-°60=°EAF BAC EAB FAC\Ð=Ð-Ð-Ð120()B C =°-Ð+Ð12060=°-°60=°60EAF \Ð=°(2)AE BE =Q 、CF AF=AEF \V 的周长EA EF AF=++BE EF FC=++BC=26=AEF \V 的周长26=巩固训练:12.如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )A .AC ,BC 两边高线的交点处B .AC ,BC 两边中线的交点处C .AC ,BC 两边垂直平分线的交点处D .A Ð,B Ð两内角平分线的交点处【答案】C【分析】根据垂直平分线的性质可知,到A ,B ,C 表示三个居民小区距离相等的点,是AC ,BC 两边垂直平分线的交点,由此即可求解.【详解】解:如图所示,分别作AC ,BC 两边垂直平分线MN ,PQ 交于点O ,连接OA ,OB ,OC ,∵MN ,PQ 是AC ,BC 两边垂直平分线,∴OA OB OC ==,∴点O 是到三个小区的距离相等的点,即点O 是AC ,BC 两边垂直平分线的交点,故选:C .13.如图,在ABC V 中,DM ,EN 分别垂直平分边AC 和边BC ,交边AB 于M ,N 两点,DM 与EN 相交于点F .(1)若5AB =,则CMN V 的周长为 ______;(2)若70MFN Ð=°,求MCN Ð的度数.【答案】(1)5;(2)40°.【分析】(1)根据线段垂直平分线的性质得到MA MC =,NB NC =,再根据三角形的周长公式计算即可;(2)根据三角形内角和定理求出FMN FNM Ð+Ð,根据对顶角相等求出AMD BNE Ð+Ð,根据等腰三角形的性质即可得到答案.【详解】(1)∵DM ,EN 分别垂直平分边AC 和边BC ,∴MA MC =,NB NC =,∴CMN V 的周长5MC MN NC MA MN NB AB =++=++==,∴CMN V 的周长5=,故答案为:5;(2)∵70MFN Ð=°,∴180110FMN FNM MFN Ð+Ð=°-Ð=°,∴110AMD BNE FMN FNM Ð+Ð=Ð+Ð=°,∴()18070A B AMD BNE Ð+Ð=°-Ð+Ð=°,∵MA MC =,NB NC =,∴A MCA Ð=Ð,B NCB Ð=Ð,∴()18040MCN A B MCA NCB Ð=°-Ð+Ð+Ð+Ð=°.14.如图,在ABC V 中DE ,是AC 的垂直平分线,4cm AE =,ABC V 的周长为23cm ,求ABD △的周长.【答案】ABD △的周长为15cm .【分析】根据垂直平分线的性质可得AD CD =,28cm AC AE ==,即可得出15cm AB AC +=,则ABD △的周长AB BD AD AB BD CD AB BC =++=++=+,即可求解.【详解】解:∵DE 是AC 的垂直平分线,∴AD CD =,()28cm AC AE ==.∵ABC V 的周长()23cm AB BC AC AB BD DC AC =++=+++=,∴()23815cm AB AC +=-=,∴ABD △的周长()23815cm AB BD AD AB BD CD AB BC =++=++=+=-=.即ABD △的周长为15cm .【答案】13【分析】根据垂直平分线的性质,可得【详解】解:∵AB 的垂直平分线∴BE AE =,∵BCE V 的周长为BE BC EC ++题型六 角平分线的性质【答案】6【分析】过O 点作OH BA ^于H 点,如图,先根据角平分线的性质得到解决问题.【详解】解:过O 点作OH BA ^于H 点,如图,BO Q 平分ABC OD BC OH BA Ð^^,,6OH OD \==,∵点E 为射线BA 上一动点,∴OE 的最小值为OH 的长,即OE 的最小值为6.故答案为:6.【例17】如图,DE AB ^于E ,DF AC ^于F ,AD 平分BAC Ð,若BE CF =,探索+AB AC 与AE 的数量关系,并证明之.【答案】2AB AC AE +=,见解析【分析】先根据角平分线的性质得出DE DF =,再证明Rt Rt (HL)ADE ADF ≌△△,得出AE AF =,根据线段的和差即可得出答案.【详解】证明:∵DE AB ^于E ,DF AC ^于F ,AD 平分BAC Ð,∴DE DF =,在Rt ADE △和Rt ADF V 中,AD AD DE DF =ìí=î,∴Rt Rt (HL)ADE ADF ≌△△,∴AE AF =,∵BE AE AB =-,CF AC AF =-,∴AE AB AC AF -=-,∴2AB AC AE +=.Ð的度数;(1)求BOCÐ的周长.