反比例函数经典试题(含答案)
- 格式:doc
- 大小:341.00 KB
- 文档页数:13
一、选择题1.函数5y x =的图象位于() . A .第三象限B .第一、三象限C .第二、四象限D .第二象限【答案】B【分析】根据直角坐标系、反比例函数的性质分析,即可得到答案.【详解】 ∵5y x=∴5xy =,即x 和y 符号相同 ∴5y x=的图象位于第一、三象限 故选:B .【点睛】 本题考查了反比例函数、直角坐标系的知识;解题的关键是熟练掌握反比例函数、直角坐标系的性质,从而完成求解.2.如图,在平面直角坐标系中,直线y x =与反比例函数1(0)y x x=>的图象交于点A ,将直线y x =沿y 轴向上平移k 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若3OA BC =,则k 的值为( )A .2B .32C .3D .83【答案】D【分析】解析式联立,解方程求得A 的横坐标,根据定义求得C 的横坐标,把横坐标代入反比例函数的解析式求得C 的坐标,代入y x k =+即可求得k 的值.【详解】 解:直线y x =与反比例函数1(0)y x x=>的图象交于点A , ∴解1x x=求得1x =±(经检验,符合题意) , A ∴的横坐标为1,A ∴的坐标为(1,1),如图,过C 点、A 点作y 轴垂线,垂足为G ,H ,OA//BC ,∠CGB=∠AHO=90°∴CBG AOH ∠=∠,∴OHA BGC ∽,3OA BC =,∴3OA AH BC GC ==, ∴1=3GC, 解得GC =13, C ∴的横坐标为13, 把13x =代入1y x =得,3y =, 1(,3)3C ∴, 将直线y x =沿y 轴向上平移k 个单位长度,得到直线y x k =+,∴把C 的坐标代入得133k =+,求得83k =, 故选择:D .【点睛】 本题考查了反比例函数与一次函数的综合问题,涉及函数的交点、一次函数平移、待定系数法求函数解析式,三角形相似的判定与性质等知识,求得交点坐标是解题的关键.3.如果点()12,A y -,()21,B y -,()33,C y 都在反比例函(0)k y k x=<的图象上,那么1y 、2y 与3y 的大小关系是( )A .123y y y <<B .312y y y <<C .213y y y <<或312y y y <<D .123y y y == 【答案】B【分析】根据k <0,判定图像分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,从判定120y y <<,3y <0,整体比较判断即可.【详解】∵k <0,∴反比例函(0)k y k x=<的图象分布在第二,第四象限,且在每一个象限内,y 随x 的增大而增大,∴120y y <<,3y <0,∴312y y y <<,故选B .【点睛】本题考查了反比例函数图像的分布,函数的增减性,熟练掌握图像的分布和增减性是解题的关键.4.若反比例函数1y k x +=(k 是常数)的图象在第一、三象限,则k 的取值范围是( ) A .0k <B .0k >C .1k <-D .1k >- 【答案】D【分析】先根据反比例函数的性质得出k+1>0,再解不等式即可得出结果.【详解】解:∵反比例函数1y k x+=(k 为常数)的图象在第一、三象限, ∴k+1>0,解得k>-1.故选:D .【点睛】本题考查了反比例函数的图象和性质:当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.5.如图,直线()30y kx k =-≠与坐标轴分别交于点,B C ,与若双曲线()20y x x=-<交于点(),1A m ,则AB 为( )A .5B 13C .213D 26【答案】A【分析】 由A 为直线y=kx ﹣3(k≠0)与双曲线y=﹣2x(x <0)的交点可求得A 点坐标与一次函数的解析式,可求得B 点坐标,用两点间距离公式可求得AB 的长.【详解】 解:A 为直线y=kx ﹣3(k≠0)与双曲线y=﹣2x (x <0)的交点,可得A 满足双曲线的解析式, 可得:21m=-, 解得:2m =-,即A 点坐标为(-2,1),A 点在直线上,可得A 点满足y=kx ﹣3(k≠0),可得:123k =--,解得:k=-2,∴一次函数的解析式为:y=-2x ﹣3,B 为直线与y 轴的交点,可得B 点坐标(0,-3),由A 点坐标(-2,1),可得AB 22(20)[1(3)]--+--=5故选:A..【点睛】本题考查一次函数与反比例函数的综合,注意求出A 、B 两点坐标后用距离公式求解.6.某口罩生产企业于2020年1月份开始了技术改造,其月利润y (万元)与月份x 之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是( )A .4月份的利润为45万元B .改造完成后每月利润比前一个月增加30万元C .改造完成前后共有5个月的利润低于135万元D .9月份该企业利润达到205万元【答案】D【分析】先根据图象求出反比例函数的解析式,将横坐标为4代入求得利润即可判断A ,根据图象求出一次函数的解析式,即可判断B ,将135代入两个函数求对应的x 的值即可;将x=9代入求利润即可;【详解】A 、由图象得反比例函数经过点(1,180),∴ 反比例函数的解析式为:180y x= , 将x=4代入得:y=45,故该选项不符合题意;B 、将(4,45),(5,75)代入一次函数解析式,45=4755k b k b +⎧⎨=+⎩, 解得3075k b =⎧⎨=-⎩, 求得一次函数解析式为:3075y x =- ,故该选项不符合题意;C 、将y=135代入180y x=和3075y x =-中, 180135x = 解得:x=43; 135=3075x - 解得:x=7,故该选项不符合题意;D 、将x=9代入3075y x =-,求得y=270-75=195≠205,故该选项符合题意; 故选:D .【点睛】本题考查了反比例函数与一次函数的图象的性质,以及函数的解析式的求法;正确理解图是解题的关键;7.若点1(,1)A x -,2(,2)B x ,3(,3)C x 都在反比例函数6y x =的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .231x x x <<D .312x x x << 【答案】B【分析】根据反比例函数的增减性解答.【详解】 ∵6y x=,k=6>0, ∴该反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小, ∵点1(,1)A x -,2(,2)B x ,3(,3)C x ,∴点A 在第三象限内,且x 1最小,∵2<3,∴x 2>x 3,∴132x x x <<,故选:B .【点睛】此题考查反比例函数的增减性,掌握反比例函数增减性及判断方法是解题的关键.8.若双曲线5m y x -=在每一个象限内,y 随x 的增大而减小,则m 的取值范围是( ) A .5m <B .5m ≥C .5m >D .5m ≠ 【答案】C【分析】根据反比例函数的性质可解.【详解】解:∵双曲线5m y x -=在每一个象限内,y 随x 的增大而减小, ∴50m ->,解得5m >,故选:C .【点睛】 本题考查了反比例函数的性质,掌握反比例函数k y x=,当k >0,双曲线的两支分别位于第一、三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、四象限,在每一象限内y 随x 的增大而增大.9.如图,Rt △AOB 中,∠AOB =90°,且点A 在反比例函数8y x =的图象上,点B 在反比例函数18y x=-的图象上,则tan B 的值是( )A .12B .13C .23D .49【答案】C【分析】过A 、B 作AC y ⊥轴,BD y ⊥轴,根据条件得到:ACO ODB ∽,根据反比例函数比例系数k 的几何意义得出:4:9S ACO S ODB =,利用相似三角形面积比等于相似比的平方即可求解.【详解】过A 、B 作AC y ⊥轴,BD y ⊥轴,∵∠AOB =90°,∴90AOC BOD ∠+∠=︒,∵90DBO BOD ∠+∠=︒,∴DBO AOC ∠=∠,∵90BDO ACO ∠=∠=︒,∴ACO ODB ∽,∵A 在反比例函数8y x =的图象上,点B 在反比例函数18y x =-的图象上, ∴:4:9S ACO S ODB =,∴2tan 3OA ABO OB ==∠, 故选:C .【点睛】本题考查的是相似三角形的判定和性质,反比例函数、比例函数k 的几何意义,反比例函数图像上点的坐标特征,利用相似三角形的性质得到两边之比是解答本题的关键.10.已知反比例函数6y x=-,下列说法中正确的是( ) A .该函数的图象分布在第一、三象限 B .点()2,3在该函数图象上C .y 随x 的增大而增大D .该图象关于原点成中心对称 【答案】D【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x 的增大而增大,再逐个判断即可.【详解】解:A .∵反比例函数6y x=-中-6<0, ∴该函数的图象在第二、四象限,故本选项不符合题意;B .把(2,3)代入6y x=-得:左边=3,右边=-3,左边≠右边, 所以点(2,3)不在该函数的图象上,故本选项不符合题意; C .∵反比例函数6y x=-中-6<0, ∴函数的图象在每个象限内,y 随x 的增大而增大,故本选项不符合题意;D .反比例函数6y x =-的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D .【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.11.已知反比例函数6y x =-,下列结论中不正确的是( ) A .图象必经过点()3,2-B .图象位于第二、四象限C .若2x <-,则0<3y <D .在每一个象限内,y 随x 值的增大而减小【答案】D【分析】利用反比例函数图象上点的坐标特征对A 进行判断;根据反比例函数的性质对B 、C 、D 进行判断.【详解】解:A 、当x=-3时,y =−6x =2,所以点(-3,2)在函数y =−6x的图象上,所以A 选项的结论正确,不符合题意; B 、反比例函数y =−6x分布在第二、四象限,所以B 选项的结论正确,不符合题意; C 、若x <-2,则0<y <3,所以C 选项的结论正确,不符合题意; D 、在每一个象限内,y 随着x 的增大而增大,所以D 选项的结论不正确,符合题意. 故选:D .【点睛】本题考查了反比例函数的性质:反比例函数y=-k x(k≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.12.函数k y x=与y kx k =-(k 为常数且0k ≠)在同一直角坐标系中的图象可能是( ) A . B .C .D .【答案】C【分析】分k >0和k <0两种情况,分别判断反比例函数()0k y k x=≠ 的图象所在象限及一次函数y kx k =-的图象经过的象限.再对照四个选项即可得出结论.【详解】当k >0时, -k <0,∴反比例函数k y x =的图象在第一、三象限,一次函数y kx k =-的图象经过第一、三、四象限;当k <0时, -k >0,∴反比例函数k y x=的图象在第二、四象限,一次函数y kx k =-的图象经过第二、三、四象限.故选:C .【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.二、填空题13.如图,菱形OABC 的顶点O 在原点,A 点坐标为(4,0),反比例函数y=k x(k≠0)的图像经过AC 、BO 的交点D ,且与AB 边交于点E ,连接OE 交AD 于点F ,若F 恰为AD 中点,则k=______________;14.如图,点A 在反比例函数k y x=(k ≠0)的图象上,且点A 是线段OB 的中点,点D 为x 轴上一点,连接BD 交反比例函数图象于点C ,连接AC ,若BC :CD =2:1,S △AD C =53.则k 的值为________.15.如图,点A B 、分别在反比例函数()110k y k x =>和()220k y k x=<的图象上,连接AB 交y 轴于点P ,且点A 与点B 关于P 成中心对称.若AOB ∆的面积为S ,则12k k -=_____.16.如图,反比例函数(0)ky x x=>的图象经过ABC 的顶点A ,点C 在x 轴上,//AB x轴.若点B 的坐标为(1,3),2ABCS=,则k 的值为______.17.双曲线2y x=-经过点A(-1,1y ),B(2,2y ),则1y ________2y (填“>”,“<”或“=”). 18.已知点A 的坐标为()0,2,点B 的坐标为()0,2-,点P 在函数1y x=-的图象上,如果PAB △的面积是6,则点P 的坐标是__________.19.如图,在平面直角坐标系中,直线y =ax +b 交坐标轴于A 、B 点,点C(-4, 2 )在线段AB 上,以BC 为一边向直线AB 斜下方作正方形BCDE .且正方形边长为5,若双曲线y =kx经过点E ,则k 的值为_______.20.如图,边长为1的正方形拼成的矩形如图摆放在直角坐标系里,A ,B ,C ,D 是格点.反比例函数y =kx(x >0,k >0)的图象经过格点A 并交CB 于点E .若四边形AECD 的面积为6.4,则k 的值为_____.三、解答题21.某地建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万米3)之间的函数关系式;(2)当运输公司平均每天的工作量是15万米3时,完成任务所需的时间是多少? 22.如图,已知点()3,1A -,()2,2B -,反比例函数()0k y x x=<的图象记为L . (1)若L 经过点A . ①求L 的解析式;②L 是否经过点B ?若经过,说明理由;若不经过,请判断点B 在L 的上方,还是下方.(2)若L 与线段AB 有公共点,直接写出k 的取值范围.23.如图,在平面直角坐标系中,点A ,B 是一次函数和反比例函数图象的两个交点,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,画出一个平行四边形,使点A ,B 都是该平行四边形的顶点;(2)在图②中,画出一个菱形,使点A 在该菱形一边所在的直线上. 24.如图,直线y =﹣12x +7与反比例函数y =m x(m ≠0)的图象交于A ,B 两点,与y 轴交于点C ,且点A 的横坐标为2. (1)求反比例函数的表达式;(2)求出点B 坐标,并结合图象直接写出不等式m x<﹣12x +7的解集;(3)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.25.如图,已知(,2)A n -,(1,6)B 是一次函数y kx b =+的图象和反比例函数ky x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式; (2)求AOB 的面积; (3)若kkx b x+<,直接写出x 的范围. 26.如图,在直角坐标系中,Rt ABC 的直角边AC 在x 轴上,∠ACB =90°,AC =1,点B(3,2),反比例函数y =kx(k >0)的图象经过BC 边的中点D . (1)求这个反比例函数的表达式;(2)若ABC 与EFG 成中心对称,且EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上,①求OF 的长;②连接AF ,BE ,证明:四边形ABEF 是正方形.【参考答案】***试卷处理标记,请不要删除一、选择题1.无2.无3.无4.无5.无6.无7.无8.无9.无10.无11.无12.无二、填空题13.【分析】利用菱形的性质可知D为OB的中点设可分别表示F和B点从而可表示出直线OE和直线AB的解析式联立可求得a的值即可表示D点坐标在Rt△OAD中利用勾股定理即可求得k 【详解】解:∵四边形OABC 为解析:12825【分析】利用菱形的性质可知D 为OB 的中点,设(,)k D a a,可分别表示F 和B 点,从而可表示出直线OE 和直线AB 的解析式,联立可求得a 的值,即可表示D 点坐标,在Rt △OAD 中利用勾股定理即可求得k . 【详解】解:∵四边形OABC 为菱形, ∴AC ⊥OB ,2OB OD =,设(,)k D a a,则2(2,)k B a a, ∵A (4,0),F 为AD 中点,∴4(,)22a kF a+, ∴直线OE 的解析式为:242(4)k a a ky x x a a +==+,直线AB 的解析式为:2(4)(4)24(2)k aky x x a a a =-=---,联立得(4)(4)(2)k y x a a k y x a a ⎧=⎪+⎪⎨⎪=-⎪-⎩,解得2(4)323x a k y a ⎧=+⎪⎪⎨⎪=⎪⎩,∴22((4),)33k E a a+, ∴223(4)3k ka a =+,解得165a =,∴165(,)516k D , 在Rt △OAD 中,根据勾股定理222OD AD OA +=,即2222165165()()(4)()16516516k k ++-+=,解得12825k =±, ∵题中反比例函数图象在第一象限,∴12825k =, 故答案为:12825.【点睛】本题考查反比例函数综合,菱形的性质.本题较难,在解题过程中需掌握中点坐标公式和两点之间距离公式.14.8【分析】作AE⊥OD于ECF⊥OD于F由BC:CD=2:1S△ADC=可求S△ACB=由OA=OBS△AOC=S△ACB=设B(2m2n)可得A(mn)由AC在y=上BC=2CD可求k=mnC(m解析:8【分析】作AE⊥OD于E,CF⊥OD于F.由BC:CD=2:1,S△ADC=53,可求S△ACB=103,由OA=OB,S△AOC=S△ACB=103,设B(2m,2n),可得A(m,n),由A、C在y=kx上,BC=2CD,可求k=mn,C(32m,23n),可推得S△AOC= S梯形AEFC即可解决问题.【详解】解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=53,∴S△ACB=103,∵OA=OB,∴B(2m,2n),S△AOC=S△ACB=103,A(m,n),∵A、C在y=kx上,BC=2CD,∴k=mn,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴12•(n+23n)×12m=103,∴mn=8,∴k=8.故答案为:8.【点睛】过反比例函数y=kx(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,矩形的面积S=x y k=.过反比例函数过一点,作垂线,三角形的面积为12k.所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数从而有k的绝对值.在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便.15.【分析】作AC⊥y轴于CBD⊥y轴于D如图先证明△ACP≌△BDP得到S△ACP=S△BDP利用等量代换和k的几何意义得到S△AOB=S△AOC+S△BOD=×|k1|+|k2|=S然后利用k1>0解析:2S【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,先证明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代换和k的几何意义得到S△AOB=S△AOC+S△BOD=12×|k1|+12|k2|= S,然后利用k1>0,k2<0可得到k1-k2的值.【详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A与点B关于P成中心对称,∴AP=BP,在△ACP和△BDP中,ACP BDPAPC BPDAP BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BDP(AAS),∴S△ACP=S△BDP,∴S △AOB =S △APO +S △BPO =S △AOC +S △BOD =12×|k 1|+12|k 2|=S , ∵k 1>0,k 2<0, ∴k 1-k 2=2S . 故答案为:2S . 【点睛】本题考查了比例系数k 的几何意义:在反比例函数ky x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是1k 2,且保持不变.也考查了反比例函数的性质.16.7【分析】根据题意可求出A 点坐标为再结合三角形的面积公式即可求出k 的值【详解】由题意可知A 点纵坐标为3∵A 点在反比例函数的图象上∴A 点横坐标为即A ∴AB=∴解得:故答案为:7【点睛】本题考查了反比例解析:7 【分析】根据题意可求出A 点坐标为(3)3k ,,再结合三角形的面积公式即可求出k 的值. 【详解】由题意可知A 点纵坐标为3, ∵A 点在反比例函数的图象上, ∴A 点横坐标为3k,即A (3)3k ,. ∴AB=13k-, ∴1(1)3223ABCk S=⨯-⨯=, 解得:7k =.故答案为:7. 【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,熟练运用反比例函数的性质解决问题是本题的关键.17.【分析】把点AB 的坐标代入函数解析式求出比较大小即可【详解】解:把点AB 的坐标代入函数解析式得∴>故答案为:>【点睛】本题考查了根据函数解析式比较函数值的大小本题也可以画出函数图象描点借助图象比较函 解析:>【分析】把点A 、B 的坐标代入函数解析式求出1y ,2y ,比较大小即可. 【详解】解:把点A 、B 的坐标代入函数解析式2y x=-得 122y =x 1=2=---,222y ==1x 1=---,∴1y >2y . 故答案为:> 【点睛】本题考查了根据函数解析式比较函数值的大小,本题也可以画出函数图象,描点,借助图象比较函数值的大小.18.(-3)或(-3)【分析】根据题意可得AB 的长根据△PAB 的面积是6可求得点P 的纵坐标代入反比例函数解析式可得点P 的横坐标从而得点P 的坐标【详解】∵A 的坐标为点B 的坐标为∴AB =4设点P 坐标为(ab解析:(-13,3)或(13,-3). 【分析】根据题意可得AB 的长,根据△PAB 的面积是6可求得点P 的纵坐标,代入反比例函数解析式可得点P 的横坐标,从而得点P 的坐标. 【详解】∵A 的坐标为()0,2,点B 的坐标为()0,2-, ∴AB =4.设点P 坐标为(a ,b),则点P 到x 轴的距离是|b|,又△PAB 的面积是6, ∴12×4|b|=6. ∴|b|=3. ∴b =±3. 当b =3时,a =-13; 当b =-3时,a =13. ∴点P 的坐标为(-13,3)或(13,-3). 故答案为:(-13,3)或(13,-3). 【点睛】本题考查反比例函数与坐标轴围成的几何图形面积问题,数形结合、分类讨论思想是解题常用方法.19.3【分析】作CF ⊥y 轴于FEG ⊥y 轴于G 根据勾股定理求得BF 证得△BCF ≌△EBG (AAS )从而求得E 的坐标然后代入y=即可求得k 的值【详解】解:作CF ⊥y 轴于FEG ⊥y 轴于G 如图∵C(-42)∴C解析:3 【分析】作CF ⊥y 轴于F ,EG ⊥y 轴于G ,根据勾股定理求得BF ,证得△BCF ≌△EBG (AAS ),从而求得E 的坐标,然后代入y=kx,即可求得k 的值. 【详解】解:作CF ⊥y 轴于F ,EG ⊥y 轴于G ,如图.∵C(-4, 2 ) ∴CF=4,OF=2.∵正方形BCDE 的边长为5, ∴BC=BE=5,∴2222543BC CF -=-= ∵∠BFC=90°, ∴∠BCF+∠CBF=90°, ∵∠CBE=90° ∴∠EBG+∠CBF=90°, ∴∠BCF=∠EBG , 在△BCF 与△EBG 中90BCF EBG BFC EGB BC EB ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△BCF ≌△EBG (AAS ), ∴BF=EG=3,CF=BG=4, ∴FG=BG-BF=4-3=1 ∴OG=OF-FG=2-1=1 ∴E (3,1) ∴双曲线y=kx经过点E ,∴k=3×1=3.故答案为:3.【点睛】本题考查一次函数与反比例函数的交点,正方形的性质,勾股定理,全等三角形的判定与性质,待定系数法求反比例函数的解析式,解题关键是求得E的坐标.20.6【分析】根据四边形的面积求得CE=54设A(m3)则E(m+441)根据反比例函数系数k的代数意义得出k=3m=m+44解得即可【详解】解:由图象可知AD=1CD=2∵四边形AECD的面积为64∴解析:6【分析】根据四边形的面积求得CE=5.4,设A(m,3),则E(m+4.4,1),根据反比例函数系数k的代数意义得出k=3m=m+4.4,解得即可.【详解】解:由图象可知AD=1,CD=2,∵四边形AECD的面积为6.4,∴12(AD+CE)•CD=6.4,即12⨯(1+CE)×2=6.4,∴CE=5.4,设A(m,3),则E(m+4.4,1),∵反比例函数y=kx(x>0,k>0)的图象经过格点A并交CB于点E.∴k=3m=m+4.4,解得m=2.2,∴k=3m=6.6,故答案为6.6.【点睛】本题考查了反比例函数系数k的代数意义,梯形的面积,表示点A、E点的坐标是解题的关键.三、解答题21.(1)360yx=;(2)24天【分析】(1)根据题意直接写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式;(2)根据题意把x=15代入求出答案;【详解】解:(1)运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式为:360xy =, 故360y x=; (2)当运输公司平均每天的工作量是15万米3时, 完成任务所需的时间是:360=2415y =(天), 答:完成任务所需的时间是24天.【点睛】本题考查了反比例函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的相关知识解答.22.(1)①3y x =-(0x <);②点B 在图象L 上方,理由见解析;(2)43k -≤≤-. 【分析】(1)①将点A 坐标代入图象L 解析式中,解得,即可得出结论;②将x=-2代入图象L 解析式中,求出y ,再与2比较大小,即可得出结论;(2)求出图象L 过点A ,B 时的k 的值,再求出图象L 与线段AB 相切时的k 的值,即可得出结论.【详解】解:(1)①∵L 过点A (-3,1),∴313k =-⨯=-,∴图象L 的解析式为3y x =-(0x <); ②点B 在图象L 上方,理由:由(1)知,图象L 的解析式为3y x=-, 当2x =-时,33222y =-=<-, ∴点B 在图象L 上方;(2)当图象L 过点A 时, 由(1)知,3k =-,当图象L 过点B 时,将点B (-2,2)代入图象L 解析式k y x=中,得224k =-⨯=-, 当线段AB 与图象L 只有一个交点时,设直线AB 的解析式为y mx n =+,将点A (-3,1),B (-2,2)代入y mx n =+中, 3122m n m n -+=⎧⎨-+=⎩,∴14m n =⎧⎨=⎩, ∴直线AB 的解析式为4y x =+,联立图象L 的解析式和直线AB 的解析式得,4k y x y x ⎧=⎪⎨⎪=+⎩,化为关于x 的一元二次方程为240x x k +-=,∴1640k =+=,∴4k =-, 即满足条件的k 的范围为:43k -≤≤-.【点睛】本题是反比例函数综合题,主要考查了待定系数法,找出图象L 与线段AB 有公共点的分界点是解本题的关键.23.(1)见解析;(2)见解析.【分析】(1)根据平行四边形的性质对角线互相平分即可得出;(2)根据菱形的性质对角线垂直平分即可得出.【详解】解:(1)连接BO 并延长交反比例函数的第二象限的线于点1B ;连接AO 并延长交反比例函数的第二象限的线于点1A ;根据反比例函数图象性质,两条曲线关于原点中心对称,故1OB OB =,1OA OA =, 因为两条直线互相平分,故四边形11ABA B 为平行四边形;(2)如图,四边形CDEF 为菱形;【点睛】本题考查了反比例函数的图象性质及平行四边形的判定及性质、菱形的判定及性质,熟练掌握性质是解题的关键.24.(1)12yx=;(2)x<0或2<x<12;(3)E(0,6)或(0,8)【分析】(1)由直线y=﹣12x+7求得A的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)解析式联立,解方程组即可求得B的坐标,然后根据图象即可求得不等式mx<﹣12x+7的解集;(3)设E(0,n),求得点C的坐标,然后根据三角形面积公式得到S△AEB=S△BCE﹣S△ACE=12|7﹣n|×(12﹣2)=5,解得即可.【详解】解:(1)把x=2代入y=﹣12x+7得,y=6,∴A(2,6),∵反比例函数y=mx(m≠0)的图象经过A点,∴m=2×6=12,∴反比例函数的表达式为12yx =;(2)由12172yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,得26xy=⎧⎨=⎩或121xy=⎧⎨=⎩,∴B(12,1),由图象可知,不等式mx<﹣12x+7的解集是:x<0或2<x<12;(3)设E(0,n),∵直线y=﹣12x+7与y轴交于点C,∴C(0,7),∴CE=|7﹣n|,∴S△AEB=S△BCE﹣S△ACE=12|7﹣n|×(12﹣2)=5,解得,n=6或n=8,∴E (0,6)或(0,8).【点睛】本题主要考查反比例函数与一次函数的综合,掌握反比例函数图像上的点的坐标特征以及待定系数法,是解题的关键.25.(1)6y x =,24y x =+;(2)8;(3)3x <-或01x << 【分析】(1)根据B 的坐标求出反比例函数的解析式,求出A 点的坐标,再把A 、B 的坐标代入y =kx +b ,求出一次函数的解析式即可;(2)先求出点C 的坐标,再根据三角形的面积公式求出即可;(3)根据A 、B 的坐标和图象得出即可.【详解】解:(1)(1,6)B 在反比例函数上,166m xy ∴==⨯=,6y x∴=. 点A 在反比例函数上,26n ∴-=,解得3n =-,即(3,2)A --.设直线:AB y kx b =+,代入点(3,2)A --,(1,6)B ,326k b k b -+=-⎧⎨+=⎩ 解得:24k b =⎧⎨=⎩∴24y x =+(2)在直线24y x =+中,令0x =,得4y =,即(0,4)C .()114(31)822AOB OCA OCB A B S S S OC x x ∴=+=+=⨯⨯+=△△△ (3)(1,6)B ,(3,2)A --∴当k kx b x+<时,x 的取值范围是3x <-或01x <<. 【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数与反比例函数的图象和性质等知识点,能求出B 、C 的坐标是解此题的关键.26.(1)见解析;(2)①1;②见解析.【分析】(1)先求出点D 坐标,再代入反比例函数解析式中,即可得出结论;(2)①先判断出△ABC ≌△EFG ,得出GF=BC=2,GE=AC=1,进而得出E (1,3),即可得出结论;②先判断出△AOF ≌△FGE (SAS ),得出∠GFE=∠FAO ,进而得出∠AFE=90°,同理得出∠BAF=90°,进而判断出EF ∥AB ,即可得出结论.【详解】解:(1)∵点B (3,2),BC 边的中点D ,∴点D (3,1),∵反比例函数y =kx (k >0)的图象经过点D (3,1), ∴k=3×1=3,∴反比例函数表达式为y =3x; (2)①∵点B (3,2),∴BC=2,∵△ABC 与△EFG 成中心对称,∴△ABC ≌△EFG (中心对称的性质),∴GF=BC=2,GE=AC=1,∵点E 在反比例函数的图象上,∴E (1,3),即OG=3,∴OF=OG-GF=1;②如图,连接AF 、BE ,∵AC=1,OC=3,∴OA=GF=2,在△AOF 和△FGE 中AO FG AOF FGE OF GE =⎧⎪∠=∠⎨⎪=⎩,∴△AOF ≌△FGE (SAS ),∴∠GFE=∠FAO ,∵∠FAO+∠OFA=90°,∴∠GFE+∠OFA=90°,∴∠AFE=90°,∵∠EFG=∠FAO=∠ABC ,∵∠BAC+∠ABC=90°,∴∠BAC+∠FAO=90°,∴∠BAF=90°,∴∠AFE+∠BAF=180°,∴EF∥AB,∵EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点睛】本题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,正方形的判定,全等三角形的判定和性质,判断出△AOF≌△FGE是解题的关键.。
初三数学反比例函数试题答案及解析1.若点P1(﹣1,m),P2(﹣2,n)在反比例函数(k>0)的图象上,则m n(填“>”“<”或“=”号).【答案】<.【解析】∵P1(﹣1,m),P2(﹣2,n)在反比例函数(k>0)的图象上,∴﹣1•m=k,﹣2•n=k.∴m=﹣k,n=.∵k>0,∴m<n.【考点】1.曲线上点的坐标与方程的关系;2.实数的大小比较.2.如图,反比例函数(x>0)的图象交Rt△OAB的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k的值为【答案】20.【解析】如答图,过D点作x轴的垂线交x轴于H点,∵△ODH的面积=△OBC的面积=,△OAC的面积为5,∴△OBA的面积=.∵AD:OD=1:2,∴OD:OA=2:3.∵DH∥AB,∴△ODH∽△OAB. ∴,即.解得:k=20.【考点】1.反比例函数系数k的几何意义;2.相似三角形的判定和性质.3.已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个【答案】B【解析】①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故正确;②在每个分支上y随x的增大而增大,正确;③若点A(﹣1,a)、点B(2,b)在图象上,由图象可知a>b,所以a<b错误;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上,正确,故选B.【考点】1、反比例函数的性质;2、反比例函数图象上点的坐标特征4.如图,A、B、C是反比例函数(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条 B.3条 C.2条 D.1条【答案】A【解析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.故满足条件的直线有4条.【考点】反比例函数综合题.5.已知点在双曲线上,若,则(用“>”或“<”或“=”号表示).【答案】>.【解析】∵在双曲线上,∴x1•y1=3,x2•y2=3.∵x1<x2<0,∴y1>y2.【考点】反比例函数图象上点的坐标特征.6.已知正比例函数y=-2x与反比例函数y=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为( )【答案】(1,-2)【解析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.解:根据中心对称的性质可知另一个交点的坐标是:(1,-2).故答案为:(1,-2).7.某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图象应为()【答案】C【解析】因xy=a,y=,y与x成反比例,所以选C.8.如图,是一辆小汽车沿一条高速公路匀速前进的时间t(小时)与速度x(千米/时)关系的图象,根据图象提供的信息回答下列问题:(1)这条高速公路的全长是多少千米?(2)写出速度与时间之间的函数关系.(3)汽车最大速度可以达到多少?(4)汽车最慢用几个小时可以到达?如果要在3小时以内到达,汽车的速度应不少于多少?【答案】(1)300千米. (2)y=. (3) 300千米/时. (4) 6小时,100千米/时.【解析】(1)以150千米/时行驶了两小时,则路程=150×2=300千米.(2)由速度=,路程为300千米,则有y=.(3)据图象用1小时可以行驶完全程,所以汽车最大速度可以达到300千米/时.(4)据图象,最低速度为50千米/时,需要6小时行驶完全程.9.如图,Rt△ABC中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数(x >0)的图象上运动,那么点B在函数(填函数解析式)的图象上运动.【答案】.【解析】如图分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b),则ab=1.根据两角对应相等的两三角形相似,得出△OAC∽△BOD,由相似三角形的对应边成比例,则BD、OD 都可用含a、b的代数式表示,从而求出BD•OD的积,进而得出结果.试题解析:分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b).∵点A在反比例函数(x>0)的图象上,∴ab=1.在△OAC与△BOD中,∠AOC=90°-∠BOD=∠OBD,∠OCA=∠BDO=90°,∴△OAC∽△BOD,∴OC:BD=AC:OD=OA:OB,在Rt△AOB中,∠AOB=90°,∠B=30°,∴OA:OB=1:,∴b:BD=a:OD=1:,∴BD=b,OD=a,∴BD•OD=3ab=3,又∵点B在第四象限,∴点B在函数的图象上运动.考点: 1.反比例函数综合题;2.待定系数法求反比例函数解析式;3.相似三角形的判定与性质.10.如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),双曲线()经过C点,且OB·AC=160,则的值为___________.【答案】48.【解析】过C作CD垂直于x轴,交x轴于点D,由菱形的面积等于对角线乘积的一半,根据已知OB与AC的乘积求出菱形OABC的面积,而菱形的面积可以由OA乘以CD来求,根据OA 的长求出CD的长,在直角三角形OCD中,利用勾股定理求出OD的长,确定出C的坐标,代入反比例解析式中即可求出k的值.∵四边形OABC是菱形,OB与AC为两条对角线,且OB•AC=160,∴菱形OABC的面积为80,即OA•CD=80,∵OA=AC=10,∴CD=8,在Rt△OCD中,OC=10,CD=8,根据勾股定理得:OD=6,即C(6,8),则k的值为48.【考点】反比例函数综合题.11.如果点A(-1,)、B(1,)、C(2,)是反比例函数图象上的三个点,则下列结论正确的是()A.>>B.>>C.>>D.>>【答案】A.【解析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点B和点C的纵坐标的大小即可.∵反比例函数的比例系数为﹣1,∴图象的两个分支在二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点A在第二象限,点B、C在第四象限,∴y最大,1∵1<2,y随x的增大而增大,∴y2<y3,∴y1>y3>y2.故选A.【考点】反比例函数图象上点的坐标特征.12.如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.【答案】(1)一次函数解析式为:y1=x+2,B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.【解析】(1)利用待定系数法把 A(1,3)代入一次函数y1=x+m与反比例函数中,可解出m、k的值,进而可得解析式,求B点坐标,就是把两函数解析式联立,求出x、y的值;(2)根据函数图象可以直接写出答案.试题解析:(1)∵一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点 A(1,3),∴3=1+m,k=1×3,∴m=2,k=3,∴一次函数解析式为:y1=x+2,反比例函数解析式为:y2=,由,解得:x1=﹣3,x2=1,当x1=﹣3时,y1=﹣1,x 2=1时,y1=3,∴两个函数的交点坐标是:A(1,3)和B(﹣3,﹣1)∴B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.考点:反比例函数解析式,一次函数解析式,反比例函数的性质.13.如图,已知点A(-4,2)、B( n,-4)是一次函数的图象与反比例函数图象的两个交点.(1)求此反比例函数的解析式和点B的坐标;(2)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【答案】(1)反比例函数的解析式为,点B(2,-4);(2) -4<x<0或x>2【解析】(1)将点A(-4,2)的横、纵坐标分别代入反比例函数解析式,可求得m=-8,然后将点B(n,-4)的横、纵坐标分别代入反比例函数解析式,可求出n的值,即点B的坐标,将A、B两点的坐标分别代入一次函数解析式,可求出直线的解析式;(2)一次函数的值小于反比例函数的值从图象上看,就是直线在双曲线的下方.试题解析:(1)反比例函数的解析式为,点B(2,-4)(2)一次函数的值小于反比例函数值的x的取值范围是:-4<x<0或x>2【考点】反比例函数的图象和性质.14.已知图中的曲线是函数 (m为常数)图象的一支.(1)求常数m的取值范围;(2)若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.【答案】(1)m>5;(2)点A的坐标为(2,4);反比例函数的解析式为.【解析】(1)曲线函数(m为常数)图象的一支在第一象限,则比例系数m-5一定大于0,即可求得m的范围;(2)把A的坐标代入正比例函数解析式,即可求得A的坐标,再代入反比例函数解析式即可求得反比例函数解析式.试题解析:(1)∵函数 (m为常数)图象的一支在第一象限,∴m-5>0,解得m>5. (2)∵函数的图象与正比例函数的图象在第一象限的交点为A(2,n),∴,解得.∴点A的坐标为(2,4);反比例函数的解析式为.【考点】1.反比例函数和正比例函数的图象交点问题;2.曲线上点的坐标与方程的关系;3.反比例函数的性质.15.如果反比例函数y=的图象经过点(-1,-2),则k的值是( ).A. 2B.-2C.-3D.3【答案】D.【解析】直接把点(-1,-2)代入反比例函数y=,求出k的值即可.∵反比例函数y=的图象经过点(-1,-2),∴,解得k=3.故选D.考点: 反比例函数.16.如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,k 的值为( )A .B .C .D .【答案】C .【解析】如图,连接AC ,∵点B 的坐标为(4,0),△AOB 为等边三角形,∴AO="OB=4." ∴点A 的坐标为.∵C (4,0),∴AO=OC=4,∴∠OCA=∠OAC. ∵∠AOB=60°,∴∠ACO=30°. 又∵∠B="60°." ∴∠BAC=90°.∵S △ADE =S △DCO ,S △AEC =S △ADE +S △ADC ,S △AOC =S △DCO +S △ADC , ∴S △AEC =S △AOC =,即.∴E 点为AB 的中点. 把E 点代入中得:k=. 故选C .【考点】1. 等边三角形的性质;2. 等腰三角形的判定和性质;3.三角形内角和定理;4.曲线上点的坐标与方程的关系.17. 如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .32【答案】D 。
最新初中数学反比例函数经典测试题附答案解析一、选择题1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =kx上一点,k 的值是( )A .4B .8C .16D .24【答案】C 【解析】 【分析】延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=,//BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q , OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q ,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C . 【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.2.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C 【解析】 【分析】由反比例函数的系数k 的几何意义可知:2OA AD =g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积. 【详解】解:Q 反比例函数2y x=, 2OA AD ∴=g .D Q 是AB 的中点, 2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.3.已知点()11,A y -、()22,B y -都在双曲线32my x+=上,且12y y >,则m 的取值范围是( ) A .0m < B .0m >C .32m >-D .32m <-【答案】D 【解析】 【分析】根据已知得3+2m <0,从而得出m 的取值范围. 【详解】∵点()11,A y -、()22,B y -两点在双曲线32my x+=上,且y 1>y 2, ∴3+2m <0,∴32m <-, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限.4.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③ 【答案】B 【解析】 【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案. 【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.5.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小6.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.7.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1 yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OEOF AF=;设B为(a,1a-),A为(b,2b),得到OE=-a,EB=1a-,OF=b,AF=2b,进而得到222a b=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=22为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OEOF AF=,设点B为(a,1a-),A为(b,2b),则OE=-a,EB=1a-,OF=b,AF=2b,可代入比例式求得222a b=,即222ab=,根据勾股定理可得:22221OE EB aa+=+22224OF AF bb+=+∴tan∠OAB=2222222212244baOB a bOAb bb b++==++222214()24bbbb++22∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.8.使关于x的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k的和为().A.0 B.1 C.2 D.3【答案】B【解析】试题分析:分别根据题意确定k的值,然后相加即可.∵关于x的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k>0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0或1,∴和为-1+2=1,故选,B.考点:反比例函数的性质.9.如图,是反比例函数3yx=和7yx=-在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点,A B,点P在x轴上.则点P从左到右的运动过程中,APB△的面积是()A .10B .4C .5D .从小变大再变小【答案】C 【解析】 【分析】连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解. 【详解】连接AO 、BO ,设AB 与y 轴交于点C . ∵AB ∥x 轴,∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5. 故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.10.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.11.函数y =1-kx与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0 B .k<1C .k>0D .k>1【答案】D 【解析】 【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围. 【详解】令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k<0,即k >1. 故选D . 【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,已知点A ,B 分别在反比例函数12y x =-和2ky x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A 【解析】 【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可. 【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A在反比例函数12yx=-的图象上,∴ab=−2;∵B点在反比例函数2kyx=的图象上,∴k=2a•2b=4ab=−8.故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=kx的图象于点C,且OC=2CA',则k的值为()A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C 的坐标,再通过反比例函数的性质求解即可.14.反比例函数k y x=的图象在第二、第四象限,点()()()1232,,4,,5,A y B y C y -是图象上的三点,则123,,y y y 的大小关系是( )A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >> 【答案】B【解析】【分析】根据反比例函数图像在第二、四象限,反比例函数图像在第二、四象限,y 随x 的增大而增大,再根据三点横坐标的特点即可得出结论.【详解】 解:∵反比例函数k y x=图象在第二、四象限, ∴反比例函数图象在每个象限内y 随x 的增大而增大,∵-2<4<5,∴点B 、C 在第四象限,点A 在第二象限,∴23y y <<0,10y > ,∴132y y y >>.故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答本题的关键.15.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确;故选B .【点睛】本题考查反比例函数的图像与性质.16.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2yx =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】 【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA= ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.17.已知反比例函数y =﹣2x的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】B【解析】【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】解:∵反比例函数y =﹣2x, ∴函数图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∵函数的图象上有三个点(x 1,y 1),(x 2,y 2)、(x 3,y 3),且x 1>x 2>0>x 3, ∴y 2<y 1<0,y 3>0∴. y 2<y 1<y 3故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.18.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0【答案】B【解析】【分析】根据反比例函数的性质,逐一进行判断即可得答案.【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.19.已知点11(,)x y ,22(,)x y 均在双曲线1y x =-上,下列说法中错误的是( ) A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y > 【答案】D【解析】【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x=-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x =-上, ∴111y x =-,221y x =-. A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.如图,,A B 是双曲线k y x=上两点,且,A B 两点的横坐标分别是1-和5,ABO -∆的面积为12,则k 的值为( )A .3-B .4-C .5-D .6-【答案】C【解析】【分析】 分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,根据S △AOB =S 梯形ABED +S △AOD - S △BOE =12,故可得出k 的值.【详解】分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,∵双曲线k y x=的图象的一支在第二象限 ∴k<0, ∵A ,B 两点在双曲线k y x=的图象上,且A ,B 两点横坐标分别为:-1,-5, ∴A (-1,-k ),B (-5, 5k -) ∴S △AOB =S 梯形ABED +S △AOD - S △BOE =1||11||(||)(51)1||525225k k k k ⨯+⨯-+⨯⨯-⨯⨯=12||5k =12, 解得,k=-5故选:C .【点睛】 本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.。
部编版初中九年级数学反比例函数(含中考真题解析答案)反比例函数(含答案)?解读考点知识点 1.反比例函数概念反比例函数概2.反比例函数图象念、图象和性3.反比例函数的性质质 4.一次函数的解析式确定名师点晴会判断一个函数是否为反比例函数。
知道反比例函数的图象是双曲线,。
会分象限利用增减性。
能用待定系数法确定函数解析式。
会用数形结合思想解决此类问题.反比例函5.反比例函数中比例系数的几何能根据图象信息,解决相应的实际问题.数的应用意义能解决与三角形、四边形等几何图形相关的计算和证明。
?2年中考【2021年题组】y?1.(2021崇左)若反比例函数kx的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3【答案】A.【解析】y?试题分析:∵反比例函数kx的图象经过点(2,��6),∴k?2?(?6)??12,解得k=��12.故选A.考点:反比例函数图象上点的坐标特征. 2.(2021苏州)若点A(a,b)在反比例函数A.0 B.��2 C.2 D.��6 【答案】B.【解析】y?y?2x的图象上,则代数式ab��4的值为()试题分析:∵点(a,b)反比例函数22b?x上,∴a,即ab=2,∴原式=2��4=��2.故选B.考点:反比例函数图象上点的坐标特征. 3.(2021来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()- 1 -A. B. C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2021河池)反比例函数y1?mx(x?0)的图象与一次函数y2??x?b的图象交于A,B两点,其中A(1,2),当y2?y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2?y1.故选B.考点:反比例函数与一次函数的交点问题.- 2 -5.(2021贺州)已知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致是()A.【答案】C.B.C. D.考点:1.反比例函数的图象;2.一次函数的图象. 6.(2021宿迁)在平面直角坐标系中,点A,B的坐标分别为(��3,0),(3,0),点P在y?反比例函数2x的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【答案】D.【解析】y?试题分析:①当∠PAB=90°时,P点的横坐标为��3,把x=��3代入此时P点有1个;22y??x得3,所以2222222(x?3)?()(x?3)?()22x,PB=x,AB2 ②当∠APB=90°,设P(x,x),PA=222222(x?3)?()?(x?3)?()222(3?3)xxPA?PB?AB==36,因为,所以=36,整理得2x4?9x2?4?0,所以x2?9?659?65x2?22,或,所以此时P点有4个;y?22y?x得3,所以此时P点有1个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2021自贡)若点(的点,并且x1,y1),(x2,y2),(x3,y3y??),都是反比例函数1x图象上y1?0?y2?y3,则下列各式中正确的是()- 3 -A.D.x1?x2?x3 B.x1?x3?x2 C.x2?x1?x3x2?x3?x1【答案】D.【解析】试题分析:由题意得,点(的点,且(x1,y1)xy,xy,(2,2)(3,3)都是反比例函数y??1x上y1?0?y2?y3,xy,xy位于第三象限,x?x3,则(2,2)(3,3)y随x的增大而增大,2 x1,y1)位于第一象限,x1最大,故x1、x2、x3的大小关系是x2?x3?x1.故选D.考点:反比例函数图象上点的坐标特征.8.(2021凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面y?直角坐标系,双曲线3x经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13 【答案】C.考点:反比例函数系数k的几何意义.y?9.(2021眉山)如图,A、B是双曲线kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()48A.3 B.3 C.3 D.4- 4 -【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质. 10.(2021内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点Ay?的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线有公共点,则k的取值范围为()kx与正方形ABCDA.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16 【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则Ay?的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kx经过点(1,1)时,k=1;当双曲线kx经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.- 5 -11.(2021孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函y?数1ky?x的图象上.若点B在反比例函数x的图象上,则k的值为()A.��4 B.4 C.��2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.41012.(2021宜昌)如图,市煤气公司计划在地下修建一个容积为m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()- 6 -【答案】A.B. C. D.考点:1.