(2)求AMN【答案】(1)130°(2)12巩固训练:16.如图,四边形ABCD 中,90B C Ð=Ð=°,点E 为BC 的中点,且AE 平分BAD Ð.(1)求证:DE 平分ADC Ð;(2)求证:AB CD AD +=.【答案】(1)见解析(2)见解析【分析】(1)过点E 作EF AD ^于F ,根据角平分线的性质得出BE EF =,再根据BE CE =,得出CE EF =,进而根据角平分线的判定定理可得出结论;(2)根据角平分线的性质得出BE EF =,CE EF =,再证明V V ≌ABE AFE ,CED FED V V ≌,根据全等三角形的性质得出AB AF =,DC DF =,进而得出结论.【详解】(1)证明:如图,过点E 作EF AD ^于F ,∵90B Ð=°,AE 平分BAD Ð,∴BE EF =,∵E 是BC 的中点,∴BE CE =,∴CE EF =,又∵90C Ð=°,EF AD ^,∴DE 是ADC Ð的平分线.(1)求证:DE 平分ADC Ð;(2)若3AD =,7CD =,278ABE S =V ,求ADC S △【答案】(1)见解析∵BE 平分ABC Ð,EF AB ^,∴EF EN =,∵AE 平分DAF Ð,A.110°B.120°【答案】C【分析】根据题意可得,点O数,再根据三角形的内角和等于V三边【详解】解:∵O到ABC....【答案】D【分析】根据到角两边的距离相等的点在角平分线上进行判断即可.【详解】解:∵到角两边的距离相等的点在角平分线上,题型七作图【例21】如图,已知甲工厂靠近公路a,乙工厂靠近公路b,为了发展经济,甲、乙两工厂准备合建一个仓库,经协商,仓库必须满足以下两个要求:①到两工厂的距离相等;Ð内,且到两条公路的距离相等.②在MON你能帮忙确定仓库的位置吗?(保留作图痕迹,不写作法)【答案】见解析Ð的平分线OC,则FG与OC的交点F就是仓【分析】连接DE,作线段DE的垂直平分线FG,作角MON库的位置.【详解】解:如图,点F为仓库的位置.【例22】如图,两公路AO与BO相交于点O,两公路内侧有两工厂C和D,现要修建一货站使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹)【答案】见解析Ð的角平分线和线段CD的垂直平分线,两线的交点即为所求.【分析】只要作出AOB【详解】解:如图所示:点P 即为所求.【例23】用直尺、圆规作图,不写作法,但要保留作图痕迹.如图,某小区绿化带ABC V 内部有两个喷水臂P 、Q ,现欲在ABC V 内部建一个水泵O ,使得水泵O 到BA ,BC 的距离相等,且到两个喷水管P 、Q 的距离也相等,请你在图中标出水泵O 的位置.【答案】作图见解析【分析】作BM 平分ABC Ð,作EF 垂直平分线段PQ 交BM 于点O 即可.【详解】解:如图,作BM 平分ABC Ð,作EF 垂直平分线段PQ 交BM 于点O ,∵BM 平分ABC Ð,点O 在射线BM 上,∴点O 到BA ,BC 的距离相等,∵EF 垂直平分线段PQ ,点O 在直线EF 上,∴点O 到P 、Q 的距离相等,∴O 到BA ,BC 的距离相等,且到点P 、Q 的距离也相等,则点O 即为所作.巩固训练:21.如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)【答案】见解析【分析】根据题意,P点既在线段AB的垂直平分线上,又在两条公路所夹角的平分线上.故两线交点即为发射塔P的位置.【详解】解:作出线段AB的垂直平分线,与CODÐ的平分线交于P点,则如图,P点为所求..22.如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点P.(请保留作图痕迹)【答案】见解析Ð的角平分线,它们的交点即为点P.【分析】分别作线段CD的垂直平分线和AOB【详解】解;如图,点P为所作.23.如图,某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路),现计划在∠AOB 内部修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等,你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.【答案】能,作图见解析Ð的角平分线OK,连接MN,作MN的垂直平分线RQ,OK和RQ相交于点【分析】根据题意,作AOBS,根据角平分线和垂直平分线的性质分析,即可得到答案.