反比例函数的应用;2.反比例函数的图象.y?13.(2021三明)如图,已知点A是双曲线2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n??2m B.【答案】B.【解析】n??24n??m C.n??4m D.m2试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:n,∴点A 的坐22标为(n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:m,∴点B2nm?2222mmn??mn,∴m2n2?4,又∵m<0,n>0,∴的坐标为(m,m),又∵n,∴- 7 -mn??2,∴n??2m,故选B.考点:反比例函数图象上点的坐标特征.y?14.(2021株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数图象上的概率是()12x1111A.2 B.3 C.4 D.6【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.OA3?OB4.15.(2021乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,∠y?AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kx的图象2过点C.当以CD为边的正方形的面积为7时,k的值是()- 8 -A.2 B.3 C.5 D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2021重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴y?平行,A,B两点的纵坐标分别为3,1.反比例函数ABCD的面积为()3x的图象经过A,B两点,则菱形A.2 B.4 C.22 D.42 【答案】D.【解析】y?试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S菱形ABCD=底×高=22×2=42,故选D.- 9 -考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2021临沂)在平面直角坐标系中,直线y??x?2与反比例函数1y?x的图象有2个公共点,则b的取值范围是公共点,若直线y??x?b与反比例函数()y?1x的图象有唯一A.b>2 B.��2<b<2 C.b>2或b<��2 D.b<��2 【答案】C.考点:反比例函数与一次函数的交点问题. 18.(2021滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA12y??y?x、x的图象交于B、A两点,则∠OAB的大小的变化趋势为的两边分别与函数()- 10 -A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2021扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(��1,��3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(��1,��3).故答案为:(��1,��3).考点:反比例函数图象的对称性.20.(2021泰州)点(a��1,1)、(a+1,2)在反比例函数yyy?k?k?0?x的图象上,若y1?y2,- 11 -则a的范围是.【答案】��1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.y?21.(2021南宁)如图,点A在双曲线23ky?x(x?0)上,x(x?0)点B在双曲线上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63.【解析】y?试题分析:因为点A在双曲线2323x(x?0)上,设A点坐标为(a,a),因为四23边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,a),可得:3a?k=23a=63,故答案为:63.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2021桂林)如图,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直y?角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数交BC于D,连接AD,则四边形AOCD的面积是.kx的图象- 12 -【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题. 23.(2021贵港)如图,已知点A1,A2,…,An均在直线y?x?1上,点B1,B2,…,y??Bn均在双曲线1x上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若则a2021= .a1??1,【答案】2.- 13 -考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2021南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1?1x,则y2与x的函数表达式是.【答案】【解析】y2?4x.试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1?1x上,11∴设A(a,a),∴OC=a,AC=a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△ACOCOAACOCOA12?????OBD,∴BDODOB,∵A为OB的中点,∴BDODOB2,∴BD=2AC=a,- 14 -2k2y2?2a??4yx,∴k=aOD=2OC=2a,∴B(2a,a),设,∴2与x的函数表达式是:y2?44y2?x.故答案为:x.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.y?25.(2021攀枝花)如图,若双曲线kx(k?0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.363【答案】25.- 15 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.93(x>0)y?x26.(2021荆门)如图,点A1,A2依次在的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.【答案】(62,0).- 16 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2021南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OCy?是△OAB的中线,点B,C在反比例函数于.3x(x?0)的图象上,则△OAB的面积等9【答案】2.考点:1.反比例函数系数k的几何意义;2.综合题. 28.(2021烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比y?例函数kx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.- 17 -15【答案】4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题. 29.(2021玉林防城港)已知:一次函数y??2x?10的图象与反比例函数y?kx(k?0)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,��2a+10),B(b,��2b+10)时,直线OA与此反比例函数图象的另一支交BC5?BD2,求△ABC的面积.于另一点C,连接BC交y轴于点D.若y?【答案】(1)81?x,B(1,8);(2)(��4,��2)、(��16,2);(3)10.- 18 -【解析】y?试题分析:(1)把点A的坐标代入kx,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=��2x+10,当y=0时,��2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5��4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AHMH2MH??EHAH,∴12,∴MH=4,∴M(0,0),可设直线AP的解析式为y?mx,1?y?x??2??x?4811?y??y?xy?2?x,2,则有4m?2,解得m=2,∴直线AP的解析式为解方程组?得:??x??4?y??2,∴点P的坐标为(��4,��2)或?.1②若∠ABP=90°,同理可得:点P的坐标为(��16,2).?- 19 -1综上所述:符合条件的点P的坐标为(��4,��2)、(��16,2);?(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,CDCTBC5CTCD3????BD2.∵A(a,��2a+10)∴△CTD∽△BSD,∴BDBS.∵BD2,∴BS,B(b,��2b+10),∴C(��a,2a��考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2021年题组】1. (2021年湖南湘潭)如图,A、B两点在双曲线线段,已知S阴影=1,则S1+S2=()y?4x上,分别经过A、B两点向轴作垂- 20 -④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.- 26 -9. (2021年湖北荆州)如图,已知点A是双曲线y?2x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线是.y?kx(k<0)上运动,则k的值【答案】��6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.- 27 -10. (2021年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y?kx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=��2x+8;(3)直线BP与直线AM的位置关系为平行,.- 28 -考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.?考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。
2019福建近三年一检试题分类汇编—专题7—反比例函数 林国章-已将2016-2019福建九地市一检整理2019-3-1选择题微专题一:反比例函数定义1、(2017—2018学年上学期仙游期末)2、下列函数中,y 是x 的反比例函数的是( B )A.3x y =B.3y x= C.y =3x D.y =x 22、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)2.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( C )A .B .C .D .8.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .3、(2017—2018学年度莆田秀屿区上学期九年级期末考试)2.若一个反比例函数的图象经过点(-4,6),则它的图象一定也经过点( B ) A .(3,8) B .(3,-8) C .(-8,-3) D .(-4,-6)4、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)2.下列函数中y 是x 的反比例函数是( B )A.y=3xB.y =x3C.y=x 23D.y =3x+35、(2016-2017学年福州市鼓楼区延安中学九年级(上)期末)1.若反比例函数y=﹣的图象经过点A (3,m ),则m 的值是( C ) A .﹣3 B .3C .﹣D .4. 已知反比例函数8y x=-,则下列各点在此函数图象上的是( D )A .(2,4)B .(-1,-8)C .(-2,-4)D .(4,-2)7、(2016-2017学年福建省南平市九年级(上)期末)4.下列四个关系式中,y 是x 的反比例函数的是( B ) A .y=4xB .y=C .y=D .y=8、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)2.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( C )A .B .C .D .8.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .微专题二:反比例函数的性质1、(三明市2018-2019学年上学期期末)7.对于反比例函数y =x2-,下列说法不正确的是( D ) A .图象分布在第二、四象限B .当x >0时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 2..2、(南平市2018-2019学年第一学期九年级期末质量检测)8. 如果点A ),3(1y -,B ),2(2y -,C ),2(3y 都在反比例函数)0(>=k xky 的图象上,那么 1y ,2y ,3y 的大小关系正确的是( B )A. 3y <2y <1yB. 2y <1y <3yC. 1y <2y <3yD .1y <3y <2y3、(漳州市2018-2019学年上学期教学质量抽测)9. 若点A (2m ,1y ),B (22+m ,2y )在反比例函数xy 4=的图象上,则1y ,2y 的大小关系是( A )A .21y y >B .21y y =C .21y y <D .不能确定4、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)4.函数y=2x 与函数y=﹣在同一坐标系中的大致图象是( B )A .B .C .D .5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数y=的图象上,当x 1>x 2>0时,下列结论正确的是( C ) A .y 2<y 1<0B .y 1<y 2<0C .0<y 2<y 1D .0<y 1<y 25、(福州市 2017-2018 学年第一学期九年级期末考试)7、已知反比例函数y =kx (k <0)的图象经过点A (-1,y 1),B (2,y 2),C (3,y 3), 则 y 1,y 2,y 3的大小关系是( A )(A )y 2<y 3<y 1 (B )y 3<y 2<y 1 (C )y 1<y 3<y 2 (D )y 1<y 2<y 36、(宁德市2017-2018学年九年级上学期期末考试)2.已知反比例函数xky =,当x >0时,y 随x 的增大而增大.则函数xk y =的图象在(C )A .第一、三象限B .第一、四象限C .第二、四象限D .第二、三象限7、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)10. 已知P (x 1,1),Q (x 2,2)是一个函数图象上的两个点,其中x 1<x 2<0,则这个函数图象可能是( A )A .B .C .D .8、(南平市2017-2018学年第一学期九年级期末质量检测)8.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是( B )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)1.若双曲线y=的图象经过第二、四象限,则k 的取值范围是( B ) A .k >0B .k <0C .k ≠0D .不存在4.函数y=2x 与函数y=﹣在同一坐标系中的大致图象是( B )A .B .C .D .5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数y=的图象上,当x 1>x 2>0时,下列结论正确的是( C ) A .y 2<y 1<0B .y 1<y 2<0C .0<y 2<y 1D .0<y 1<y 210、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))6.在函数的图象上有三点A (﹣2,y 1)B (﹣1,y 2)C (2,y 3),则( B )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 3>y 2>y 111、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)6.已知A (2,y 1),B (﹣3,y 2),C (﹣5,y 3)三个点都在反比例函数y=﹣的图象上,比较y 1,y 2,y 3的大小,则下列各式正确的是( B )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 2<y 1微专题三:反比例函数的应用1、(2018-2019学年度福州市九年级第一学期质量调研)9.如图,矩形ABCD 的对角线BD 过原点O ,各边分别平行于坐标轴,点C 在反比例函数31k y x+=的图象上.若点A 的坐标是(2-,2-),则k 的值是( C ) A .-1 B .0C .1D .42、(漳州市2018-2019学年上学期教学质量抽测)6. 如图,过反比例函数xky =(x <0)图象上的一点A 作AB ⊥x 轴于点B , 连接AO ,若2=∆AOB S ,则k 的值是 ( D ) A .2 B .-2 C .4 D .-48.如图,点P (﹣3,2)是反比例函数(k ≠0)的图象上一点,则反比例函数的解析式( D ) A .B .C .D .3、(2016-2017学年福州市鼓楼区延安中学九年级(上)期末)4.如图,直线y=kx 与双曲线y=﹣交于A (x 1,y 1),B (x 2,y 2)两点,D A OBC xyxyOB A则2x 1y 2﹣8x 2y 1的值为( B ) A .﹣6 B .﹣12C .6D .124、(宁德市2016-2017学年度第一学期期末九年级质量检测)10.如图,已知动点A ,B 分别在x 轴,y 轴正半轴上,动点P 在反比例函数6(0)y x x =>图象上,PA ⊥x 轴,△PAB 是以PA 为底边的等腰三角形.当点A 的横坐标逐渐增大时,△PAB 的面积将会( C ) A .越来越小 B .越来越大 C .不变D .先变大后变小5、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))9、如图,双曲线()0>x xky =经过Rt △OAB 斜边OB 的中点D ,与直角边AB 相交于点C .过作DE ⊥OA 交OA 于点E ,若△OBC 的面积为3,则k 的值是( B ). A.1 B.2 C.3 D.46、(2016-2017学年三明市梅列区九上期末考试)6.反比例函数y =(k >0)在第一象限内的图象如图,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( B )A .1B .2C .4D .7、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)10.如图,反比例函数的图象经过矩形OABC 对角线的交点M ,分别与AB 、BC相交于点D 、E .若四边形ODBE 的面积为6,则k 的值为( B ) A .1B .2C .3D .4解:由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =,S △OAD =,第10题图B Axxyy OOA P C B过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO=4S □ONMG =4|k |,由于函数图象在第一象限,k >0,则++6=4k ,k=2. 故选B .填空题微专题一:反比例函数的定义1、(宁德市2018-2019学年度第一学期期末)2、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)12.函数y=(m +2)x是反比例函数,则m 的值为 2 .3、(福州市 2017-2018 学年第一学期九年级期末考试)4、反比例函数的图像经过点(2,3)则该函数的解析式为 y =6x5、(龙岩市上杭县2017-2018学年第一学期期末学段水平测试)14.反比例函数y =1−k x的图像经过点(2,3)则k= -56、(上杭县2016-2017学年第一学期期末教学质量监测)12.请写出一个图象在第二、四象限的反比例函数解析式 答案不唯一,如y =−1X .14.反比例函数x k y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中120x x <<且21y y >,则k的范围是 1k <- .7、(2016-2017学年福建省南平市九年级(上)期末)11k y x=22k y x=AxyOBCDC A B Oyx(第11题图)11.若反比例函数y=的图象的两个分支在第二、四象限内,请写出一个满足条件的m 的值. 1(答案不唯一,小于2的任何一个数) .微专题二:反比例函数的性质1、(2017—2018学年度莆田秀屿区上学期九年级期末考试)12.已知函数xm y 32+=,当x <0 时,y 随x 的增大而增大,则m 的取值范围是 m =−32 .2、(上杭县2016-2017学年第一学期期末教学质量监测)14.反比例函数xk y 1+=的图象经过),(11y x A ,),(22y x B 两点,其中120x x <<且21y y >,则k 的范围是 1k <- .3、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A ))12.若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是 m<14、(2016-2017学年三明市梅列区九上期末考试)13.已知P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数y =的图象上,且x 1<x 2<0,则y 1 > y 2(填“>”或“<”).微专题三:反比例函数应用1、(宁德市2018-2019学年度第一学期期末)16.如图,已知直线l :103y x b b =-+ (<)与x ,y 轴分别交于A ,B两点,以AB 为边在直线l 的上方作正方形ABCD ,反比例函数11k y x =和22ky x=的图象分别过点C 和点D .若13k =,则2k 的值为 -9 .2、(三明市2018-2019学年上学期期末)14.如图,在平面直角坐标系中,点A 是函数xky =(x <0)图象上的点, A B ⊥x 轴,垂足为B ,若△ABO 的面积为3,则k 的值为____-6___.3、(南平市2018-2019学年第一学期九年级期末质量检测)15.已知反比例函数xky =(0≠k ),当1≤x ≤2时,函数的 最大值与最小值之差是1,则k 的值为 2± .4、(漳州市2018-2019学年上学期教学质量抽测)16. 如图,Rt △ABC 的直角边BC 在x 轴负半轴上,斜边AC 上的中线BD 的反向延长线交y 轴负半轴于点E ,反比例函数xy 2-=(x <0)的图象过点A ,则△BEC 的面积是 1 .5、(2016-2017学年福建省莆田二十五中九(上)期末数学试卷)16.如图,过点O 作直线与双曲线y=(k ≠0)交于A ,B 两点,过点B 作BC ⊥x 轴于点C ,作BD ⊥y 轴于点D .在x 轴、y 轴上分别取点E ,F ,使点A ,E ,F 在同一条直线上,且AE=AF .设图中矩形ODBC 的面积为S 1,△EOF 的面积为S 2,则S 1,S 2的数学量关系是 2S 1=S 2. .(第14题)xyED CBO A解:过点A 作AM ⊥x 轴于点M ,如图所示. ∵AM ⊥x 轴,BC ⊥x 轴,BD ⊥y 轴, ∴S 矩形ODBC =﹣k ,S △AOM =﹣k . ∵AE=AF .OF ⊥x 轴,AM ⊥x 轴, ∴AM=OF ,ME=OM=OE , ∴S △EOF =OE•OF=4S △AOM =﹣2k , ∴2S 矩形ODBC =S △EOF , 即2S 1=S 2.故答案为:2S 1=S 2.6、(2017—2018学年度莆田秀屿区上学期九年级期末考试)16.如图,在平面直角坐标系中,点A 是函数y =kx (k<0,x<0) 图象上的点,过点A 与y 轴垂直的直线交y 轴于点B ,点C 、D 在x 轴上, 且BC ∥AD .若四边形ABCD 的面积为3,则k 值为 3 .7、(宁德市2017-2018学年九年级上学期期末考试)16.如图,点A ,B 在反比例函数xky =图象上,且直线AB 经过原点,点C 在y 轴正半轴上,直线CA 交x 轴于点E ,直线CB 交x 轴于点F ,若3=AE AC ,则=CFBF 14 .8、(南平市2017-2018学年第一学期九年级期末质量检测)第16题图B Axxyy OOA P CB FE11.如图,在平面直角坐标系xoy 中,矩形OABC ,OA =2, OC =1,写出一个函数()0≠=k xk y ,使它的图象与矩形OABC 的边有两个公共点,这个函数的表达式可以为 如:x y 1=(答案不唯一,0<k <2的任何一个数) (答案不唯一). 9、(2016-2017学年福州市九年级(上)期末)15.已知▱ABCD 的面积为4,对角线AC 在y 轴上,点D 在第一象限内,且AD ∥x 轴,当双曲线y=经过B 、D 两点时,则k= 2 .解:由题意可画出图形,设点D 的坐标为(x ,y ),∴AD=x ,OA=y ,∵▱ABCD 的面积为4,∴AD•AC=2AD•OA=4,∴2xy=4,∴xy=2,∴k=xy=2,故答案为:210、(2016—2017南平市建阳外国语学校科技班九上期末数学试卷)9.如图,一次函数y=x+1的图象交x 轴于点E 、交反比例函数x y 2=的图象于点F (点F 在第一象限),过线段EF 上异于E 、F 的动点A 作x 轴的平行线交xy 2=的图象于点B ,过点A 、B 作x 轴的垂线段,垂足分别是点D 、C ,则矩形ABCD 的面积最大值为 4911、(2016-2017学年莆田二十五中九年级(上)期末数学试卷)yx FE CD BA O16.如图,过点O作直线与双曲线y=(k≠0)交于A,B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1,S2的数学量关系是2S1=S2.12、(2016-2017学年上学期莆田一中集团成员校九年级数学试卷(A))15.如下图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1= S2.(填“>”或“<”或“=”)13、(2016-2017学年漳州市平和县九年级(上)期末数学试卷)16.已知正比例函数y1=x,反比例函数y2=,由y1,y2构成一个新函数y=x+,其图象如图所示,(因其图象似双钩,我们称之为“双钩函数”)给出下列几个命题:①y的值不可能为1;②该函数的图象是中心对称图形;③当x>0时,该函数在x=1时取得最小值2;④在每个象限内,函数值y随自变量x的增大而增大.其中正确的命题是①②③(填所有正确命题的序号)。
中考数学真题分类之函数专题——反比例函数一.反比例函数的定义(共2小题) 1.已知反比例函数的解析式为y =|a|−2x,则a 的取值范围是( )A .a ≠2B .a ≠﹣2C .a ≠±2D .a =±2 2.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数二.反比例函数的图象(共1小题)3.已知ab <0,一次函数y =ax ﹣b 与反比例函数y =ax在同一直角坐标系中的图象可能( )A .B .C .D .三.反比例函数的性质(共2小题)4.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限5.关于反比例函数y =5x 的图象,下列说法正确的( ) A .经过点(2,3) B .分布在第二、第四象限 C .关于直线y =x 对称D .x 越大,越接近x 轴四.反比例函数系数k 的几何意义(共3小题)6.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y =kx(k >0)在第一象限的图象交于点E ,∠AOD =30°,点E 的纵坐标为1,△ODE 的面积是4√33,则k 的值是 .7.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数y =k1x(x >0)的图象经过点C ,反比例函数y =k 2x(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .8.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D (4,4)在反比例函数y =k x(x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值; (2)求△ACE 的面积.五.反比例函数图象上点的坐标特征(共8小题)9.如图,点A ,B 是直线y =x 上的两点,过A ,B 两点分别作x 轴的平行线交双曲线y =1x(x >0)于点C ,D .若AC =√3BD ,则3OD 2﹣OC 2的值为( )A .5B .3√2C .4D .2√310.、若点(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =kx(k <0)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 1>y 3>y 2D .y 2>y 3>y 111.如图,点A ,B 在双曲线y =3x(x >0)上,点C 在双曲线y =1x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC =BC ,则AB 等于( ) A .√2 B .2√2 C .4 D .3√212.反比例函数y =k x(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有 个.13.已知:函数y 1=|x |与函数y 2=1|x|的部分图象如图所示,有以下结论:①当x <0时,y 1,y 2都随x 的增大而增大; ②当x <﹣1时,y 1>y 2;③y 1与y 2的图象的两个交点之间的距离是2; ④函数y =y 1+y 2的最小值是2. 则所有正确结论的序号是 . 14.如图,在平面直角坐标系中,反比例y =kx(k >0)的图象和△ABC 都在第一象限内,AB =AC =52,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC 向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为 .15.一个不透明的口袋中有三个完全相同的小球,球上分别标有数字﹣1,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点M 的横坐标x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点M 的纵坐标y .(1)用列表法或树状图法,列出点M (x ,y )的所有可能结果;(2)求点M (x ,y )在双曲线y =−2x上的概率.16.如图,已知菱形ABCD 的对称中心是坐标原点O ,四个顶点都在坐标轴上,反比例函数y =k x(k ≠0)的图象与AD 边交于E (﹣4,12),F (m ,2)两点. (1)求k ,m 的值;(2)写出函数y =kx图象在菱形ABCD 内x 的取值范围.六.待定系数法求反比例函数解析式(共3小题) 17.如图,在平面直角坐标系xOy 中,A (﹣1,2).(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是 .(2)点C 与点A 关于原点O 对称,则点C 的坐标是 . (3)反比例函数的图象经过点B ,则它的解析式是 . (4)一次函数的图象经过A ,C 两点,则它的解析式是 .18.如图,已知平行四边形OABC 中,点O 为坐标原点,点A (3,0),C (1,2),函数y =kx (k ≠0)的图象经过点C . (1)求k 的值及直线OB 的函数表达式: (2)求四边形OABC 的周长.19.如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,2),将线段AB绕点A 顺时针旋转90°得到线段AC ,反比例函数y =kx(k ≠0,x >0)的图象经过点C .(1)求直线AB 和反比例函数y =kx (k ≠0,x >0)的解析式;(2)已知点P 是反比例函数y =kx (k ≠0,x >0)图象上的一个动点,求点P 到直线AB 距离最短时的坐标.七.反比例函数与一次函数的交点问题(共5小题)20.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <221.如图,一次函数y 1=(k ﹣5)x +b 的图象在第一象限与反比例函数y 2=kx的图象相交于A ,B 两点,当y 1>y 2时,x 的取值范围是1<x <4,则k = .22.已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是 .23.如图,已知反比例函数y =k x(x >0)的图象与一次函数y =−12x +4的图象交于A 和B (6,n )两点. (1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =kx(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.24.如图,一次函数y =mx +b 的图象与反比例函数y =kx的图象交于A (3,1),B (−12,n )两点.(1)求该反比例函数的解析式;(2)求n 的值及该一次函数的解析式.八.反比例函数的应用(共1小题)25.南宁至玉林高速铁路已于去年开工建设.玉林良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x 千立方米,总需用时间y 天,且完成首期工程限定时间不超过600天. (1)求y 与x 之间的函数关系式及自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,求实际挖掘了多少天才能完成首期工程?九.反比例函数综合题(共1小题)26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=k1x过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=k2x 与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=k3x与AD交于点P.当△AEP为等腰三角形时,求m的值.参考答案与试题解析一.反比例函数的定义(共2小题) 1.【解答】解:根据反比例函数解析式中k 是常数,不能等于0,由题意可得:|a |﹣2≠0, 解得:a ≠±2, 故选:C . 2.【解答】解:设等腰三角形的底角为y ,顶角为x ,由题意,得y =−12x +90°, 故选:B .二.反比例函数的图象(共1小题)3.【解答】解:若反比例函数y =ax经过第一、三象限,则a >0.所以b <0.则一次函数y =ax ﹣b 的图象应该经过第一、二、三象限;若反比例函数y =ax经过第二、四象限,则a <0.所以b >0.则一次函数y =ax ﹣b 的图象应该经过第二、三、四象限. 故选项A 正确; 故选:A .三.反比例函数的性质(共2小题) 4.【解答】解:∵k =2>0,∴反比例函数经过第一、三象限; 故选:A .5.【解答】解:A 、把点(2,3)代入反比例函数y =5x得2.5≠3不成立,故A 选项错误;B 、∵k =5>0,∴它的图象在第一、三象限,故B 选项错误;C 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故C 选项正确;D 、反比例函数有两条对称轴,y =x 和y =﹣x ;当x <0时,x 越小,越接近x 轴,故D 选项错误. 故选:C .四.反比例函数系数k 的几何意义(共3小题) 6.【解答】解:如图,作EM ⊥x 轴于点M ,则EM =1. ∵△ODE 的面积是4√33, ∴12OD •EM =4√33,∴OD =8√33. 在直角△OAD 中,∵∠A =90°,∠AOD =30°, ∴∠ADO =60°,∴∠EDM =∠ADO =60°.在直角△EMD 中,∵∠DME =90°,∠EDM =60°, ∴DM =EM tan60°=√3=√33, ∴OM =OD +DM =3√3, ∴E (3√3,1).∵反比例函数y =kx(k >0)的图象过点E ,∴k =3√3×1=3√3. 故答案为3√3.7.【解答】解:设点B 的坐标为(a ,0),则A 点坐标为(﹣a ,0) 由图象可知,点C (a ,k 1a),E (﹣a ,−k 2a),D (﹣a ,k 1a),F (−a3,k 1a) 矩形ABCD 面积为:2a •k 1a=2k 1∴S △DEF =DE⋅DF 2=23a×(−2k 2a)2=−23k 2S △BCF =CF⋅BC2=43a×k 1a2=23k 1S △ABE =AB⋅AE2=2a×(−k 2a)2=−k 2∵S △BEF =7∴2k 1+23k 2−23k 1+k 2=7 ①∵k 1+3k 2=0∴k 2=−13k 1代入①式得43k 1+53×(−13k 1)=7解得k 1=9 故答案为:9 8.【解答】解:(1)由已知可得AD =5, ∵菱形ABCD ,∴B (6,0),C (9,4),∵点D (4,4)在反比例函数y =kx(x >0)的图象上, ∴k =16,将点C (9,4)代入y =23x +b ,∴b =﹣2;(2)E (0,﹣2),直线y =23x ﹣2与x 轴交点为(3,0), ∴S △AEC =12×2×(2+4)=6;五.反比例函数图象上点的坐标特征(共8小题) 9.【解答】解:延长CA 交y 轴于E ,延长BD 交y 轴于F . 设A 、B 的横坐标分别是a ,b , ∵点A 、B 为直线y =x 上的两点, ∴A 的坐标是(a ,a ),B 的坐标是(b ,b ).则AE =OE =a ,BF =OF =b .∵C 、D 两点在交双曲线y =1x (x >0)上,则CE =1a,DF =1b. ∴BD =BF ﹣DF =b −1b,AC =1a−a .又∵AC =√3BD , ∴1a−a =√3(b −1b),两边平方得:a 2+1a2−2=3(b 2+1b2−2),即a 2+1a 2=3(b 2+1b2)﹣4,在直角△ODF 中,OD 2=OF 2+DF 2=b 2+1b2,同理OC 2=a 2+1a2, ∴3OD 2﹣OC 2=3(b 2+1b 2)﹣(a 2+1a2)=4.故选:C .10.【解答】解:∵k <0,∴在每个象限内,y 随x 值的增大而增大, ∴当x =﹣1时,y 1>0, ∵2<3, ∴y 2<y 3<y 1 故选:C .11.【解答】解:点C在双曲线y=1x上,AC∥y轴,BC∥x轴,设C(a,1a ),则B(3a,1a),A(a,3a),∵AC=BC,∴3a −1a=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2√2,故选:B.12.【解答】解:观察反比例函数y=kx (x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.13.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而减小,y2随x的增大而增大;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④∵(x﹣1)2≥0,∴x2+1≥2|x|,∵y=y1+y2=|x|+1|x|=x2+1|x|≥2,∴函数y =y 1+y 2的最小值是2. 故④正确.综上所述,正确的结论是②③④. 故答案为②③④.14.【解答】解:∵AB =AC =52,BC =4,点A (3,5). ∴B (1,72),C (5,72), 将△ABC 向下平移m 个单位长度,∴A (3,5﹣m ),C (5,72−m ), ∵A ,C 两点同时落在反比例函数图象上,∴3(5﹣m )=5(72−m ), ∴m =54;故答案为54;15.【解答】解:(1)用树状图表示为: 点M (x ,y )的所有可能结果;(﹣1,1)(﹣1,2)(1,﹣1)(1,2)(2,﹣1)(2,1)共六种情况.(2)在点M 的六种情况中,只有(﹣1,2)(2,﹣1)两种在双曲线y =−2x上, ∴P =26=13;因此,点M (x ,y )在双曲线y =−2x上的概率为13.16.【解答】解:(1)∵点E (﹣4,12)在y =k x上,∴k =﹣2,∴反比例函数的解析式为y =−2x, ∵F (m ,2)在y =−2x上,∴m =﹣1.(2)函数y =kx图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.六.待定系数法求反比例函数解析式(共3小题) 17.【解答】解:(1)将点A 向右平移3个单位长度,再向上平移1个单位长度,得到点B ,则点B 的坐标是(2,3);(2)点C 与点A 关于原点O 对称,则点C 的坐标是(1,﹣2);(3)设反比例函数解析式为y =kx, 把B (2,3)代入得:k =6,∴反比例函数解析式为y =6x;(4)设一次函数解析式为y =mx +n ,把A (﹣1,2)与C (1,﹣2)代入得:{−m +n =2m +n =−2,解得:{m =−2n =0,则一次函数解析式为y =﹣2x .故答案为:(1)(2,3);(2)(1,﹣2);(3)y =6x;(4)y =﹣2x .18.【解答】解:(1)依题意有:点C (1,2)在反比例函数y =kx(k ≠0)的图象上,∴k =xy =2, ∵A (3,0) ∴CB =OA =3, 又CB ∥x 轴, ∴B (4,2),设直线OB 的函数表达式为y =ax , ∴2=4a ,∴a =12,∴直线OB 的函数表达式为y =12x ;(2)作CD ⊥OA 于点D , ∵C (1,2),∴OC =√12+22=√5, 在平行四边形OABC 中, CB =OA =3,AB =OC =√5,∴四边形OABC 的周长为:3+3+√5+√5=6+2√5, 即四边形OABC 的周长为6+2√5.19.【解答】解:(1)将点A(1,0),点B(0,2),代入y=mx+b,∴b=2,m=﹣2,∴y=﹣2x+2;∵过点C作CD⊥x轴,∵线段AB绕点A顺时针旋转90°得到线段AC,∴△ABO≌△CAD(AAS),∴AD=OB=2,CD=OA=1,∴C(3,1),∴k=3,∴y=3x ;(2)设与AB平行的直线y=﹣2x+h,联立﹣2x+h=3x ,∴﹣2x2+hx﹣3=0,当△=h2﹣24=0时,h=2√6或﹣2√6(舍弃),此时点P到直线AB距离最短;∴P(√62,√6);七.反比例函数与一次函数的交点问题(共5小题)20.【解答】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=c x (c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.21.【解答】解:由已知得A、B的横坐标分别为1,4,所以有{k −5+b =k4(k −5)+b =k 4解得k =4, 故答案为4. 22.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称, ∴该点的坐标为(﹣2,﹣4). 故答案为:(﹣2,﹣4).23.【解答】解:(1)当x =6时,n =−12×6+4=1, ∴点B 的坐标为(6,1). ∵反比例函数y =kx 过点B (6,1),∴k =6×1=6. (2)∵k =6>0,∴当x >0时,y 随x 值增大而减小, ∴当2≤x ≤6时,1≤y ≤3.24.【解答】解:(1)∵反比例函数y =kx的图象经过A (3,1), ∴k =3×1=3,∴反比例函数的解析式为y =3x;(2)把B (−12,n )代入反比例函数解析式,可得 −12n =3, 解得n =﹣6,∴B (−12,﹣6),把A (3,1),B (−12,﹣6)代入一次函数y =mx +b ,可得{1=3m +b−6=−12m +b,解得{m =2b =−5,∴一次函数的解析式为y =2x ﹣5.八.反比例函数的应用(共1小题)25.【解答】解:(1)根据题意可得:y =600x, ∵y ≤600, ∴x ≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:600 m −600m+100=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.九.反比例函数综合题(共1小题)26.【解答】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=k1x 过点E,∴k1=12.∴反比例函数的解析式为y=12x.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴DNBM =CDBC,∴DNCD =BMCB,∴CNCD =CMCB,∵∠MCN =∠BCD , ∴△MCN ∽△BCD , ∴∠CNM =∠CDB , ∴MN ∥BD ,∴△CMN ∽△CBD . ∵B (6,0),D (0,8),∴直线BD 的解析式为y =−43x +8, ∵C ,C ′关于MN 对称, ∴CC ′⊥MN , ∴CC ′⊥BD , ∵C (6,8),∴直线CC ′的解析式为y =34x +72, ∴C ′(0,72).(3)如图3中,①当AP =AE =5时,∵P (m ,5),E (m +3,4),P ,E 在反比例函数图象上, ∴5m =4(m +3), ∴m =12.②当EP =AE 时,点P 与点D 重合,∵P (m ,8),E (m +3,4),P ,E 在反比例函数图象上, ∴8m =4(m +3), ∴m =3.③显然PA ≠PE ,若相等,点P 在点E 的下方,显然不可能. 综上所述,满足条件的m 的值为3或12.。
2024年中考数学真题汇编专题13 反比例函数及其应用+答案详解(试题部分)一、单选题1.(2024·安徽·中考真题)已知反比例函数()0ky k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3,则k 的值为( ) A .3−B .1−C .1D .32.(2024·重庆·中考真题)反比例函数10y x=−的图象一定经过的点是( ) A .()1,10B .()2,5−C .()2,5D .()2,83.(2024·天津·中考真题)若点()()()123,1,,1,,5A x B x C x −都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x << B .132x x x << C .321x x x <<D .213x x x <<4.(2024·广西·中考真题)已知点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,若120x x <<,则有( )A .120y y <<B .210y y <<C .120y y <<D .120y y <<5.(2024·浙江·中考真题)反比例函数4y x=的图象上有()1,P t y ,()24,Q t y +两点.下列正确的选项是( )A .当4t <−时,210y y <<B .当40t −<<时,210y y <<C .当40t −<<时,120y y <<D .当0t >时,120y y <<6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( ) A .若5x =,则100y = B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍7.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++−=无实数根,则函数y kx =与函数2y x=的图象交点个数为( ) A .0 B .1 C .2 D .38.(2024·重庆·中考真题)已知点()3,2−在反比例函数()0ky k x=≠的图象上,则k 的值为( ) A .3−B .3C . 6−D .69.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数k y x=的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,2OE AE =,若四边形ODAF 的面积为2,则k 的值是( )A .25B .35C .45D .8510.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A .4.5B .3.5C .3D .2.511.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是( )A .0B .1C .2D .412.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若BC B 的坐标是( )A .(B .()0,3C .()0,4D .(0,13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC 中,AB AC =,反比例函数()0ky k x=≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则ANAB的值为( )A .13B .14C .15D .25二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()13,y 和()23,y −,则12y y +的值是 .15.(2024·云南·中考真题)已知点()2,P n 在反比例函数10y x=的图象上,则n = . 16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m −,()2,1B −.则满足12y y ≤的x 的取值范围 .17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为 .18.(2024·陕西·中考真题)已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y + 0.19.(2024·湖北武汉·中考真题)某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是 .20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数(0)ky x x=<的图象经过平行四边形ABCO 的顶点A ,OC 在x 轴上,若点()1,3B −,3ABCOS=,则实数k 的值为 .21.(2024·内蒙古包头·中考真题)若反比例函数12y x =,23y x=−,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a = . 22.(2024·四川遂宁·中考真题)反比例函数1k y x−=的图象在第一、三象限,则点()3k −,在第 象限. 23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)ky x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是 .25.(2024·四川广元·中考真题)已知y =与()0ky x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0ky x x=>上点C 处,则B 点坐标为 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x=上,点B 落在反比例函数()0ky k x=≠上,则k = .27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)ky x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号)28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”. (1)下列三个函数的图象上存在“近轴点”的是 (填序号); ①3y x =−+;②2y x=;③221y x x =−+−. (2)若一次函数3y mx m =−图象上存在“近轴点”,则m 的取值范围为 .三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0ky x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0ky x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数ky x=的表达式; (2)连接AD ,求ACD 的面积.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y x b =−+和反比例函数9y x=的图象相交于点()1,A m ,(),1B n .(1)求点A ,点B 的坐标及一次函数的解析式; (2)根据图象,直接写出不等式9x b x−+>的解集. 31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围). (2)当电阻R 为3Ω时,求此时的电流I .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与ky x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格; (2)结合表格,当2y x b =+的图像在ky x=的图像上方时,直接写出x 的取值范围. 33.(2024·湖北·中考真题)一次函数y x m =+经过点()3,0A −,交反比例函数ky x=于点(),4B n .(1)求m n k ,,; (2)点C 在反比例函数ky x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围. 34.(2024·四川凉山·中考真题)如图,正比例函数112y x =与反比例函数()20ky x x=>的图象交于点()2A m ,.(1)求反比例函数的解析式; (2)把直线112y x =向上平移3个单位长度与()20ky x x=>的图象交于点B ,连接,AB OB ,求AOB 的面积. 35.(2024·贵州·中考真题)已知点()1,3在反比例函数ky x=的图象上. (1)求反比例函数的表达式;(2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________. 37.(2024·四川乐山·中考真题)如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.38.(2024·四川眉山·中考真题)如图,在平面直角坐标系xOy 中,一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,与x 轴,y 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的表达式;(2)若点P 在y 轴上,当PAB 的周长最小时,请直接写出点P 的坐标;(3)将直线AB 向下平移a 个单位长度后与x 轴,y 轴分别交于E ,F 两点,当12EF AB =时,求a 的值. 39.(2024·甘肃临夏·中考真题)如图,直线y kx =与双曲线4y x=−交于A ,B 两点,已知A 点坐标为(),2a .(1)求a ,k 的值;(2)将直线y kx =向上平移()0m m >个单位长度,与双曲线4y x=−在第二象限的图象交于点C ,与x 轴交于点E ,与y 轴交于点P ,若PE PC =,求m 的值. 40.(2024·四川广元·中考真题)如图,已知反比例函数1ky x=和一次函数2y mx n =+的图象相交于点()3,A a −,3,22B a ⎛⎫+− ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1ky x=与2y mx n =+的解析式;(2)当12y y >时,请结合图象直接写出自变量x 的取值范围; (3)求AOB 的面积.41.(2024·内蒙古赤峰·中考真题)在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____; (2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值; (3)已知,双曲线1ky x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标.2024年中考数学真题汇编专题13 反比例函数及其应用+答案详解(答案详解)一、单选题1.(2024·安徽·中考真题)已知反比例函数()0ky k x=≠与一次函数2y x =−的图象的一个交点的横坐标为3,则k 的值为( ) A .3− B .1− C .1 D .32.(2024·重庆·中考真题)反比例函数10y x=−的图象一定经过的点是( ) A .()1,10 B .()2,5− C .()2,5 D .()2,83.(2024·天津·中考真题)若点()()()123,1,,1,,5A x B x C x −都在反比例函数5y x=的图象上,则123,,x x x 的大小关系是( )A .123x x x <<B .132x x x <<C .321x x x <<D .213x x x <<【详解】解:50k =>5y x=的图象分布在第一、三象限,在每一象限点()3,5C x ,都在反比例函数(),1x −在反比例函数4.(2024·广西·中考真题)已知点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,若120x x <<,则有( )A .120y y <<B .210y y <<C .120y y <<D .120y y <<【详解】解: 5.(2024·浙江·中考真题)反比例函数4y x=的图象上有()1,P t y ,()24,Q t y +两点.下列正确的选项是( )A .当4t <−时,210y y <<B .当40t −<<时,210y y <<C .当40t −<<时,120y y <<D .当0t >时,120y y <<6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( ) A .若5x =,则100y = B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍7.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++−=无实数根,则函数y kx =与函数2y x=的图象交点个数为( ) A .0 B .1 C .2 D .38.(2024·重庆·中考真题)已知点()3,2−在反比例函数()0ky k x=≠的图象上,则k 的值为( ) A .3− B .3C . 6−D .69.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数ky x=的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,2OE AE =,若四边形ODAF 的面积为2,则k 的值是( )A .25B .35C .45D .85EM AC ,设,由OME OCA ∽,可得O O F OBDCFA D SSS ++四边形,列方程,即可得出k 的值.【详解】过点E 作EM OC ⊥,则EM AC ,∴OME OCA ∽, ∴OM EM OEOC AC OA== 设k E a a ⎛⎫ ⎪⎝⎭,,∵2OE AE = 2OM EM ==, OBDOCFS SS ++四边形3322k a a⋅⋅,解得:10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线()120y x x=>经过A 、B 两点,连接OA 、AB ,过点B 作BD y ⊥轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则AEB △的面积是( )A .4.5B .3.5C .3D .2.5,证明AFE ODE ∽,有OD 1122DF a ==,AF =【详解】如图,过点A 作AF BD ⊥设12,A a a ⎛⎫⎪⎝⎭,0a >,∵BD y ⊥轴,AF BD ⊥∴AF y ∥轴,DF =∴AFE ODE ∽, AF AE EFOD OE DE==, E 为AO 的中点, AE OE =, 1AF AE EFOD OE DE===ABES=故选:A .11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数42=+y x 的图像与坐标轴的交点个数是( )A .0B .1C .2D .412.