Ð的角平分线OK,连接MN,作MN的垂直平分线RQ,OK和RQ相交于点【详解】根据题意,作AOBS,如下图:∵OK 是AOB Ð的角平分线∴OK 上的点,到两条公路的距离也相等;∵RQ 是MN 的垂直平分线∴RQ 上的点,到两所大学的距离相等∵OK 和RQ 相交于点S ,∴仓库P 应该建在点S 的位置.题型八 等腰三角形三线合一【例24】如图,AD 、CE 分别是ABC V 的中线和角平分线,若AB AC =,26CAD Ð=°,则ACE Ð的度数为( )A .26°B .32°C .38°D .48°【答案】B 【分析】先利用等腰三角形三线合一性质,得到90ADC Ð=°,再利用直角三角形的性质,得到64ACD Ð=°,结合CE 是ABC V 的角平分线,计算即可.【详解】∵AD 是ABC V 的中线,AB AC =,∴90ADC Ð=°,A.2.5【答案】B【分析】根据已知可得答.巩固训练:24.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.腰上的中线所在的直线(1)求证:OBC △为等腰三角形;(2)若25ACF Ð=°,求ÐBOE 【答案】(1)见解析.(2)15°题型九等腰三角形度数巩固训练:∵AB AC =,∴(11802ABC C Ð=Ð=°-②如图,当顶角为钝角三角形时:∵50ABD Ð=°,90D Ð=∴9050140BAC Ð=°+°=∵AB AC =,∴()1180140202C ABC Ð=Ð=°-°=°.故答案为:70°或20°.题型十 等腰三角形外角问题【例27】如图,在第1个1A BC V 中,130B A B CB а=,=;在边1A B 上任取一点D ,延长1CA 到A 2,使121A A A D =,得到第2个12A A D V ;在边2A D 上任取一点E ,延长12A A 到A 3,使232A A A E =,得到第3个23A A E △;……按此做法继续下去,则第n 个三角形中以n A 为顶点的内角度数是( )巩固训练:27.如图,30MON Ð=°,点123,,,A A A L 在射线ON 上,点123,,,B B B L 在射线OM 上,112A B A △,223334,A B A A B A L △△均为等边三角形.若11OA =,则1n n n A B A +△的边长为( )A .2nB .12n -C .12n +D .22n +【答案】B 【分析】根据等边三角形的性质得出,111130A OB A B O Ð=Ð=° ,01112112OA A B A B ====,利用同样的方法,122222A O A B ===,23332242A B A O A O ====,由此规律可得12n n n A B -=.【详解】112A B A QV 为等边三角形,30MON Ð=°111130A OB A B O \Ð=Ð=°1112112OA A B A B ====同理:122222A O AB ===23332242A B A O A O ====L由此类推可得1n n n A B A +△的边长12n n n A B -=.故选B .28.如图,已知ABC V 是等边三角形,点B ,C ,D ,F 在同一条直线上,CD CE =,DF DG =,求F Ð的度数.【答案】15°【分析】根据等边三角形的性质,等边对等角性质,三角形外角性质计算即可.【详解】解:∵ABC V 是等边三角形,∴60ACB Ð=°,∵CD CE =,∴CDE CED Ð=Ð,∵260ACB CDE CED CDE Ð=Ð+Ð=Ð=°,∴30Ð=°CDE ,∵DF DG =,∴DFG DGF Ð=Ð,∵230CDE DFG DGF F Ð=Ð+Ð=Ð=°,∴15F Ð=°.题型十一 等腰三角形个数和格点问题【例28】在如图所示的网格中,在格点上找一点P ,使ABP V 为等腰三角形,则点P 有( )A .6个B .7个C .8个D .9个【答案】C 【分析】分三种情况讨论:以AB 为腰,点A 为顶角顶点;以AB 为腰,点B 为顶角顶点;以AB 为底.【详解】解:如图:如图,以AB 为腰,点A 为顶角顶点的等腰三角形有5个;以AB 为腰,点B 为顶角顶点的等腰三角形有3个;不存在以AB 为底的等腰ABP V ,所以合计8个.故选:C .【例29】如图中的大长方形都是由边长为1的小正方形组成,其中每个正方形的顶点称之为格点,若A 、B 、C 三点均在格点上,且ABC V 为等腰三角形,则满足条件的点C 的个数有( )A .4个B .5个C .6个D .7个【答案】C 【分析】分A Ð为顶角和B Ð为顶角判定即可.【详解】当A Ð为顶角时,符合的点有一个6C ;当B Ð为顶角时,符合的点有五个12345,,,,,C C C C C ;一共有6个.故选C .