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O 是坐标原点,点()4,2A 在函数()0,0ky k x x=>>的图象上.将直线OA 沿y 轴向上平移,平移后的直线与y 轴交于点B ,与函数()0,0ky k x x=>>的图象交于点C .若BC B 的坐标是( )A .(B .()0,3C .()0,4D .(0,∵()4,2A ,∴4OE =,222425OA =+=∴42sin 525OE OAE OA ∠===∵()4,2A 在反比例函数的图象上,13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC 中,AB AC =,反比例函数()0ky k x=≠的图象经过点A 、B 及AC 的中点M ,BC x ∥轴,AB 与y 轴交于点N .则ANAB的值为( )A .13B .14C .15D .25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数()0ky k x=≠的图象经过点()13,y 和()23,y −,则12y y +的值是 . 【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.15.(2024·云南·中考真题)已知点()2,P n 在反比例函数10y x=的图象上,则n = . 【详解】解:点16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线()10y ax b a =+≠与双曲线()20ky k x=≠交于点()1,A m −,()2,1B −.则满足12y y ≤的x 的取值范围 .【答案】10x −≤<或2x ≥【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当10x −≤<或2x ≥时,12y y ≤, ∴满足12y y ≤的x 的取值范围为10x −≤<或2x ≥, 故答案为:10x −≤<或2x ≥.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f 与弦长l 成反比例关系,即kf l=(k 为常数.0k ≠),若某乐器的弦长l 为0.9米,振动频率f 为200赫兹,则k 的值为 . 【答案】18018.(2024·陕西·中考真题)已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y + 0.19.(2024·湖北武汉·中考真题)某反比例函数ky x=具有下列性质:当0x >时,y 随x 的增大而减小,写出一个满足条件的k 的值是 . 【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可. 【详解】解:∵当0x >时,y 随x 的增大而减小, ∴0k >故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数(0)ky x x=<的图象经过平行四边形ABCO 的顶点A ,OC 在x 轴上,若点()1,3B −,3ABCOS=,则实数k 的值为 .ABCOS =【详解】ABCO 是平行四边形纵坐标相同()1,3B − A ∴的纵坐标是3 A 在反比例函数图象上∴将3y =,33k A ⎛⎫∴ ⎪⎝⎭AB ∴=−ABCOS=3AB ∴⨯即:1⎛−− ⎝解得:k =故答案为:21.(2024·内蒙古包头·中考真题)若反比例函数12y x =,23y x=−,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a = . 【详解】解:函数23y x =−12b a −∴=故答案为:22.(2024·四川遂宁·中考真题)反比例函数1k y x−=的图象在第一、三象限,则点()3k −,在第 象限.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数(0)ky x x=>的图像上,BC x ⊥轴于点C ,30BAC ∠=︒,将ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为 .24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为()5,0,()2,6,过点B 作BC x ∥轴交y 轴于点C ,点D 为线段AB 上的一点,且2BD AD =.反比例函数(0)ky x x=>的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是 .OCEOADSS−即可求解,熟练掌握知识点的应用是解题的关键.x ⊥轴于M ,作12OCEOADS S−=⨯25.(2024·四川广元·中考真题)已知y =与()0ky x x=>的图象交于点()2,A m ,点B 为y 轴上一点,将OAB 沿OA 翻折,使点B 恰好落在()0ky x x=>上点C 处,则B 点坐标为 .Rt tan AHO ,130=︒,B 为y 轴上一点,将OAB 沿OA 2130=∠=OB , 390=︒−∠︒, 3m m,26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x=上,点B 落在反比例函数()0ky k x=≠上,则k = .27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x=>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E ' ④B BD BB O ''∠=∠.其中正确的结论有 .(填写所有正确结论的序号) 的几何意义可得OBD 的面积等于四边形为矩形,可得当OD 合题意;如图,设平移距离为n ,可得,证明B BD A OB '''∽,可得,(0,2)C ,四边形∵1212AOBA ODS S'==⨯=, ∴BOKAKDA SS '=四边形,BOK BKD BKD AKDA S S S S '+=+四边形,∴OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',∵DE y ⊥轴,DA O EOA '∠=∠∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴B BD A OB '''∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点()0,1是函数1y x =+图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是 (填序号);①3y x =−+;②2y x=;③221y x x =−+−. (2)若一次函数3y mx m =−图象上存在“近轴点”,则m 的取值范围为 .三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x =>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x=>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式; (2)连接AD ,求ACD 的面积.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y x b =−+和反比例函数9y x=的图象相交于点()1,A m ,(),1B n .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式9x b x−+>的解集.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+的图像在k y x=的图像上方时,直接写出x 的取值范围.∴当2y x b =+的图像在k y x =的图像上方时,33.(2024·湖北·中考真题)一次函数y x m =+经过点()3,0A −,交反比例函数k y x =于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x=第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围. 【答案】(1)3m =,1n =,4k =;(2)1a >.34.(2024·四川凉山·中考真题)如图,正比例函数112y x =与反比例函数()20k y x x=>的图象交于点()2A m ,.(1)求反比例函数的解析式;(2)把直线112y x =向上平移3个单位长度与()20k y x x=>的图象交于点B ,连接,AB OB ,求AOB 的面积. AOB ADO SS =,代入)解:点(4,2)A 在反比例函数图象上,8k ∴=,∴反比例函数解析式为(2)解:把直线35.(2024·贵州·中考真题)已知点()1,3在反比例函数ky x=的图象上. (1)求反比例函数的表达式;(2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0ky x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为________.37.(2024·四川乐山·中考真题)如图,已知点()1,A m 、(),1B n 在反比例函数()30y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点()0,1C .(1)求m 、n 的值和一次函数的表达式; (2)连接AB ,求点C 到线段AB 的距离.ABCS=)点又一次函数C 点Rt ADB 中,又12ABCSBC =1322⨯⨯=⨯322CE =,即点38.(2024·四川眉山·中考真题)如图,在平面直角坐标系xOy 中,一次函数y kx b =+与反比例函数()0my x x=>的图象交于点()1,6A ,(),2B n ,与x 轴,y 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的表达式;(2)若点P在y轴上,当PAB的周长最小时,请直接写出点P的坐标;(3)将直线AB向下平移a个单位长度后与x轴,y轴分别交于E,F两点,当12EF AB=时,求a的值.,则此时,PAB的周长最小,根据轴对称5,于是得到点8a+−,得到)解:一次函数(此时,PAB 的周长最小,点()1,6A ,()1,6E ∴−,BE 的解析式为12EF AB =39.(2024·甘肃临夏·中考真题)如图,直线y kx =与双曲线4y x=−交于A ,B 两点,已知A 点坐标为(),2a .(1)求a ,k 的值;(2)将直线y kx =向上平移()0m m >个单位长度,与双曲线4y x=−在第二象限的图象交于点C ,与x 轴交于点E ,与y 轴交于点P ,若PE PC =,求m 的值. ∴FCP OEP ∴∠=∠,CFP ∠PE PC =,(AAS CFP EOP ∴≌CF OE =,OP PF =∵直线y x =−向上平移令0x =,得y m =,令(),0E m ∴,()0,P m ,双曲线40.(2024·四川广元·中考真题)如图,已知反比例函数1ky x=和一次函数2y mx n =+的图象相交于点()3,A a −,3,22B a ⎛⎫+− ⎪⎝⎭两点,O 为坐标原点,连接OA ,OB .(1)求1ky x=与2y mx n =+的解析式; (2)当12y y >时,请结合图象直接写出自变量x 的取值范围; (3)求AOB 的面积.12AOBAOCBOCS SSOC =+=12AOBAOCBOCSSSOC =+=41.(2024·内蒙古赤峰·中考真题)在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N −,()30,2N −中,是点M 等和点的有_____; (2)若点()3,2M −的等和点N 在直线y x b =+上,求b 的值; (3)已知,双曲线1ky x=和直线22y x =−,满足12y y <的x 取值范围是4x >或20x −<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =−上,求点P 的坐标.。
《反比例函数》章末提升试题一.选择题1.反比例函数y=﹣中常数k为()A.﹣3 B.2 C.﹣D.﹣2.函数y=﹣图象上有两点A(x1,y1)和B(x2,y2),若y1<y2<0,则下列关于x1、x2的大小关系正确的是()A.x1>x2B.x1=x2C.x1<x2D.无法确定3.若反比例函数y=图象经过点(5,﹣1),该函数图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限4.在同一坐标系中函数y=kx和y=的大致图象必是()A.B.C.D.5.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.106.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB 的延长线交x轴于点C,若S△AOC=3.则k的值为()A.2 B.1.5 C.4 D.67.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,且与直角边AB 相交于点C.若点B的坐标为(4,6),则△AOC的面积为()A.3 B.6 C.9 D.129.已知直线y=x与函数y=(k≠0)图象的一个交点的横坐标为4,则另一个交点的纵坐标是()A.2 B.C.﹣D.﹣210.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x 轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△ADC=.则k的值为()A.B.16 C.D.10二.填空题11.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=.12.若正比例函数y=﹣x的图象与反比例函数y=(k≠)的图象有公共点,则k 的取值范围是13.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=.14.如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为.15.如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为.16.如图:M为反比例函数y=图象上一点,MA⊥y轴于A,S△MAO=4时,k=.17.如图,已知反比例函数y=(x>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB交于点D,连接OD,若点B的坐标为(2,3),则△OAD的面积为.三.解答题18.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.19.如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.(1)求出k,b及m的值.(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是.(3)若P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.20.如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B.(1)求反比例函数的解析式;(2)若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积.21.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.23.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.参考答案一.选择题(共10小题)1.解:反比例函数y=﹣中常数k为﹣,故选:D.2.解:∵函数y=﹣中,k=﹣2,∴在每个象限内,y随着x的增大而增大,又∵A(x1,y1)和B(x2,y2)中y1<y2<0,∴点A和点B在第四象限,∴x1<x2,故选:C.3.解:∵反比例函数y=的图象经过点(5,﹣1),∴k=5×(﹣1)=﹣5<0,∴该函数图象在第二、四象限.故选:D.4.解:在同一坐标系中函数y=kx和y=的大致图象必是,故选:C.5.解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|﹣k|,∴|﹣k|=10,∵k<0,∴k=﹣10.故选:A.6.解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x 轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD=S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC=S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.故选:B.7.解:作DH⊥OA于H.∵B(4,6),OD=DB,∴D(2,3),∴S△ODH=×2×3=3,∵S△AOC=S△ODH=,∴S△AOC=3,故选:A.8.解:A、由反比例函数图象得函数y=(k为常数,k≠0)中k>0,根据一次函数图象可得﹣k>0,则k<0,则选项错误;B、由反比例函数图象得函数y=(k为常数,k≠0)中k>0,根据一次函数图象可得﹣k>0,则k<0,则选项错误;C、由反比例函数图象得函数y=(k为常数,k≠0)中k<0,根据一次函数图象可得﹣k<0,则k>0,则选项错误;D、由反比例函数图象得函数y=(k为常数,k≠0)中k>0,根据一次函数图象可得﹣k<0,则k>0,故选项正确.故选:D.9.解:把x=4代入y=x,可得y=2,即一个交点的坐标为(4,2),∵直线y=x与函数y=(k≠0)图象的两个交点关于原点对称,∴另一个交点为(﹣4,﹣2),∴另一个交点的纵坐标是﹣2,故选:D.10.解:作AE⊥OD于E,CF⊥OD于F.∵BC:CD=2:1,S△ADC=,∴S△ACB=,∵OA=AB,∴B(2m,2n),S△AOC=S△ACB=,∵A、C在y=上,BC=2CD,∴C(m,n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴•(n+n)×m=,∴mn=16,故选:B.二.填空题(共7小题)11.解:∵BD⊥CD,BD=2,∴S△BCD=BD•CD=3,即CD=3,∵C(2,0),即OC=2,∴OD=OC+CD=2+3=5,∴B(5,2),代入反比例解析式得:k=10,即y=,则S△AOC=5,故答案为:512.解:∵正比例函数y=﹣x的图象与反比例函数y=(k≠)的图象有公共点,∴﹣x=,∴x2+4k﹣2=0有解,∴△=0﹣16k+8≥0,解得k≤且k≠∴k<故答案为:k<13.解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣314.解:如图延长AB到D,使得AB=BD,连接CD,作AH⊥y轴于H,DE⊥y轴于E.设C (0,c).∵△ABC是等边三角形,∴AB=AC=BC,∵AB=BD,∴BA=BC=BD,∴△ACD是直角三角形,∵∠CAD=60°,∴DC=AC,∵∠ACD=∠AHC=∠DEC=90°,∴∠ACH+∠DCE=90°,∵∠ECD+∠CDE=90°,∴∠ACH=∠CDE,∴△ACH∽△CDE,∴===,∵A(1,),∴AH=1,CH=﹣c,∴EC=,DE=﹣c,∴D(﹣c,c﹣),∵BA=BD,∴B(,),∵A、B在y=上,∴=×,整理得:4c2﹣16c﹣11=0,解得c=﹣或(舍弃),∴C(0,﹣),∴AC===2,故答案为2.15.解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴==,∵点A的坐标为(4,2),∴AC=2,OC=4,∴AO==2,∴==即BD=8,DO=4,∴B(﹣4,8),∵反比例函数y=的图象经过点B,∴k的值为﹣4×8=﹣32.故答案为﹣3216.解:∵MA⊥y轴,∴S△AOM=|k|=4,∵k<0,∴k=﹣8.故答案为﹣8.17.解:∵点B的坐标为(2,3),点C为OB的中点,∴C点坐标为(1,1.5),∴k=1×1.5=1.5,即反比例函数解析式为y=,∴S△OAD=×1.5=.故答案为:.三.解答题(共6小题)18.解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,x≥10,或﹣4≤x<019.解:(1)把B(﹣1,2)代入y=得m=﹣1×2=﹣2,把A(﹣4,a)代入y=﹣得a=﹣=,把A(﹣4,),B(﹣1,2)代入y=kx+b,得,解得:,∴k=,b=,m=﹣2;(2)结合图象可得:在第二象限内,当y1>y2时,x的取值范围是﹣4<x<﹣1,故答案为﹣4<x<﹣1;(3)设点P的横坐标为x P,∵AC⊥x轴,点A(﹣4,),∴AC=.∵△PCA的面积等于,∴××[x P﹣(﹣4)]=,解得x P=﹣2,∵P是线段AB上的一点,∴y P=×(﹣2)+=,∴点P的坐标为(﹣2,).20.解:(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=36.21.解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).22.解:(1)由题意得,10xy=100,∴y=(x>0);(2)当x=2cm时,y==5(cm).23.解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=∴m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2).∴,解得:,∴一次函数的表达式为y=x﹣2;(2)令y=0,∴x﹣2=0,x=2,∴一次函数y=x﹣2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=3,PC×1+PC×2=3.∴PC=2,∴点P的坐标为(0,0)、(4,0).。
(易错题精选)初中数学反比例函数经典测试题及答案(1)一、选择题1.如图,,A B 是双曲线k y x=上两点,且,A B 两点的横坐标分别是1-和5,ABO -∆的面积为12,则k 的值为( )A .3-B .4-C .5-D .6-【答案】C【解析】【分析】 分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,根据S △AOB =S 梯形ABED +S △AOD - S △BOE =12,故可得出k 的值.【详解】分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,∵双曲线k y x=的图象的一支在第二象限 ∴k<0, ∵A ,B 两点在双曲线k y x=的图象上,且A ,B 两点横坐标分别为:-1,-5, ∴A (-1,-k ),B (-5, 5k -) ∴S △AOB =S 梯形ABED +S △AOD - S △BOE=1||11||(||)(51)1||525225k k k k ⨯+⨯-+⨯⨯-⨯⨯=12||5k =12, 解得,k=-5故选:C .【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.2.如图, 在同一坐标系中(水平方向是x轴),函数kyx=和3y kx=+的图象大致是()A.B.C.D.【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=kx的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=kx的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A【解析】【分析】 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S V COF S =V 12=,则四边形OFAE 的面积为定值1k -.【详解】 ∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S V COF S =V 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.4.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.5.在平面直角坐标系中,分别过点(),0A m ,()2,0B m﹢作x 轴的垂线1l 和2l ,探究直线1l 和2l 与双曲线 3y x= 的关系,下列结论中错误..的是 A .两直线中总有一条与双曲线相交B .当m =1时,两条直线与双曲线的交点到原点的距离相等C .当20m -﹤﹤ 时,两条直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2【答案】D【解析】【分析】根据题意给定m 特定值、非特定值分别进行讨论即可得.【详解】当m =0时,2l 与双曲线有交点,当m =-2时,1l 与双曲线有交点,当m 0m 2≠≠,﹣时,12l l 与和双曲线都有交点,所以A 正确,不符合题意;当m 1=时,两交点分别是(1,3),(3,1)10B 正确,不符合题意;当2m 0-﹤﹤ 时,1l 在y 轴的左侧,2l 在y 轴的右侧,所以C 正确,不符合题意;两交点分别是33m (m 2m m 2++,和,)()2364m m 2+⎡⎤+⎣⎦,当m 无限大时,两交点的距离趋近于2,所以D不正确,符合题意,故选D.【点睛】本题考查了垂直于x轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.6.在同一平面直角坐标系中,反比例函数ybx=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即b<0.所以反比例函数ybx=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.7.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【答案】B【解析】【分析】先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3,从而得出S △AOB =3.【详解】∵A ,B 是反比例函数y=4x在第一象限内的图象上的两点, 且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2),当x=4时,y=1,即B (4,1),如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D , 则S △AOC =S △BOD =12×4=2, ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3, ∴S △AOB =3,故选B .【点睛】本题考查了反比例函数()0k y k x=≠中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S=12|k|是解题的关键.9.如图,是反比例函数3y x =和7y x=-在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点,A B ,点P 在x 轴上.则点P 从左到右的运动过程中,APB △的面积是( )A .10B .4C .5D .从小变大再变小【答案】C【解析】【分析】 连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5.故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.10.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】 如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠2为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,则△BEO ∽△OFA ,∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b=, 根据勾股定理可得:22221OE EB a a +=+22224OF AF b b+=+∴tan∠OAB=2222222212244baOB a bOAb bb b++==++=222214()24bbbb++=22∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.11.如图,直线y=k和双曲线y=kx相交于点P,过点P作PA0垂直于x轴,垂足为A0,x 轴上的点A0,A1,A2,…A n的横坐标是连续整数,过点A1,A2,…A n:分别作x轴的垂线,与双曲线y=kx(k>0)及直线y=k分别交于点B1,B2,…B n和点C1,C2,…C n,则n nn nA BC B 的值为()A.11n+B.11n-C.1nD.11n-【答案】C【解析】【分析】由x轴上的点A0,A1,A2,…,A n的横坐标是连续整数,则得到点An(n+1,0),再分别表示出∁n (n +1,k ),B n (n +1,k n 1+),根据坐标与图形性质计算出A n B n =k n 1+,B n ∁n =k ﹣k n 1+,然后计算n n n nA B B C . 【详解】∵x 轴上的点A 0,A 1,A 2,…,A n 的横坐标是连续整数,∴An (n +1,0),∵∁n A n ⊥x 轴,∴∁n (n +1,k ),B n (n +1,k n 1+), ∴A n B n =k n 1+,B n ∁n =k ﹣k n 1+, ∴n n n n A B B C =11k n k k n +-+=1n . 