【例30】如图,在ABC V 中,AB AC =,36A Ð=°,BD 是ABC V 的角平分线,则图中的等腰三角形共有( )A .1个B .2个C .3个D .4个【答案】C 【分析】由BD 是ABC V 的角平分线,可得272ABC ABD Ð=Ð=°,又可求72ABC C Ð=Ð=°,所以ABC V 是等腰三角形;又180218027236A ABC Ð=°-Ð=°-´°=°,故A ABD Ð=Ð,所以ABD V 是等腰三角形;由36DBC ABD Ð=Ð=°,得72C Ð=°,可求72BDC Ð=°,故BDC C Ð=Ð,所以BDC V 是等腰三角形.【详解】解:BD Q 是ABC V 的角平分线,272ABC ABD \Ð=Ð=°,72ABC C \Ð=Ð=°,ABC V \是等腰三角形①.180218027236A ABC Ð=°-Ð=°-´°=°,A ABD \Ð=Ð,ABD \V 是等腰三角形②.36DBC ABD Ð=Ð=°Q ,72C Ð=°,72BDC \Ð=°,BDC C \Ð=Ð,BDC \V 是等腰三角形③.故图中的等腰三角形有3个.故选:C .巩固训练:29.如图,线段AC 、BD 互相垂直平分,则图中共有等腰三角形( )A .2个B .3个C .4个D .5个【答案】C 【分析】根据垂直平分线的性质得出AB AD DC BC ===,继而根据等腰三角形判定定理即可求解.【详解】解:∵线段AC 、BD 互相垂直平分,∴,AB AD CB CD ==,,DA DC BA BC ==,∴有等腰三角形,,,ABD CBD DAC BAC △△△△共4个,故选:C .30.如图,BD 是ABC V 的平分线,3672A ABC Ð=Ð=°°,, DE BC ∥交AB 于E ,则图中等腰三角形的个数是( )A .5个B .4个C .3个D .2个【答案】A 【分析】根据三角形内角和定理判定ABC V 为等腰三角形,然后由角平分线、平行线的性质、等角对等边来找图中的等腰三角形.【详解】解:∵在ABC V 中,=36°=72°A ABC ÐÐ,,∴°=C=72ABC ÐÐ,【答案】D【分析】逐个画出图形,即可得到答案.【详解】解:图①中,∠A=36°,AB=AC,则∠ABC=∠ACB=72°,以B为顶点,在△ABC内作∠ABC的平分线,则∠ABD=∠DBC=36°,∴∠A=∠ABD=36°,∴△ABD是等腰三角形,而∠DBC=∠ABC-∠ABD=36°,∠ACB=72°,∴∠ACB=∠BDC=72°,∴△BDC是等腰三角形,故直线BD将△ABC分成了两个小等腰三角形,故①符合题意;图③中,∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∠B=∠C=45°,过A作AE⊥BC于E,如图:则△ABE和△ACE是等腰直角三角形,故直线AE将△ABC分成了两个小等腰三角形,故③符合题意;图④中,∠BAC=108°,AB=AC,则∠B=∠C=36°,以A为顶点,在△ABC内作∠BAF=72°,如图:则△ABF和△ACF都是等腰三角形,故④符合题意;图②是等边三角形,没有直线能将它分成两个小的等腰三角形,故②不符合题意;故选:D.题型十十二直角三角形性质问题A.6B.【答案】C【分析】根据直角三角形斜边上的中线等于斜边的一半可得【答案】6△是直角三角形,可求【分析】可证ADCV中,【详解】解:Q在ABC\V是直角三角形,ADCQ是AC的中点,E巩固训练:33.在Rt ABC △中,Ð【答案】16【分析】根据直角三角形斜边中线的性质,即可求解.【详解】解:∵90C Ð=。
轴对称与旋转知识点小结轴对称和旋转是几何学中的两个重要概念,它们在很多领域有广泛的应用,如艺术、物理学、工程学等。
本文将对轴对称和旋转的知识进行小结。
一、轴对称:轴对称是指物体的两侧是相互关于一个轴对称的,也就是说,可以通过条直线将物体分成两个完全相同的镜像部分。
这条直线称为轴线,物体相对于轴线的部分称为轴对称图形。
轴对称图形具有以下特点:1.对称中心:轴对称图形的轴线上存在一个点,称为对称中心。
2.对称轴线:通过对称中心的直线,比如横轴、纵轴或其它斜线。
3.对称关系:轴对称图形中,任何一点关于轴线上的点都有对称的点存在。
4.特点:轴对称图形的每一点与轴关于对称中心对称。
常见的轴对称图形有正方形、矩形、圆、心形等。
轴对称的性质如下:1.对称图形的最外层的轮廓是凸的。
2.对称图形的每一条对称轴都经过对称中心。
3.对称图形的每一点关于对称中心对称。
4.两个一模一样的镜像图形可以通过平移重合。
5.轴对称图形的对称中心必须在轴线上。
二、旋转:旋转是指将一个物体绕一个旋转中心旋转一定的角度,得到的新图形与原图形重合的过程。
旋转有以下概念:1.旋转中心:物体绕其旋转的中心点。
2.旋转角度:旋转的角度,可以是正数、负数或零。
3.顺时针旋转:物体绕旋转中心顺时针方向旋转。
4.逆时针旋转:物体绕旋转中心逆时针方向旋转。
旋转有以下性质:1.旋转图形和原图形形状相同。
2.旋转的中心和旋转的角度确定一个旋转变换。
3.旋转图形和原图形的大小、面积、周长等不变。
4.旋转图形和原图形之间的距离保持不变。
旋转在生活和科学中有广泛的应用:1.地球的自转:地球自西向东每天绕地轴旋转一周,造成日升日落的现象。
2.机械运动:轮摩擦于地面时的旋转,电风扇的旋转等。
3.艺术创作:画家可以通过旋转来改变图画的角度和形态。
4.舞蹈:舞蹈中的旋转动作可以增添旋转的美感和节奏。
5.工程设计:如建筑物的设计中,旋转可以改变立体结构的形状和平衡。
三、轴对称与旋转的关系:1.旋转轴对称图形:一些物体可以通过旋转来得到轴对称图形。
轴对称知识点总结轴对称是初中数学中的重要概念,在几何图形的研究和实际生活中都有广泛的应用。
下面我们来详细总结一下轴对称的相关知识点。
一、轴对称的定义如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
例如,等腰三角形是轴对称图形,底边的高所在的直线就是它的对称轴;矩形是轴对称图形,对边中点的连线所在的直线是它的对称轴。
二、轴对称图形的性质1、对称轴是任何一对对应点所连线段的垂直平分线。
2、对应线段相等,对应角相等。
3、成轴对称的两个图形全等。
三、轴对称与轴对称图形的区别与联系1、区别轴对称是指两个图形沿着某条直线对折后能够完全重合,是两个图形的位置关系。
轴对称图形是指一个图形沿着某条直线对折后直线两旁的部分能够完全重合,是一个图形自身的特性。
2、联系都有对称轴。
如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形沿对称轴分成两部分,那么这两部分关于这条对称轴成轴对称。
四、作轴对称图形1、作轴对称图形的对称轴如果一个图形是轴对称图形,那么连接一对对应点的线段的垂直平分线就是该图形的对称轴。
对于两个成轴对称的图形,对称轴是连接对称点的线段的垂直平分线。
2、作轴对称图形几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形。
五、用坐标表示轴对称1、点(x,y)关于 x 轴对称的点的坐标为(x,y)。
2、点(x,y)关于 y 轴对称的点的坐标为(x,y)。
例如,点(2,3)关于 x 轴对称的点的坐标为(2,-3);点(-1,4)关于 y 轴对称的点的坐标为(1,4)。
六、轴对称的实际应用轴对称在实际生活中有很多应用,比如:1、建筑设计中,许多建筑都采用了轴对称的设计,使得建筑更加美观、稳定。
2、飞机、汽车等交通工具的外形设计也常常运用轴对称,以减少空气阻力,提高性能。
轴对称知识点总结六下一、定义轴对称,又称对称轴,是指一个图形以某条线为中心,将图形按对称线折叠后两部分完全重合的性质。
二、轴对称的特点1. 对称轴:图形的轴对称是指图形以一条线为中心,对折后的两部分完全重合。
这条线叫做对称轴。
2. 对称中心:对称轴上的任意点,称为图形的对称中心。
3. 图形的对称线通常有横轴、纵轴、斜轴以及过定点的轴等。
三、轴对称的图形1. 点的轴对称:任何一点关于自身对称。
2. 线段的轴对称:线段以中点为对称中心,对折后完全重合。
3. 正方形、矩形、菱形、正三角形等都是以对角线为对称轴的轴对称图形。
4. 不规则图形的轴对称:不规则图形的轴对称是指可以以一条直线为对称轴,将图形对折后两部分完全重合的性质。
四、代数表示1. 对称点坐标关系:如果点P(x,y)关于直线y=k对称的点是P'(x', y'),则P'的坐标是(x', -y')。
2. 对称图形的方程:以直线y=k为对称轴,则直线上的任意点(x, y)对称点是(x, -y)。
3. 判别轴对称:若点P关于直线l对称,则点P(x,y)关于直线l对称的点P'的坐标为(x, -y),即使P属于图形也应属于图形。
五、实际应用1. 质点的重心:对称轴对称图形的重心坐标是对称轴上的点。
2. 镜子、水面和金属板的反射现象3. 生活、工艺、建筑等方面的设计和制作中经常用到对称轴做图案、图像的制作。
六、轴对称的相关性质1. 轴对称性保持不变:图形与其对称图形关于对称轴的位置、大小、形状和角度都是完全相同的。
2. 图形的轴对称性质:一个图形如果具有轴对称性,则它必定具有自身中心对称。
3. 轴对称图形的直线对称:轴对称图形的任意直线都是图形的对称轴。
七、轴对称的判定1. 观察法:通过观察图形是否以一条直线为轴对称。