故选:C .【点睛】考查了反比例函数与一次函数的交点问题,解题关键是抓住了反比例函数与一次函数图象的交点坐标满足两函数解析式.12.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.13.如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数1(0)k y x x =>和2(0)k y x x=>的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )A .∠POQ 不可能等于90°B .12PM QM k k =C .这两个函数的图象一定关于x 轴对称D .△POQ 的面积是()1212k k + 【答案】D【解析】 【分析】【详解】解:根据反比例函数的性质逐一作出判断: A .∵当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据反比例函数的性质,由图形可得:1k >0,2k <0,而PM ,QM 为线段一定为正值,故12PM QM k k =,故此选项错误; C .根据1k ,2k 的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误; D .∵|1k |=PM•MO ,|2k |=MQ•MO ,∴△POQ 的面积=12MO•PQ=12MO (PM+MQ )=12MO•PM+12MO•MQ=()1212k k +. 故此选项正确.故选D .14.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1 B .小于12的任意实数 C .-1 D .不能确定【答案】C【解析】【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-Q 是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C .【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.15.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.16.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x =≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B【解析】【分析】 设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ),在mn y x = 中,令2y n =,解得:2m x =, ∵1CDE S =V ,∴111,12222m m n m n -=⨯=g 即 ∴4mn =∴4k =故选:B【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.17.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=k x在同一坐标系内的大致图象是( ) A . B . C . D .【答案】D【解析】【分析】依据抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,即可得到k <0,进而得出一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=k x 的图象在第二四象限,据此即可作出判断.【详解】∵抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,∴△=4﹣4(k+1)>0,解得k <0,∴一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=k x的图象在第二四象限, 故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x 轴的交点情况确定出k 的取值范围是解本题的关键.18.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【答案】B【解析】【分析】 设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得;3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩ 解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.19.已知反比例函数y =﹣2x的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】B【解析】【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】 解:∵反比例函数y =﹣2x, ∴函数图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∵函数的图象上有三个点(x 1,y 1),(x 2,y 2)、(x 3,y 3),且x 1>x 2>0>x 3, ∴y 2<y 1<0,y 3>0∴. y 2<y 1<y 3故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.20.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y轴于负半轴,y 随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y 随着x的增大而增减小,B. D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.。
第6章反比例函数一、单选题1.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,矩形ABCO,点B(10,8),点D在BC边上,连接AD,把ABD沿AD折叠,使点B恰好落在OC边上点E处,反比例函数(k≠0)的图象经过点D,则k的值为( )A.20B.30C.40D.482.(2022春·浙江丽水·八年级统考期末)反比例函数的图象必经过点()A.B.C.D.3.(2022春·浙江杭州·八年级统考期末)已知是关于的反比例函数,,和,是自变量与函数的两组对应值.则下列关系式中,成立的是()A.B.C.D.4.(2022春·浙江嘉兴·八年级统考期末)若反比例函数的图象经过点,则该反比例函数的表达式是()A.B.C.D.5.(2022春·浙江丽水·八年级统考期末)已知点,,都在反比例函数(a是常数)的图象上,且,则,,的大小关系为()A.B.C.D.6.(2022春·浙江湖州·八年级统考期末)已知反比例函数的图象经过点(2,﹣4),那么这个反比例函数的解析式是( )A.y=B.y=﹣C.y=D.y=﹣7.(2022春·浙江湖州·八年级统考期末)如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,则与的面积差为().A.32B.16C.8D.48.(2022春·浙江金华·八年级统考期末)已知反比例函数的图象位于第一、三象限,则a的取值范围是()A.B.C.D.二、填空题9.(2022春·浙江绍兴·八年级统考期末)若点A(2,m)在反比例函数y=的图像上,则m 的值为________.10.(2022春·浙江宁波·八年级统考期末)如图,已知在平面直角坐标系中,直线分别交轴,轴于点和点,分别交反比例函数,的图象于点和点,过点作轴于点,连结. 若的面积与的面积相等,则的值是_____.11.(2022春·浙江宁波·八年级统考期末)若点在反比例函数的图象上,则____(填“>”或“<”或“=”)12.(2022春·浙江绍兴·八年级统考期末)如图,直线与反比例函数的图象相交于A、C 两点,与x轴交于点D,过点D作轴交反比例函的图象于点E,连结,点B为y 轴上一点,满足,且恰好平行于x轴.若,则k的值为________.13.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,已知点的坐标为,射线与反比例函数的图像交于点,过点作轴的垂线交双曲线于点,过点作轴的垂线交双曲线于点,联结,那么的值是__________14.(2022春·浙江杭州·八年级统考期末)已知反比例函数,当时,的最大值与最小值之差是4,则________.15.(2022春·浙江绍兴·八年级统考期末)如图,在平面直角坐标系中,矩形的顶点A在x轴上,顶点C在y轴上,矩形的边在上,.反比例函数的图象经过点B,若阴影部分面积为6,则k的值为______________.16.(2022春·浙江嘉兴·八年级统考期末)如图,直线交反比例函数的图象于点A,交y轴于点B,将直线向下平移个单位后得到直线,交反比例函数的图象于点C.若的面积为,则k的值为____.17.(2022春·浙江丽水·八年级统考期末)如图,的顶点在轴正半轴上,反比例函数在第一象限经过点,与交于点,且,若的面积为9,则的值是______.18.(2022春·浙江宁波·八年级统考期末)如图,平面直角坐标系放置有两个三角板ABO和ACO,其中、为直角,,,和分别经过B、C两点,则的值为______.三、解答题19.(2022春·浙江丽水·八年级统考期末)已知是关于的反比例函数,当时,.(1)求此函数的表达式;(2)当时,函数值是,求的值.20.(2022春·浙江宁波·八年级统考期末)如图,一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)的图象交于点A(1,2)和B(﹣2,a),与y轴交于点M.(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当△AMN的面积为3时,求点N的坐标;(3)求不等式kx+b﹣<0的解集.(请直接写出答案)21.(2022春·浙江杭州·八年级校考期末)如图,一次函数的图象与反比例四数的图象相交于A(1,3),B(-3,n)两点.(1)求一次函数和反比例函数的表达式;(2)当一次函数的值大于反比例函数的值时,直接写出的取值范围.(3)直线交轴于点,点是轴上的点,的面积等于的面积,求点的坐标.22.(2022春·浙江金华·八年级统考期末)如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于A,BC⊥y轴于C,BA=3,BC=5,有一反比例函数图像刚好过点B.(1)分别求出过点B的反比例函数和过A,C两点的一次函数的表达式.(2)动点P在射线CA(不包括C点)上,过点P作直线l⊥x轴,交反比例函数图像于点D.是否存在这样的点Q,使得以点B,D,P,Q为顶点的四边形为菱形?若存在,求出点Q的坐标;若不存在,请说明理由.23.(2022春·浙江嘉兴·八年级统考期末)如图,经过坐标原点O的直线交反比例函数的图象于点,B.点C是x轴上异于点O的动点,点D与点C关于y轴对称,射线交y轴于点E,连结,,.(1)①写出点B的坐标.②求证:四边形是平行四边形.(2)当四边形是矩形时,求点C的坐标.(3)点C在运动过程中,当A,C,E三点中的其中一点到另两点的距离相等时,求的值.24.(2022春·浙江湖州·八年级统考期末)如图一次函数y=kx+b的图像与反比例函数的图像交于点A(2,5)和点B(n,2).(1)求m,n的值;(2)连接OA,OB,求△OAB的面积.25.(2022春·浙江舟山·八年级统考期末)背景:点A在反比例函数的图象上,轴于点B,轴于点C,分别在射线上取点D,E,使得四边形为正方形.如图1,点A在第一象限内,当时,小李测得.探究:通过改变点A的位置,小李发现点D,A的横坐标之间存在函数关系.请有助小李解决下列问题.(1)求k的值.(2)设点A,D的横坐标分别为x,z,将z关于x的函数称为“Z函数”.如图2,小李画出了时“Z函数”的图象.①求这个“Z函数”的表达式.②补画时“Z函数”的图象,并写出这个函数的性质(两条即可).26.(2022春·浙江温州·八年级统考期末)如图,某校劳动小组计划利用已有的一堵长为6m的墙,用篱笆围成一个面积为的矩形劳动基地,边的长不超过墙的长度,在边上开设宽为1m的门(门不需要消耗篱笆).设的长为(m),的长为(m).(1)求关于的函数表达式.(2)若围成矩形劳动基地三边的篱笆总长为10m,求和的长度(3)若和的长都是整数(单位:m),且围成矩形劳动基地三边的篱笆总长小于10m,请直接写出所有满足条件的围建方案.27.(2022春·浙江衢州·八年级统考期末)如图1,将一长方体放置于一水平玻璃桌面上,按不同的方式摆放,记录桌面所受压强与受力面积的关系如下表所示:桌面所受压强P(Pa)400受力面积S()0.5根据表中数据,求出压强()的函数表达式及10cm,且与原长方体相同重量的长方体放置于该水平28.(2022春·浙江杭州·八年级统考期末)在探究欧姆定律时,小明发现小灯泡电路上的电压保持不变,通过小灯泡的电流越大,灯就越亮.设选用小灯泡的电阻为,通过的电流强度为.(1)若电阻为,通过的电流强度为,求关于的函数表达式.(2)如果电阻小于,那么与原来的相比,小灯泡的亮度将发生什么变化?参考答案:1.B【分析】根据翻折变换的性质,可得AE=AB=5,DE=BD;然后设点D的坐标是(10,b),在Rt△CDE 中,根据勾股定理,求出CD的长度,进而求出k的值.【详解】解:∵△ABD沿AD折叠,使点B恰好落在OC边上点E处,点B(10,8),∴AE=AB=10,DE=BD,∵AO=8,AE=10,∴OE==6,CE=10﹣6=4,设点D的坐标是(10,b),则CD=b,DE=8﹣b,∵CD2+CE2=DE2,∴b2+42=(8﹣b)2,解得b=3,∴点D的坐标是(10,3),∵反比例函数的图象经过点D,∴k=10×3=30,故选:B.【点睛】本题考查了求反比例函数的解析式,同时也考查了矩形的翻折问题.须熟练掌握待定系数法求反比例函数的解析式,轴对称的性质.其中求点D的坐标是解题的关键.2.B【分析】利用代入法,把坐标一一代入反比例函数解析式,即可得出结果.【详解】解:A.把代入反比例函数,可得:,故该选项不符合题意;B.把代入反比例函数,可得:,故该选项符合题意;C.把代入反比例函数,可得:,故该选项不符合题意;.把代入反比例函数,可得:,故该选项不符合题意.故选:B【点睛】本题考查了反比例函数的定义及解析式,解本题的关键在充分利用反比例函数解析式进行分【详解】解:设该反比例函数的表达式是,把点代入得:,解得:,∴该反比例函数的表达式是.故选:【点睛】本题主要考查了求反比例函数解析式,熟练掌握待定系数法求函数解析式是解题的关键.【分析】根据,判断反比例函数的图象所在位置,结合图象分析函数增减性,利用函数增减性比较自变量的大小.∵,反比例函数(当时,,故选:D.【点睛】本题考查反比例函数的自变量大小的比较,解题的关键是结合图象,根据反比例函数的增减性分析自变量的大小.=,代入点求出即可.【详解】解:设反比例函数解析式为=,-4=,所以这个反比例函数解析式为=-.【点睛】本题主要考查待定系数法求反比例函数解析式,求反比例函数解析式只需要知道其图像上一点的【分析】已知反比例函数的解析式为,根据系数)再结合已知条件求解即可;【详解】解:如图,设点,因为点B在反比例函数的图象上,所以设点,),)−=m2−2=n−(=−m mn=−(BAD=8.【点睛】本题考查了反比例函数系数的几何意义、等腰三角形的性质以及面积公式,解题的关键是掌握反比例函数系数的几何意义.【分析】根据反比例函数经过第一、三象限,可知,据此作答即可.反比例函数的图象位于第一、三象限,∴,解得:,故选:C.函数的(当时,反比例函数的(当时,反比例函数的()的图象经过二、四象限.【详解】解:将点()代入反比例函数得,==3点睛:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标符合函数的解【分析】过点作轴于.根据代入即可求得的值.【详解】如图,过点作轴于.代入得:由反比例函数比例系数的几何意义,可得,.∵,∴,∴.易证,从而,即的横坐标为,而在直线上,∴∴.故答案为2.【分析】先确定的图像在一,三象限,且在每一象限内,随的增大而减小,再利用反比例函数的性质可得答案.【详解】解:>的图像在一,三象限,且在每一象限内,随的增大而减小,><故答案为:【点睛】本题考查的是反比例函数的性质,掌握利用反比例函数的图像与性质比较函数值的大小是解题的【分析】由等腰三角形的性质可得,即点C的纵坐标得出,进而利用全等三角形得出点,利用反比例函数图象上点的坐标特征得出点E的纵坐标,再利用三角形的面积可得【详解】解:如图,过点作轴,交于点作轴,垂足为∵,∴,由于点A、点C在反比例函数的图象上,可设点,即,,∴,∴点,即,∴,∴,在和中,,∴,∴,∴点E的横坐标为,在反比例函数的图象上,的纵坐标为,即,∵,即,∴,∴,故答案为:6.【点睛】本题考查反比例函数图象上点的坐标特征,以及一次函数与反比例函数的交点坐标,利用坐标表【分析】求出的直线解析式,联立,求出,,过点作交于点,交于点,则,,分别求出,,,,即可求,,再求即可.【详解】解:设的解析式为,,,,联立,解得,,,过点作交于点,交于点,,,,,,,,,,故答案为:1.【点睛】本题考查反比例函数的图象及性质,解题的关键是熟练掌握反比例函数的图象及性质.,∴△CMO≌△EMF(AAS)∴,∴,则ab=12,=,=k =12故答案为【点睛】本题考查待定系数法求反比例函数,矩形的性质和全等三角形的性质和判定,不规则图形面积,【分析】向下平移个单位后得到直线,可得到的函数表达式,将点A分别作轴得垂线,与y轴交于点P,则,即可求的坐标,最后将点的坐标代入反比例函数的表达式,求出k即可.∵向下平移个单位后得到直线直线=0代入得;y=,)的横坐标为m,则,)的横坐标为,)AP=m,CQ=n,PQ=-()= PB==,BQ=====∵的面积为∴==(,4(,)代入解得:k=6=四边形OACB=BC∴,∵∴,∴,∴k=12,.【分析】过点,分别做轴的垂线,交于点,,令长为,根据直角三角形的性质,勾股定理,得,,,的值,得到点,点的坐标;将点的坐标代入,点的坐代入标,求出,,即可.【详解】如图,过点,分别做轴的垂线,交于点,,设长为∴在,中,∴,∴∴∴在,中,∴;∴;∴,∴,∴故答案为:.反比例函数解析式为(2)【分析】()首先设反比例函数解析式为,然后把,代入反比例函数,即可得出)中反比例函数解析式,把代入解析式,即可得出)解:设反比例函数解析式为,把,代入反比例函数解析式,可得:,反比例函数解析式为.)可得:,当时,函数值是,∵当时,,∴,解得:.【点睛】本题考查了用待定系数法求反比例函数表达式、反比例函数的定义,解本题的关键在正确求出反比例函数表达式.),;)或;)或【分析】(1)先由点A(1,)在反比例函数图象上求解反比例函数的解析式,再求解的坐标代入一次函数的解析式,求解一次函数的解析式即可;)先求解设点,可得)结合函数图象,根据一次函数的图象在反比例函数的图象的下方,从而可得答案)=(反比例函数的解析式为:)代入可得:把代入y1=(k≠0),解得:所以一次函数的解析式为:)令则则设点,解得:或或(3)kx+b﹣<0,所以一次函数值小于反比例函数值,即一次函数的图象在反比例函数图象的下方,所以或【点睛】本题考查的利用待定系数法求解一次函数与反比例函数的图象,坐标与图形的面积,利用函数图(1),(2)或(3)或【分析】(1)将点A坐标代入反比例解析式求出解析式求出n的值,确定出点)代入反比例解析式得:,,∴反比例解析式为,)代入反比例解析式得:,∴,∴B(-3,)代入中,得:,解得:,一次函数解析式为;)解:由图象得:一次函数值大于反比例函数值的的取值范围为或;)解:对于一次函数,令,得到,即0),∴.∵的面积等于的面积,,,∵点是轴上的点,∴设点P(∴,解得,.∴或.【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22.(1),存在,Q点的坐标为(5,-)或(-)或(,)根据题意分别求出A点和C点的坐标,然后用待定系数法求出函数解析式即可;点和D点的坐标,分点在直线BA=,3=,的反比例函数的解析式为=,点坐标得,,解得,A,C两点的一次函数的表达式为=-x)解:存在,(m,-m,)若以点B,为顶点的四边形为菱形则点∴-(-m+3=,整理得,解得=或,经检验,m的值是方程的解,=时,=--m==此时Q5,3-),Q(5-);=时,=-(-m==此时(5,3-),Q(5-);B,D,P,,且=3=,经检验,m的值是方程的解,,=,(,综上所述,若以点-)或(-)或(,3【点睛】本题主要考查反比例函数的综合题,熟练掌握待定系数法求解析式,一次函数的性质,反比例函数的性质,菱形的性质,解一元二次方程等知识是解题的关键.23.(1);证明见解析(2)(3)或或【分析】(1)①根据反比例函数图象是中心对称图形可得点②根据中心对称的性质可得正比例函数与反比例函数的图象于点,∴;②∵点A、∴OA=OB,∵,∴,∴,∴;(3)当点E作AH⊥x轴于∴,∴,∵,∴点D与H重合,∴,∴,当点A为CE的中点时,如图,则,同理可得,∴,∵四边形ACBD是平行四边形,∴,∴,∴,当点C为AE的中点时,,则,,由勾股定理得,∴,综上:或或.【点睛】本题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的判定,矩形的性质,三角形中位线定理等知识,熟练掌握反比例函数图象是中心对称图形是解题的关键,同时注意分类讨论思想的运用.(2)【分析】2)利用待定系数法求得一次函数的解析式,即可求得直线与)代入中,得到y,y中,得到=5;)解:如图所示:∴,解得,∴一次函数为+7,令y=0,则﹣0,解得∴C(7,0),BOC.【点睛】本题考查待定系数法确定函数关系式以及平面直角坐标系下三角形面积,掌握待定系数法以及坐①;而增大.,,=(A(∴;②图象如图:性质1:x>0时,y随x的增大而增大;性质2:x<0时,y随x的增大而增大.【点睛】此题考查待定系数法求反比例函数解析式,画函数图象,函数的性质,熟练掌握各知识点并应用解决问题是解题的关键.26.(1)(2)(3)或,进而可得出:;均为整数,围成矩形劳动基地三边的篱笆总长小于10m,可得出∴.又∵墙长为∴,∴.∴y关于的函数表达式为:.)解:依题意得:,∴或,∵,∴,∴;(3)解:依题意得:,,∴,∵和的长都是正整数,∴或,∴则满足条件的围建方案为:或【点睛】本题考查了根据实际问题列出反比例函数关系式,根据各数量之间的关系,找出关系式以及根据x(1),这种摆放方式不安全,理由见解析()的函数表达式为,)代入得:,)关于受力面积S()的函数表达式为,时,,)解:这种摆放方式不安全,理由如下:=0.1×0.2=0.02()将长方体放置于该水平玻璃桌面上的压强为,(1)小灯泡的亮度将变亮【分析】(1)根据题意列出关系即可求解;电压不变,,∴,;(2),,随的增大而减小,若电阻小于,那么与原来的相比,小灯泡的亮度将变亮.【点睛】本题考查了反比例函数的应用,根据题意列出函数关系式是解题的关键.。
中考反比例试题及答案
一、选择题
1. 若函数y=k/x(k≠0)的图象经过点(2,3),则k的值为()。
A. 6
B. -6
C. 2
D. 3
答案:A
2. 已知反比例函数y=k/x(k≠0)的图象经过点(-2,1),则k的值为()。
A. 2
B. -2
C. -1
D. 1
答案:B
二、填空题
3. 若反比例函数y=k/x(k≠0)的图象经过点(-1,-4),则k的值为____。
答案:4
4. 已知反比例函数y=k/x(k≠0)的图象在第一、三象限,若点(2,-1)在该图象上,则k的值为____。
答案:-2
三、解答题
5. 已知反比例函数y=k/x(k≠0)的图象经过点(-3,2),求k的值。
答案:k=-6
6. 若反比例函数y=k/x(k≠0)的图象经过点(4,-2),求k的值。
答案:k=-8
四、计算题
7. 已知反比例函数y=k/x(k≠0)的图象经过点(2,-3),求当x=-
6时,y的值。
答案:y=3
8. 若反比例函数y=k/x(k≠0)的图象经过点(-1,4),求当x=-2时,y的值。
答案:y=2。
初中数学反比例函数经典测试题附答案解析一、选择题1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q ,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.2.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.3.ABC ∆的面积为2,边BC 的长为x ,边BC 上的高为y ,则y 与x 的变化规律用图象表示大致是( )A .B .C .D .【答案】A【解析】【分析】根据三角形面积公式得出y 与x 的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得 122xy = ∴4y x=∵00x y >>,∴y 与x 的变化规律用图象表示大致是故答案为:A .【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.4.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确;故选D.【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.5.在同一平面直角坐标系中,反比例函数ybx=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即b<0.所以反比例函数ybx=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.6.给出下列函数:①y=﹣3x+2:②y=3x;③y=﹣5x:④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是()A.①③B.③④C.②④D.②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;③y=﹣5x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B.【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.7.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180l π⋅⋅,所以l=43r (r >0), 即l 与r 为正比例函数关系,其图象在第一象限.故选A .【点睛】 本题考查圆锥的计算;函数的图象.8.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变 【答案】D【解析】【分析】 如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=22为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,则△BEO ∽△OFA ,∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b =,根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b +=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.9.如图,直线l 与x 轴、y 轴分别交于A 、B 两点,与反比例函数y =k x的图象在第一象限相交于点C .若AB =BC ,△AOB 的面积为3,则k 的值为( )A .6B .9C .12D .18【答案】C【解析】【分析】 设OB =a ,根据相似三角形性质即可表示出点C ,把点C 代入反比例函数即可求得k .【详解】作CD ⊥x 轴于D ,设OB =a ,(a >0)∵△AOB的面积为3,∴12OA•OB=3,∴OA=6a,∵CD∥OB,∴OD=OA=6a,CD=2OB=2a,∴C(6a,2a),∵反比例函数y=kx经过点C,∴k=6a×2a=12,故选C.【点睛】本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.10.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC ,AC ⊥BD ,∵∠ABC=60°,∴△ABC 是等边三角形,∵点A (1,1),∴OA=, ∴BO=,∵直线AC 的解析式为y=x ,∴直线BD 的解析式为y=-x ,∵OB=,∴点B 的坐标为(−,), ∵点B 在反比例函数y=的图象上, ∴,解得,k=-3,故选C .点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.11.函数y =1-k x 与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0B .k<1C .k>0D .k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围.【详解】 令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k <0,即k >1. 故选D .【点睛】 函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.13.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为 ()A .13B .1C .2D .3【答案】D 【解析】 【分析】连接OC ,如图,利用三角形面积公式得到S △AOC =12S △OAB =32,再根据反比例函数系数k 的几何意义得到12|k|=32,然后利用反比例函数的性质确定k 的值. 【详解】 连接OC ,如图,∵BA ⊥x 轴于点A ,C 是线段AB 的中点, ∴S △AOC =12S △OAB =32, 而S △AOC =12|k|, ∴12|k|=32, 而k >0, ∴k=3. 故选:D . 【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=kx图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.如图,已知点A ,B 分别在反比例函数12y x =-和2ky x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A 【解析】 【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可. 【详解】解:设A (a ,b ),则B (2a ,2b ), ∵点A 在反比例函数12y x=-的图象上, ∴ab =−2;∵B 点在反比例函数2ky x=的图象上, ∴k =2a•2b =4ab =−8. 故选:A . 【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .15.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB V 的面积为( )A .6B .5C .3D .1.5【答案】C 【解析】 【分析】先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解. 【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3 ∴23y x =-- 则点B (0,-3) ∴AOB V 的面积为132=32⨯⨯ 故应选:C 【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.16.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-【答案】A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.17.如图,点A 在反比例函数3(0)y x x =-<的图象上,点B 在反比例函数3(0)y x x=>的图象上,点C 在x 轴的正半轴上,则平行四边形ABCO 的面积是( )A .6B .5C .4D .3【答案】A 【解析】 【分析】因为四边形ABCO 是平行四边形,所以点A 、B 纵坐标相等,即可求得A 、B 横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解. 【详解】解:∵四边形ABCO 是平行四边形 ∴点A 、B 纵坐标相等设纵坐标为b ,将y=b 带入3(0)y x x =-<和3(0)y x x=>中,则A 点横坐标为3b- ,B 点横坐标为3b∴AB=336()b b b--= ∴66ABCO S b b=⨯=Y 故选:A .【点睛】本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.18.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C 【解析】 【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解. 【详解】210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<, 故选C . 【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.19.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y = B .若12x x =-,则12y y =- C .若120x x <<,则12y y < D .若120x x <<,则12y y >【答案】D 【解析】 【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x=-,用y 1、y 2表示出x 1,x 2,据此进行判断. 【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x=-上,∴111y x =-,221y x =-.A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确;B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确;D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误; 故选:D . 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.若函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2 B .m <﹣2 C .m >2 D .m <2【答案】B 【解析】 【分析】根据反比例函数的性质,可得m+2<0,从而得出m 的取值范围. 【详解】∵函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大, ∴m+2<0, 解得m <-2. 故选B .。