2. 数学判定法:通过坐标变换来判定轴对称。
3. 对称点法:验证图形内任意两点,它们是否关于轴对称关系。
认识轴对称知识点总结一、轴对称的定义轴对称是指一个几何图形相对于某条轴线对称,即图形的两侧关于轴线对称。
轴对称是一种基本的几何变换,它可以帮助我们理解和研究各种几何图形的性质,解决与几何图形相关的问题。
二、轴对称的性质1. 被轴对称的图形的对称轴上的点不动,对称轴的垂线上的点互为对称点。
2. 被轴对称的图形的对称轴上任意两点的对称点都在对称轴上。
3. 被轴对称的图形上的任意一点,与其对称点关于对称轴的距离相等。
三、轴对称的应用轴对称在几何学中有着广泛的应用。
在平面几何中,我们经常通过轴对称来研究图形的性质、判断图形的对称特征、构造具有对称性的图形等。
在日常生活中,轴对称也有很多实际的应用,比如建筑设计、工艺品制作、装饰设计等。
四、轴对称的判定方法1. 通过观察图形的性质来判断是否具有轴对称性。
2. 通过观察图形的对称性来判断是否具有轴对称性。
3. 通过对称图形的性质和定理来判断是否具有轴对称性。
五、轴对称的性质及定理1. 轴对称的图形的对称轴上的点不动定理:轴对称的图形的对称轴上的点不动,即对称轴上的任意一点都是自身的对称点。
2. 轴对称的图形的对称轴是垂直的定理:如果一个图形具有轴对称性,那么图形的对称轴一定是垂直的。
3. 被轴对称的图形的对称轴上任意两点的对称点都在对称轴上定理:对任意一点A在对称轴上,A的对称点B也在对称轴上。
4. 对称中心位置可以通过对称图形的性质来判断定理:对称中心位置是轴对称的图形的重要性质之一。
5. 被轴对称的图形上的任意一点,与其对称点关于对称轴的距离相等定理:被轴对称的图形上的任意一点,与其对称点关于对称轴的距禿相等。
六、轴对称的图形1. 线段线段是具有轴对称性的图形。
2. 三角形三角形也可以是轴对称的图形。
3. 正方形和矩形正方形和矩形也是轴对称的图形。
4. 圆形圆形也具有轴对称性。
七、轴对称的构造1. 利用尺规作图的方法来构造轴对称的图形。
2. 利用计算机绘图软件来构造轴对称的图形。
轴对称知识点总结学生一、什么是轴对称轴对称又称对称轴或镜像轴,是指一个图形或者物体,分别绕着一条线或者平面旋转180度后,形状不变,看起来就好像是对折在轴上一样。
这条线或者平面叫做轴对称轴。
二、轴对称的特点1. 图形的各个部分分别相互对称2. 对称轴是存在的,可以是直线,也可以是曲线3. 对称轴可以有一个或者多个4. 轴对称的图形和另一半镜像相同三、轴对称的图形分类1. 点的轴对称:固定在对称轴上的点,和他在对称轴的对称点组成轴对称的图形。
2. 直线的轴对称:直线与它本身关于对称轴对称3. 曲线的轴对称:曲线与它本身关于对称轴对称四、轴对称图形的判定方法1. 观察法:通过眼睛观察,看有没有对称的特点2. 对折法:将图形对折,看两边是否重合3. 角度法:利用形状的特点,通过角度的计算,确定对称关系五、轴对称线的性质1. 轴对称线上的任何点,相对于轴对称线对称2. 三角形的三个角平分线相交于一点,这个点是三角形的外心,也就是外心与顶点相连的线是一条轴对称线3. 三角形的中位线长相等,中线相等4. 顶点在轴对称线上的三角形是轴对称的5. 一个平行四边形的对角线互相平分,它的对角线就是轴对称线6. 正方形的对角线相等,互相平分,对角线是轴对称线7. 矩形的对角线相等,互相平分,对角线是轴对称线六、轴对称图形的应用1. 轴对称图形是美的2. 在艺术领域,轴对称图形被广泛应用3. 在建筑设计中,轴对称图形被广泛应用4. 在日常生活中,轴对称图形随处可见七、轴对称图形的图形变换1. 轴对称图形的旋转:围绕一个点旋转,形成一个新的图形2. 轴对称图形的平移:图形在一个方向上平移,形成一个新的图形3. 轴对称图形的放射:图形在一个点固定的情况下,从这个点向外放射,形成一个新的图形4. 轴对称图形的缩放:图形按比例大小缩放,形成一个新的图形八、轴对称图形的图形组合1. 轴对称图形的组合:将两个轴对称图形进行组合,形成一个新的图形2. 轴对称图形的分解:将一个轴对称图形分解为几个小的轴对称图形总结:轴对称图形具有明显的对称性,能够展现出很好的美感,在各个领域都有广泛的应用。
轴对称知识点总结小学一、轴对称的概念轴对称是指一个平面图形相对于一条直线对称,即围绕这条直线旋转180°后,图形保持不变。
这条直线就称为图形的对称轴。
轴对称是几何中的重要概念,能够帮助我们理解和设计图形,同时也是理解对称性的基础知识。
二、轴对称的特点1. 对称轴是图形的一个特殊线段或线。
2. 对称轴将图形分成两个对称的部分,这两个部分关于对称轴是完全一样的。
3. 对称轴上的任意点和其对称点的连线垂直于对称轴。
4. 沿着对称轴旋转180°后,图形完全重合于原图形。
三、轴对称的判定方法1. 观察法:通过观察图形是否存在对称性来判断是否关于某条直线对称。
2. 折叠法:将图形沿着疑似对称轴折叠,看是否能够完全重合。
3. 对称性质法:根据对称性质,判断是否对称。
四、轴对称图形的引用1. 对称轴:直线对称或旋转对称,使图形与自身相等的直线或轴。
例如:矩形的对角线、圆的直径等。
2. 对称中心:旋转对称图形的中心,是图形相互对称的中心。
例如:正六边形的中心。
3. 对称点:图形上具有对称关系的点,关于对称中心对称。
例如:圆上的任意两点。
4. 对称问题:解决对称性质相关的数学问题,例如:通过对称性质求图形面积。
五、轴对称图形的种类1. 点对称:图形旋转180°后保持不变,具有旋转对称性。
例如:正方形。
2. 线对称:图形关于一条直线对称,具有镜像对称性。
例如:梯形。
3. 中心对称:图形有一个对称中心,图形上的点关于对称中心对称。
例如:正五边形。
六、轴对称与生活的应用1. 装饰设计:利用轴对称图形设计房间装饰,使整个空间更加和谐、美观。
2. 工艺制作:通过对称性设计工艺品或雕刻艺术品,使作品更有美感和观赏性。
3. 建筑设计:利用轴对称原理设计建筑外观或布局,使建筑更加稳固和美观。
4. 计算面积和周长:通过对称性质,计算复杂图形的面积和周长,简化计算过程。
七、轴对称与数学的联系1. 对称性质:轴对称是数学中的基本概念,是计算图形面积和周长的重要依据。
轴对称知识点总结讲解一、基本概念1. 定义轴对称是指平面上的一图形能在某一条直线上旋转180°后仍然与原图形完全重合,这条直线称为轴线,而旋转180°的变换称为轴对称变换。
2. 轴对称图形根据轴对称的定义,我们可以知道,任意轴对称图形关于轴线对称后,都能与原图形重合。
常见的轴对称图形有:正方形、长方形、圆形、各种多边形等。
3. 轴对称线轴对称图形关于轴对称线的对称性可以从两个方面来考虑:一是图形上对称点的位置关系,二是图形上对称点间的距离关系。
二、性质1. 和轴对称相关的性质有哪些?轴对称图形的性质主要表现在对称性质上,轴对称图形的性质可以总结为以下几点:(1)轴对称图形的对称中心即为轴对称线;(2)轴对称图形上对称点的位置关系相互对称;(3)轴对称图形上对称点间的距离互相一致。
2. 轴对称图形的判定方法在进行几何问题的推导和解决中,常常需要判定一个图形是否为轴对称图形。
在平面几何中,我们可以用以下方法来判定一个图形是否为轴对称图形:(1)根据定义判定;(2)通过图形的性质和特点来判定;(3)通过观察对称性质来判定。
三、特殊图形1. 正方形正方形是最简单的轴对称图形之一,它具有多个轴对称线,其中包括对角线、中垂线和两条对边的中线。
2. 长方形长方形也是轴对称图形,在长方形中,对角线也是一条轴对称线,并且长方形具有更多的对称性质。
3. 圆形圆形是最具有轴对称性质的图形之一,圆形的轴对称线无数,且每一条直径都是圆形的轴对称线。
圆形的轴对称性质对于构图和解题有很多重要的应用,比如圆形的轴对称性质在圆锥曲线中有重要的应用。
四、应用1. 几何中的应用轴对称在几何中有广泛的应用,可以用来判断图形的性质、构造图形、解决几何问题等。
轴对称的性质和特点对于构造几何图形有很大的帮助,同时在解题过程中,也常常利用图形的轴对称性质来简化问题。
2. 艺术中的应用轴对称的概念也在艺术中有着重要的应用。
在美术创作中,轴对称的性质常常能够帮助艺术家构图,使画面更加和谐、对称。
图形对称知识点总结图形对称是数学中的一个重要概念,它在几何学和代数学中都有着重要的应用。
作为数学中的一个分支,图形对称的研究十分丰富,它包含了很多种不同类型的对称性质,如轴对称、中心对称等。
图形对称的研究不仅有助于我们更深入地理解几何图形的性质,还有助于我们解决一些实际的问题。
一、轴对称轴对称是指一个图形,经过某个轴旋转180度后,图形保持不变。
这个轴称为对称轴,图形称为轴对称图形。
轴对称的性质有很多,它不仅可以帮助我们判断图形的对称性,还有助于我们解决一些计算问题。
1.1 轴对称图形的特征轴对称图形具有以下特征:(1)对称轴上的任意一点都是图形的对称中心;(2)对称轴两侧的对应点的连接线垂直于对称轴;(3)对称轴两侧的对应点之间的距离相等。
1.2 轴对称的判定方法判断一个图形是否轴对称,可以根据以下几种方法:(1)观察图形的对称性质,看是否具有对称轴;(2)将图形沿着可能的对称轴作180度旋转,看是否与原图形一致;(3)连接图形上的一些对称点,看这些连接线是否垂直于对称轴。
1.3 轴对称图形的性质轴对称图形有很多性质,其中一些常见的性质包括:(1)轴对称图形的面积等于其镜像图形的面积;(2)轴对称图形的周长等于其镜像图形的周长;(3)轴对称图形的某些特征点(如重心、外心、内心等)与其镜像图形的对应点重合。