初三数学反比例函数试题答案及解析1.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12B.C.D.【答案】D.【解析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=,则OA=。
设AB与y轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出,求得OD=,最后根据梯形的面积公式即可求出阴影部分的面积。
∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3。
在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,,OA=AC﹣OC=。
设AB与y轴交于点D.∵OD∥BC,∴,即,解得OD=,∴阴影部分的面积是:。
故选:D.【考点】1.反比例函数系数k的几何意义;2.含30度角的直角三角形;3.勾股定理。
2.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点重合,在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数中,k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大【答案】C.【解析】设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值.∴a+b为定值.设(定值),则∵矩形对角线的交点与原点O重合, ∴k=AB•AD=ab=.∴k是a的二次函数,它的图象开口向下,当时,有最大值.∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.【考点】1.单动点问题;2.曲线上点的坐标与方程的关系;3.矩形的性质;4.二次函数的性质. 3.矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【答案】C.【解析】设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,x与y的函数关系式是y=,由于S≠0,且是常数,因而这个函数是:y是x的反比例函数.故选C.考点: 1.反比例函数的定义;2.正比例函数的定义.4.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数在第一象限内的图像与△ABC有交点,则的取值范围是A.2≤≤B.6≤≤10C.2≤≤6D.2≤≤【答案】A.【解析】把A点的坐标代入即可求出k的最小值;当反比例函数和直线BC相交时,求出b2﹣4ac的值,得出k的最大值.把点A(1,2)代入得:k=2;C的坐标是(6,1),B的坐标是(2,5),设直线BC的解析式是y=kx+b,则,解得:,则函数的解析式是: y=﹣x+7,根据题意,得:=﹣x+7,即x2﹣7x+k=0,△=49﹣4k≥0,解得:k≤.则k的范围是:2≤k≤.故选A.【考点】反比例函数综合题.5.如图,在平面直角坐标系中,正方形的边长为2.写出一个函数,使它的图象与正方形有公共点,这个函数的表达式为.【答案】(答案不唯一)【解析】由图象可知过B点时图象与正方形只有一个公共点,此时k值最大∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y=(k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一)【考点】1、反比例函数;2、正方形6.反比例函数的图象在第象限.【答案】二、四【解析】反比例函数y=的图像是双曲线,当k>0时,x,y 同号,所以图像在第一、三象限;当k<0时,x,y 异号,所以图像在第二、四象限.∴,因为k=-2<0,图像在二、四象限.【考点】反比例函数图像与k的关系.7.点A在双曲线上,AB⊥x轴于B,且△AOB的面积为3,则k=()A.3B.6C.±3D.±6【答案】D.【解析】∴S△AOB =3,∴|k|=6,∴k=±6.故选D.考点: 反比例函数系数k的几何意义.8.如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x,y轴正半轴交于点H,G,求线段OG的长.【答案】(1)2 (2)y= n= (3)【解析】解:(1)在Rt△BOA中,∵OA=4,tan∠BOA=,∴AB=OA×tan∠BOA=2.(2)∵点D为OB的中点,点B(4,2),∴点D(2,1),又∵点D在y=的图象上,∴1=,∴k=2,∴y=.又∵点E在y=图象上,∴4n=2,∴n=.(3)设点F(a,2),∴2a=2,∴CF=a=1,连接FG,设OG=t,则OG=FG=t,CG=2-t,在Rt△CGF中,GF2=CF2+CG2,∴t2=(2-t)2+12,解得t=,∴OG=t=.9.反比例函数y=过点(2,3),则k=_____________________;反比例函数y=过点(-2,3),则k=_________________.【答案】6 -5【解析】点在函数图象上,则点的坐标满足函数关系式,把点的坐标值代入解析式求k的值.3= ,k=6;=3,k-1=-6,k=-5.10.如图,已知点A在反比例函数的图象上,点B在反比例函数的图象上,AB∥x轴,分别过点A、B作x轴作垂线,垂足分别为C、D,若,则k的值为_________.【答案】12.【解析】设A(a,b),∵点A在反比例函数y=的图象上,∴ab=4,∵OC=a,OC=OD,∴OD=3a,∴B(3a,b),∵点B在反比例函数y=(k≠0)的图象上,∴k=3ab=3×4=12,考点: 反比例函数综合题.11.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【答案】B.【解析】∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选B.【考点】反比例函数图象上点的坐标特征.12.如图,直线y=2x与双曲线交于点A.将直线y=2x向右平移3个单位后,与双曲线交于点B,与x轴交于点C,若,则k= .【答案】8.【解析】根据直线平移的规律,即可得出直线BC的解析式;根据反比例函数的性质得出A,B 两点的坐标,根据xy=k即可得出k的值.试题解析:∵将直线y=2x向右平移3个单位后,得到的直线是BC,∴直线BC的解析式是:y=2(x-3);过点A作AD⊥x轴于点D,BE⊥x轴于点E,∵直线BC是由直线OA平移得到的,∴,∵,∴,∴AD=2BE,又∵直线BC的解析式是:y=2(x-3),∴设B点的横坐标为3+x,∴B点的纵坐标为:y=2(x+3-3)=2x,∴BE=2x,∵AD=2BE,∴AD=4x,∵y=2x,∴,∴,∴A点的纵坐标为4x,根据A,B都在反比例函数图象上得出:∴2x×4x=(3+x)×2x,x=1,∴k的值为:2×1×4×1=8.考点: 反比例函数综合题.13.如图,双曲线经过的两个顶点、轴,连接,将沿翻折后得到,点刚好落在线段上,连接,恰好平分与轴负半轴的夹角,若的面积为3,则的值为。
初中数学反比例函数经典测试题含答案一、选择题1.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为4,2,反比例函数y k x =(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为25,则k 的值为( )A .2B .3C .4D .6【答案】C 【解析】【分析】 过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为25,求得AE 的长,在Rt △AEB 中,即可得出k 的值.【详解】 过点A 作x 轴的垂线,交CB 的延长线于点E ,∵A ,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B (2k ,2), ∴AE =2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为5∴BC×AE =5BC 5=∴AB =BC 5=在Rt △AEB 中,BE ==1 ∴14k =1, ∴k =4.故选:C .【点睛】 本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.2.在平面直角坐标系中,分别过点(),0A m ,()2,0B m﹢作x 轴的垂线1l 和2l ,探究直线1l 和2l 与双曲线 3y x= 的关系,下列结论中错误..的是 A .两直线中总有一条与双曲线相交B .当m =1时,两条直线与双曲线的交点到原点的距离相等C .当20m -﹤﹤ 时,两条直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2【答案】D【解析】【分析】根据题意给定m 特定值、非特定值分别进行讨论即可得.【详解】当m =0时,2l 与双曲线有交点,当m =-2时,1l 与双曲线有交点,当m 0m 2≠≠,﹣时,12l l 与和双曲线都有交点,所以A 正确,不符合题意;当m 1=时,两交点分别是(1,3),(3,1)B 正确,不符合题意;当2m 0-﹤﹤ 时,1l 在y 轴的左侧,2l 在y 轴的右侧,所以C 正确,不符合题意;两交点分别是33m (m 2m m 2++,和,),当m 无限大时,两交点的距离趋近于2,所以D 不正确,符合题意,故选D.【点睛】本题考查了垂直于x 轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.3.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A .y =x 2B .y =xC .y =x+1D .1y x=【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.如图,点P 是反比例函数(0)k y k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M . 连接OP . 若POM ∆的面积等于2. 5,则k 的值等于 ( )A .5-B .5C . 2.5-D .2. 5【答案】A【解析】【分析】 利用反比例函数k 的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k 的值.【详解】解:∵△POM 的面积等于2.5,∴12|k|=2.5, 而k <0,∴k=-5,故选:A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.5.如图,点A 、B 在函数k y x=(0x >,0k >且k 是常数)的图像上,且点A 在点B 的左侧过点A 作AM x ⊥轴,垂足为M ,过点B 作BN y ⊥轴,垂足为N ,AM 与BN 的交点为C ,连结AB 、MN .若CMN ∆和ABC ∆的面积分别为1和4,则k 的值为( )A .4B .2C 522D .6【答案】D【解析】【分析】 设点M (a ,0),N (0,b ),然后可表示出点A 、B 、C 的坐标,根据CMN ∆的面积为1可求出ab =2,根据ABC ∆的面积为4列方程整理,可求出k .【详解】解:设点M (a ,0),N (0,b ),∵AM ⊥x 轴,且点A 在反比例函数k y x =的图象上, ∴点A 的坐标为(a ,k a ), ∵BN ⊥y 轴,同理可得:B (k b ,b ),则点C (a ,b ), ∵S △CMN =12NC•MC =12ab =1, ∴ab =2,∵AC =k a −b ,BC =k b−a , ∴S △ABC =12AC•BC =12(k a −b)•(k b −a)=4,即8k ab k ab a b --⋅=,∴2216k ,解得:k =6或k =−2(舍去),故选:D .【点睛】本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.6.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.7.如图,,A B 是双曲线k y x=上两点,且,A B 两点的横坐标分别是1-和5,ABO -∆的面积为12,则k 的值为( )A .3-B .4-C .5-D .6-【答案】C【解析】【分析】分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,根据S △AOB =S 梯形ABED +S △AOD - S △BOE =12,故可得出k 的值.【详解】分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,∵双曲线k y x=的图象的一支在第二象限 ∴k<0, ∵A ,B 两点在双曲线k y x=的图象上,且A ,B 两点横坐标分别为:-1,-5, ∴A (-1,-k ),B (-5, 5k -) ∴S △AOB =S 梯形ABED +S △AOD - S △BOE =1||11||(||)(51)1||525225k k k k ⨯+⨯-+⨯⨯-⨯⨯=12||5k =12, 解得,k=-5故选:C .【点睛】 本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.8.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0< x2,则y2<y1,故本选项错误.故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.9.如图, 在同一坐标系中(水平方向是x轴),函数kyx=和3y kx=+的图象大致是()A.B.C.D.【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=kx的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=kx的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=kx的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.6【答案】C【解析】【分析】直接利用旋转的性质得出A′点坐标,再利用反比例函数的性质得出答案.【详解】如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=kx的图象经过点A的对应点A′,∴A ′(3,1),则把A′代入y=k x , 解得:k=3.故选C .【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出A′点坐标是解题关键.11.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B 2C 2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,22OA OB ∴==,2AC =, ∴点C 的坐标为222⎛ ⎝,点C 在函数()0k y x x=>的图象上, 221k ∴==, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.12.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论. 【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA ,∴251522BOD OAC S OB S OA ⎛⎫==÷= ⎪⎝⎭△△, ∴5OB OA=, ∴tan ∠BAO=5OB OA =. 故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.13.已知反比例函数k y x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k=-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( )A .0B .1C .2D .3 【答案】D【解析】【分析】 根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案.【详解】∵反比例函数k y x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上,∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足,∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k =-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=, ∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D.【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.14.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.15.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ ,将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.16.如图,点A 是反比例函数2(0)y x x =>的图象上任意一点,AB x 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCD S 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a ∴ABCD S =BH·CD=5故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.17.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【答案】B【解析】【分析】 设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得;3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.18.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0【答案】B【解析】【分析】根据反比例函数的性质,逐一进行判断即可得答案.【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.19.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】 本题主要考查了反比例函数y =k x中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.20.如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是( )A .﹣5B .﹣4C .﹣3D .﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.。
反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数xky=的图象上,下列各点也在该函数图象上的是( ).AA. (3,- 2)B. (- 2,- 3)C. (2,3)D. (3,2)2. 反比例函数(0)ky kx=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数xy2-=与xy2=的图象的交点个数为( ). DA. 3个B. 2个C. 1个D. 0个4. 如图1,点A是y轴正半轴上的一个定点,点B是反比例函数y = 2 x(x> 0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将( ). AA.逐渐增大B.逐渐减小C.不变D.先增大后减小5. (2009年恩施市)如图2,一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2 ≤x≤ 10,则y与x的函数图象是( ). A6. 已知点A(x1,y1),B(x2,y2)是反比例函数xky=(k > 0)的图象上的两点,若x1 < 0 < x2,则( ).AA. y1 < 0 < y2B. y2 < 0 < y1C. y1 < y2 < 0D. y2 < y1 < 07. 如图3,反比例函数3yx=的图象与一次函数y = x + 2的图象交于A,B两点,那么△AOB 的面积是( ).CA. 2B. 3C. 4D. 68. 如图4,等腰直角三角形ABC位于第一象限,AB= AC = 2,直角顶点A在直线y = x上,1212图2图4A B C Dy xOP 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 5 图7其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与△ABC 有交点,则k 的取值范围是( ). C A.1 < k < 2B.1 ≤ k ≤ 3C.1 ≤ k ≤ 4D.1≤ k < 4二、填空题(每小题4分,共24分) 9. 已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 .6y x= 10. 在对物体做功一定的情况下,力F (N)与此物体在 力的方向上移动的距离s (m)成反比例函数关系,其图 象如图5所示,点P (5,1)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是 m. 0. 511. 反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A ,B 两点,若点A 坐标为(-2,1),则点B 的坐标为 . (2,-1).12.一次函数y = x + 1与反比例函数ky x=的图象都经过点(1,m ),则使这两个函数值都小于0时x 的取值范围是___________. x < - 113. (2009年兰州市)如图6,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 反比例函数1y x=(x > 0)的图象上,则点E 的坐标是_________. (215+,215-)14. (2009年莆田市)如图7,在x 轴的正半轴上依次截取OA 1 = A 1A 2 = A 2A 3 = A 3A 4 = A 4A 5,过点A 1,A 2,A 3,A 4,A 5,分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数xky =(k ≠ 0)的图象上. (1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.F / N图5s / mO图616.(8分)已知图8中的曲线是反比例函数5myx-=(m为常数)图象的一支. 若该函数的图象与正比例函数y = 2x的图象在第一象内限的交于点A,过点A作x轴的垂线,垂足为点B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.17.(8分)如图9,点P的坐标为322⎛⎫⎪⎝⎭,,过点P作x轴的平行线交y轴于点A,交反比例函数kyx=(x > 0)于点点N,作PM ⊥AN交反比例函数kyx=(x > 0)的图象于点M,连接AM.若PN = 4,求:(1)k的值.(2)△APM的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例(如图10所示). 现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x 的解看成函数y = 2 x - 1的图象与函数y = 3 - x 的图象交点的横坐标. 如图11,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x=的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD . (1)如图12,若点A ,B 在反比例函数ky x=的图象的同一分支上,试证明: ①A E D K C F B K S S =四边形四边形;②A N B M =. (2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图13,则AN 与BM 还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题 1. A. 2. B. 3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9. 6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15. 三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0). ∵S △OAB = 4,∴12m • 2m = 4. 解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8. ∴反比例函数的解析式为8y x=.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32. ∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫ ⎪⎝⎭,代入ky x=中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =. ∴93322M P =-=. ∴12332A P MS =⨯⨯=△. 18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)ky k x=≠.