1.4 轴对称图形的应用轴对称图形在实际中有着很多应用,其中一些常见的应用包括:(1)在建筑设计中,利用轴对称的原理设计建筑立面,使建筑更加美观;(2)在数学问题中,利用轴对称的性质求解一些对称图形的面积、周长等问题。
二、中心对称中心对称是指一个图形,经过一个点旋转180度后,图形保持不变。
这个点称为对称中心,图形称为中心对称图形。
中心对称与轴对称不同,它的对称中心可以是图形内部的任意点。
2.1 中心对称图形的特征中心对称图形具有以下特征:(1)对称中心是图形的一个特殊点,经过它的任意两点对称成一个点;(2)对称中心到对称点的距离相等;(3)中心对称图形任意两个对称点的连线经过对称中心。
轴对称知识点概念总结一、轴对称的概念轴对称是指平面上的任意一点到某条直线的距离等于它的对称点到同一条直线的距离。
这条直线就称为轴对称的轴线。
在轴对称的变换中,图形关于轴线对称,即通过某条直线进行对称变换后,两个图形完全重合。
轴对称变换是一种保持图形形状和大小不变的变换,即如果原图形关于轴对称,则对称后的图形大小、形状和位置都不变。
在平面几何中,轴对称是指通过一条直线,将一个图形对称折叠,并使得折叠后的两部分完全重合。
在三维空间中,轴对称是指通过一个平面,将一个立体图形对称折叠,并使得折叠后的两部分完全重合。
而对于更高维度的空间,轴对称的概念也有相应的推广。
二、轴对称的性质1. 图形经过轴对称变换后仍然保持不变,即大小、形状和位置都不变。
2. 轴对称的轴线可取任意直线,轴对称的性质不随轴线的选取而改变。
3. 轴对称是一种对称变换,它保持了图形的对称性质。
4. 轴对称变换是一种保角变换,保持了图形的内角和外角不变。
5. 如果一个图形关于一条直线轴对称,那么它关于这条直线的对称轴线的对称关系也是轴对称的。
6. 如果两个图形分别关于两条无交点的直线轴对称,那么这两个图形的对称关系也是轴对称的。
7. 如果两个图形分别关于同一条直线轴对称,那么它们之间的对称关系也是轴对称的。
轴对称的性质是轴对称变换在数学、物理和工程等领域中应用的基础,是轴对称图形和轴对称函数等概念的重要基础。
三、轴对称的应用1. 在几何学中,轴对称是通过对称折叠和对称变换等方法,研究图形的性质、构造和证明等问题的基本手段。
2. 在物理学中,轴对称是通过对称抽象和对称分析等方法,研究物理系统的对称性、守恒律和相互作用等问题的基本工具。
3. 在工程学中,轴对称是通过对称设计和对称加工等方法,研究零件的制造、组装和检测等问题的基本技术。
4. 在数学分析和代数中,轴对称是通过对称函数和对称方程等方法,研究函数的性质、解的性质和对称结构等问题的基本手段。
轴对称知识梳理
一、基本概念
1.轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.
2.线段的垂直平分线
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
3.轴对称变换
由一个平面图形得到它的轴对称图形叫做轴对称变换.
4.等腰三角形
有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
5.等边三角形
三条边都相等的三角形叫做等边三角形.
二、主要性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离相等.
3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).
(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).
4.等腰三角形的性质
(1)等腰三角形的两个底角相等(简称“等边对等角”).
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.
(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.
(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.
5.等边三角形的性质
(1)等边三角形的三个内角都相等,并且每一个角都等于60°.
(2)等边三角形是轴对称图形,共有三条对称轴.
(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.
三、有关判定
1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.。