根据题意,得2810k=,280k =. ∴此阶段函数关系式为80y x=(x ≥ 10).(3)当y < 1.6时,801.6x<. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6.提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x=与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x ⊥轴,A E y ⊥轴,∴四边形AE O C 为矩形. BF x ⊥轴,B D y ⊥轴,∴四边形BD O F 为矩形.A C x ⊥轴,B D y ⊥轴,∴四边形A E D K D OC K C F B K ,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O F S S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C FB K B D O F D OC K S S S =-矩形矩形矩形,∴A ED K C F B K S S =矩形矩形. ②由(1)知,AE D K CF B KS S =矩形矩形.∴A K D K B K C K =.∴AK BKCK DK=. 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AC D N 是平行四边形.∴A N C D =.同理可得B M C D =.A N B M∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形, 又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形. ∴A K D K B K C K=.∴CK DKAK BK=. K K ∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AN D C 是平行四边形.∴A N C D =.同理B M C D =.∴A N B M =【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.在同一平面直角坐标系中,函数y =kx +1(k ≠0)和ky x=(k ≠0)的图象大致是( )A .B .C .D .3.如图,正比例函数y = ax 的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<kx的解集为( )A .x < - 2或x > 2B .x < - 2或0 < x < 2C .-2 < x < 0或0 < x < 2D .-2 < x < 0或 x > -24.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<5.对于反比例函数21k y x+=,下列说法错误的是( )A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值6.如图,过y 轴上一个动点M 作x 轴的平行线,交双曲线y=4x-于点A ,交双曲线10y x=于点B ,点C 、点D 在x 轴上运动,且始终保持DC =AB ,则平行四边形ABCD 的面积是( )A .7B .10C .14D .287.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =- B .2y x =+C .2y x=D .22y x x =-8.若函数5y x=与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( )A .15-B .15C .5-D .59.同一坐标系中,函数()1y k x +=与ky x=的图象正确的是( ) A . B .C .D .10.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,111.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③12.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数ky x=(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( )A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0二、填空题13.双曲线y =kx经过点A (a ,﹣2a ),B (﹣2,m ),C (﹣3,n ),则m _____n (>,=,<).14.若点()()125,,3,A y B y --在反比例函数3y x=的图象上,则12,y y ,的大小关系是_________.15.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0ky x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.16.有5张正面分别有数字-1,14-,0,1,3的卡片,它们除数字不同外全部相同,将它们背面朝上,洗匀后从中随机的抽取一张.记卡片上的数字为a ,则使以x 为自变量的反比例函数37a y x-=经过二、四象限,且关于x 的一元二次方程2230ax x -+=有实数解的概率是__________.17.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.18.反比例函数16y x =与2ky x=()0k <的图像如图所示,点P 是x 正半轴上一点,过点P 作x 轴的垂线,分别交反比例函数16y x =与2ky x=()0k <的图像于点A ,B ,若4AB PB =,则k 的值为_______.19.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y kx=(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴,若菱形ABCD 的面积为9.则k 的值为____.20.如图,点()11,P x y ,点()22,P x y ,…点(),n n P x y 在函数()90y x x=>的图象上, 112123231,,n n n POA P A A P A A P A A -⋅⋅⋅都是等腰直角三角形,斜边112231,,,n n OA A A A A A A -⋅⋅⋅都在x 轴上(n 是大于或等于2的正数数),则12n y y y ++⋅⋅⋅+=__________.(用含n 的式子表示)三、解答题21.如图,一次函数y kx b =+的图象交反比例函数()0ay x x=>的图象于()()2,4,,1A B m --两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式. (2)求ABO ∆的面积.(3)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值? 22.如图,Rt △ABO 的顶点A 是双曲线y =kx与直线y =﹣x +(k +1)在第四象限的交点,AB ⊥x 轴于点B ,且S △ABO =32.(1)求这两个函数的表达式;(2)求直线与双曲线的交点A 和C 的坐标及△AOC 的面积. (3)写出反比例函数y =kx的值大于一次函数y =﹣x +(k +1)时的x 的取值范围. 23.已知A (-2n ,n )、B (n ,-4)两点是一次函数y kx b =+和反比例函数my x=图像的两个交点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积;(3)观察图像,写出不等式0mkx b x+->的解集.24.已知:如图,一次函数的图象与反比例函数ky x=的图象交于A 、B 两点,且点B 的坐标为.(1)求反比例函数ky x=的表达式; (2)点在反比例函数ky x=的图象上,求△AOC 的面积;(3)在(2)的条件下,在坐标轴上找出一点P ,使△APC 为等腰三角形,请直接写出所有符合条件的点P 的坐标.25.某校园艺社计划利用已有的一堵长为10m 的墙,用篱笆围一个面积为212m 的矩形园子.(1)如图,设矩形园子的相邻两边长分别为()x m 、()y m . ①求y 关于x 的函数表达式; ②当4y 时,求x 的取值范围;(2)小凯说篱笆的长可以为9.5m ,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?26.已知反比例函数y =12mx-(m 为常数)的图象在第一、三象限.(1)求m的取值范围;(2)如图,若该反比例函数的图象经过▱ABOD的顶点D,点A,B的坐标分别为(0,3),(﹣2,0),求出该反比例函数的解析式;(3)若E(x1,y1),F(x2,y2)都在该反比例函数的图象上,且x1>x2>0,则y1和y2有怎样的大小关系?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论.【详解】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),∴正比例函数12y x=,反比例函数28yx=,∴两个函数图象的另一个交点为(−2,−4),∴A,B选项错误;∵正比例函数12y x=中,y随x的增大而增大,反比例函数28yx=中,在每个象限内y随x的增大而减小,∴D选项错误;∵当x<−2或0<x<2时,y1<y2,∴选项C正确;故选:C.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.C解析:C 【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案. 【详解】①当k> 0时,y=kx+1过第一、二、三象限,ky x =过第一、三象限; ②当k<0时,y= kx+1过第一、二、四象限,ky x=过第二、四象限,观察图形可知,只有C 选项符合题意, 故选:C . 【点睛】此题考查了依据一次函数与反比例函数的图象,正确掌握各函数的图象与字母系数的关系是解题的关键.3.B解析:B 【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象即可得出结论. 【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称, ∵点A 的横坐标为2, ∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方, ∴2x <-或02x <<, 故选:B . 【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.4.A解析:A 【分析】 根据反比例函数2y x=和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 在第一象限,得出x1<x2<0<x3,再选择即可.【详解】解:∵反比例函数2yx=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.5.B解析:B【分析】先判断出k2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A、∵k2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=-1<0,∴y1<0,∵x2=1>0,x3=2>0,∴y2>y3,∴y1<y3<y2故本选项正确;D、∵P为图象上任意一点,过P作PQ⊥y轴于Q,∴△OPQ的面积=12(k2+1)是定值,故本选项正确.故选B.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=kx(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.6.C解析:C【分析】设出M点的坐标,可得出过M与x轴平行的直线方程为y=m,将y=m代入反比例函数y=4x-中,求出对应的x的值,即为A的横坐标,将y=m代入反比例函数10yx=中,求出对应的x 的值,即为B 的横坐标,用B 的横坐标减去A 的横坐标求出AB 的长,根据DC=AB ,且DC 与AB 平行,得到四边形ABCD 是平行四边形,过B 作BN 垂直于x 轴,平行四边形底边为DC ,DC 边上的高为BN ,由B 的纵坐标为m得到BN=m ,再由求出的AB 的长,得到DC 的长,利用平行四边形的面积等于底乘以高可得出平行四边形ABCD 的面积. 【详解】解:设M 的坐标为(0,m )(m >0)则直线AB 的方程为:y=m , 将y=m 代入y=4x-中得:4x m =-,∴A (4m -,m )将y=m 代入10y x=中得:10x m =,∴B (10m ,m )∴DC=AB=10m -(4m -)=14m过B 作BN ⊥x 轴,则有BN=m ,则平行四边形ABCD 的面积S=DC·BN=14m×m=14. 故选C . 【点睛】本题考查反比例函数综合题.7.B解析:B 【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【详解】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合; C 、2x x=,解得:2x =2x =“好点”22)和(2,2),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B. 【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.8.B解析:B【分析】先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b -得到b a ab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1, 所以11a b -=b a ab -=15. 故选:B.【点睛】 本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.9.D解析:D【分析】先根据四个选项的共同点确定k 的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】解:A 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项错误;B 、反比例函数图象位于二、四象限,k 0<,则一次函数图象应该交y 轴于负半轴,故本选项错误;C 、反比例函数图象位于二、四象限,k 0<,则一次函数应该是个减函数,故本选项错误;D 、反比例函数图象位于一、三象限,0k >,则一次函数图象应该交y 轴于正半轴,故本选项正确;故选:D .【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k 的取值确定函数所在的象限.10.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键. 11.B解析:B【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 12.B解析:B【分析】首先根据系数判定函数的图象在二、四象限,再根据x 1<0<x 2,可比较出y 1、y 2的大小,进而得到答案.【详解】 解:由反比例函数k y x=(k <0),可知函数的图象在二、四象限, ∵x 1<0<x 2,∴A (x 1,y 1)在第二象限,y 1>0,B (x 2,y 2)在第四象限,y 2<0,∴y 2<0<y 1,故选:B .【点睛】此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键.二、填空题13.>【分析】先求出反比例函数解析式判断函数的增减性﹣2>﹣3即可判断mn 的大小【详解】∵双曲线y =经过点A (a ﹣2a )∴k =﹣2a2<0∴双曲线在二四象限在每个象限内y 随x 的增大而增大∵B (﹣2m )C解析:>.【分析】先求出反比例函数解析式,判断函数的增减性﹣2>﹣3,即可判断m ,n 的大小..【详解】∵双曲线y =k x经过点A (a ,﹣2a ), ∴k =﹣2a 2<0, ∴双曲线在二、四象限,在每个象限内,y 随x 的增大而增大,∵B (﹣2,m ),C (﹣3,n ),﹣2>﹣3,∴m >n ,故答案为:>.【点睛】本题利用函数的性质比较大小,关键是求出函数解析式,掌握反比例函数的性质. 14.【分析】根据反比例函数的性质解答【详解】∵反比例函数中∴此函数图象的两个分支分别位于一三象限并且在每一象限内随的增大而减小这两点都在反比例函数的图象上在第三象限故答案为:【点睛】此题考查反比例函数的 解析:21y y <【分析】根据反比例函数的性质解答.【详解】∵反比例函数3y x=中30k =>, ∴此函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小. ()()125,,3,A y B y --这两点都在反比例函数3y x =的图象上,A B ∴、在第三象限,21y y ∴<,故答案为:21y y <.【点睛】此题考查反比例函数的性质:当k>0时,函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小;当k<0时,函数图象的两个分支分别位于二四象限,并且在每一象限内,y 随x 的增大而增大.15.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫ ⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解.【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒ ∴9045BAE DAE ∠=︒-∠=︒∴ABE △为等腰直角三角形∴45ABE ∠=︒∴45CBE ∠=︒∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫ ⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++=∴322,22x x D ++⎛⎫ ⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x⎛⎫ ⎪⎝⎭ ∴2k AE x x ==+ ∴()2k x x =+ ∴()7436255x x k x x ++=⋅=⋅+ ∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去)∴()()233215k x x =+=⨯+=.【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.16.【分析】根据反比例函数图象经过第二四象限关于x 的一元二次方程ax2-2x+3=0有实数解列出不等式求出a 的取值范围从而确定出a 的值再根据概率公式计算即可【详解】解:∵反比例函数图象经过第二四象限∴3 解析:25【分析】根据反比例函数图象经过第二、四象限,关于x 的一元二次方程ax 2-2x+3=0有实数解,列出不等式求出a 的取值范围,从而确定出a 的值,再根据概率公式计算即可.【详解】解:∵反比例函数图象经过第二、四象限,∴3a-7<0,解得73a < 关于x 的一元二次方程ax 2-2x+3=0有实数解,则△=4-12a≥0,且a≠0,解得:,a≤13,且(a≠0), 综上,a≤13,且(a≠0), ∴ a 可取-1,-14,∴使以x 为自变量的反比例函数37a y x -=经过二、四象限,且关于x 的一元二次方程ax 2-2x+3=0有实数解的概率是25. 故答案为:25. 【点睛】 本题考查了概率公式,用到的知识点是反比例函数图象的性质、根的判别式、概率公式,熟记性质以及判别式求出a 的值是解题的关键.17.y =【分析】设A 坐标为(xy )根据四边形OABC 为平行四边形利用平移性质确定出A 的坐标利用待定系数法确定出解析式即可【详解】解:设A 坐标为(xy )∵B (2﹣2)C (30)以OCCB 为边作平行四边形O解析:y =2x【分析】设A 坐标为(x ,y ),根据四边形OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.【详解】解:设A 坐标为(x ,y ),∵B (2,﹣2),C (3,0),以OC ,CB 为边作平行四边形OABC ,∴x+3=0+2,y+0=0﹣2,解得:x =﹣1,y =﹣2,即A (﹣1,﹣2), 设过点A 的反比例解析式为y =k x, 把A (﹣1,﹣2)代入得:k =2, 则过点A 的反比例函数解析式为y =2x , 故答案为:y =2x. 【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键. 18.-2【分析】设点A 横坐标为m 分别表示出ABPB 根据得到关于k 的方程解方程即可【详解】解:设点A 横坐标为m 则点A 纵坐标为∵AB ⊥x 轴∴点B 纵坐标为∴AB=PB=∵∴∴∴故答案为:-2【点睛】本题考查了解析:-2【分析】设点A 横坐标为m ,分别表示出AB 、PB ,根据4AB PB =,得到关于k 的方程,解方程即可.【详解】解:设点A 横坐标为m ,则点A 纵坐标为6m , ∵ AB ⊥x 轴,∴点B 纵坐标为k m , ∴AB =66k k m m m--= ,PB =k k m m =-, ∵4AB PB =,∴64k k m m-=- , ∴64k k -=- ,∴2k =-.故答案为:-2【点睛】本题考查了反比例函数图象上点的表示,解题的关键是根据4AB PB =列出方程,注意表示PB 时,注意式子符号问题.19.2【分析】根据题意利用面积法求出AE 设出点B 坐标表示点A 的坐标应用反比例函数上点的横纵坐标乘积为k 构造方程求k 【详解】连接AC 分别交BDx 轴于点EF 由已知AB 横坐标分别为14∴BE=3∵四边形ABC解析:2.【分析】根据题意,利用面积法求出AE ,设出点B 坐标,表示点A 的坐标.应用反比例函数上点的横纵坐标乘积为k 构造方程求k .【详解】连接AC 分别交BD 、x 轴于点E 、F .由已知,A 、B 横坐标分别为1,4,∴BE =3.∵四边形ABCD 为菱形,AC 、BD 为对角线,∴S 菱形ABCD =412⨯AE •BE =9,∴AE 32=,设点B 的坐标为(4,y ),则A 点坐标为(1,y 32+) ∵点A 、B 同在y k x =图象上, ∴4y =1•(y 32+), ∴y 12=, ∴B 点坐标为(4,12), ∴k =2故答案为:2.【点睛】 此题考查菱形的性质,反比例函数图象上点的坐标与k 之间的关系,解题关键在于掌握其性质定义.20.【分析】过过点P1作P1E ⊥x 轴于点E 过点P2作P2F ⊥x 轴于点F 过点P3作P3G ⊥x 轴于点G 根据△P1OA1△P2A1A2△P3A2A3都是等腰直角三角形可求出A1A2A3的横坐标从而总结出一般规解析:3n【分析】过过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,,根据△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3都是等腰直角三角形,可求出A 1,A 2,A 3的横坐标,从而总结出一般规律得出点A n 的坐标,再求12n y y y ++⋅⋅⋅+的值即可.【详解】解:过点P 1作P 1E ⊥x 轴于点E ,过点P 2作P 2F ⊥x 轴于点F ,过点P 3作P 3G ⊥x 轴于点G ,∵△P 1OA 1是等腰直角三角形,∴P 1E=OE=A 1E ,设点P 1的坐标为(a,a),(a>0),将点P 1(a,a)代入()90y x x=>,可得a=3, 故点A 1的坐标为(6,0), 设点P 2的纵坐标为b ,则P 2的横坐标为6+b ,将点(b+6,b)代入()90y x x=>,可得b=3,故点A 2的横坐标为同理可以得到A 3的横坐标是A n 的横坐标是,根据等腰三角形的性质得到12n y y y ++⋅⋅⋅+=A n 的横坐标的一半,∴12n y y y ++⋅⋅⋅+=故答案为:【点睛】本题考查了反比例函数的综合应用,涉及了点的坐标的规律变化,解答本题的关键是根据等腰三角形的性质结合反比例函数解析式求出A 1,A 2,A 3的横坐标,从而总结出一般规律,难度较大.三、解答题21.(1)81;52y y x x =-=-;(2)15;(3)02x <<或8x > 【分析】(1)根据点A 坐标求出反比例函数的系数,再利用反比例函数解析式求出点B 坐标,再用待定系数法求出一次函数解析式;(2)分别过A 点,B 点作x 轴的垂线,垂足为,E F ,可知三角形ABO 的面积等于梯形ABFE 的面积,就可以算出结果;(3)根据图象找出一次函数在反比例函数上面时x 的取值范围,就可以得到结果.【详解】(1)∵()2,4A -在反比例函数()0a y x x =>上, ∴代入得24k -=, ∴8k =-,∴反比例函数的关系数8y x =-, ∵(),1B m 在8y m =-上, ∴代入得81m -=-, ∴8m =,∴()8,1B -,又∵()()2,4,8,1A B --在一次函数y kx b =+上,∴代入得4218k bk b-=+⎧⎨-=+⎩,解得125kb⎧=⎪⎨⎪=-⎩,∴一次函数的解析式为152y x=-;(2)如图,分别过A点,B点作x轴的垂线,垂足为,E F,∵()()2,4,8,1A B--,∴ABO EABFS S∆=梯()()141822=⨯+⨯-1562=⨯⨯15=,∴ABOS∆的面积是15;(3)一次函数的值大于反比例函数的值,即一次函数的图象在上方,∴由图知02x<<或8x>.【点睛】本题考查反比例函数和一次函数综合,解题的关键是掌握反比例函数的图象和性质,特殊三角形的面积求法,利用函数图象解不等式的方法.22.(1)y=3x-和y=-x-2;(2)交点A为(1,-3),C为(-3,1);4;(3)-3<x<0或x>1.【分析】(1)设出A坐标(x,y),表示出OB与AB,进而表示出三角形ABO面积,由已知面积确定出反比例函数k的值,进而确定出一次函数;(2)联立反比例函数与一次函数解析式,求出A与C坐标即可;由一次函数解析式求出交点的坐标,然后三角形AOC面积=两个三角形面积的和,求出即可;(3)根据图象即可求得.【详解】解:(1)设A 点坐标为(x ,y ),且x >0,y <0, 则113||||(),222ABO S OB AB x y ∆=⋅⋅=⋅⋅-= ∴xy=-3,∴k=xy=-3,代入y =﹣x +(k +1),得y=-x-2;∴所求的两个函数的解析式分别为y=3x-和y=-x-2; (2)解:求两个函数图象交点,得 32y x y x ⎧=-⎪⎨⎪=--⎩ 13,?31x x y y ==-⎧⎧⎨⎨=-=⎩⎩∴交点A 为(1,-3),C 为(-3,1);由y=-x-2,令x=0,得y=-2.∴直线y=-x+2与y 轴的交点的坐标为(0,-2), 则112123422AOC S ∆=⨯⨯+⨯⨯= (3)∵交点A 为(1,-3),C 为(-3,1),∴由图象可知:反比例函数y=k x的值大于一次函数y=-x+(k+1)时, x 的取值范围为-3<x <0或x >1.【点睛】 此题考查了一次函数与反比例函数的交点问题,以及三角形面积,解题关键是熟练掌握待定系数法.23.(1)8y x=-,2y x =--;(2)6AOB S ∆=;(3)4x <-或02x << 【分析】(1)根据反比例函数图像上任意一点的横坐标与纵坐标的乘积相等可得到-2n²=-4n 求出n 的值,进而确定A 、B 两点坐标,求出反比例函数的解析式,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=-x-2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <-4或0<x <2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】解:(1)由“反比例函数上任意一点的横坐标与纵坐标的乘积相等”可知:-2n²=-4n ,求得n=0(舍去)或n=2,∴A(-4,2),B(2,-4),∴m=-4×2=-8,故反比例函数的解析式为:8y x =-, 将A 、B 两点代入一次函数y kx b =+中: ∴2442k b k b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为:2y x =--,故答案为:8y x=-,2y x =--; (2) y=-x-2中,令y=0,则x=-2, 即直线y=-x-2与x 轴交于点C (-2,0),∴S △AOB =S △AOC +S △BOC =112224622⨯⨯+⨯⨯=, 故答案为:6;(3)0m kx b x+->,变形为:m kx b x +>, 观察图形,即要求一次函数的图像在反比例函数图像的上方,∴解集为:x <-4或0<x <2,故答案为:x <-4或0<x <2.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.24.(1);(2)32;(3)(-1,0)、(0,0)、(0,1). 【详解】(1)一次函数的图象过点B , ∴∴点B 坐标为∵反比例函数k y x=的图象经过点B反比例函数表达式为(2)设过点A 、C 的直线表达式为,且其图象与轴交于点D ∵点在反比例函数的图象上 ∴∴点C 坐标为∵点B 坐标为∴点A 坐标为解得:过点A 、C 的直线表达式为∴点D 坐标为∴(3)①当点P 在x 轴上时,设P(m ,0)∵AC=2,AP=22(1)2m ++,CP=22(2)1m ++,∴22(1)2m ++=22(2)1m ++或22(2)1m ++=2,解得:m=0或-1 ②当点P 在y 轴上时,设P(0,n),∵AC=2,AP=221(2)n +-,CP=222(1)n +-,∴221(2)n +-=222(1)n +-或221(2)n +-=2解得:n=0或1 综上所述:点P 的坐标可能为、、 25.(1)①1265y x x ⎛⎫=⎪⎝⎭,②635x ;(2)小凯的说法错误,洋洋的说法正确. 【分析】(1)①根据矩形的面积公式计算即可,注意自变量的取值范围;②构建不等式即可解决问题;(2)构建方程求解即可解决问题;【详解】(1)①由题意xy =12, 1265y x x ⎛⎫∴= ⎪⎝⎭②y ⩾4时,124x ≥,解得3x ≤ 所以635x . (2)当1229.5x x +=时,整理得:2419240,0x x -+=∆<,方程无解.当12210.5xx+=时,整理得2421240,570x x-+=∆=>,符合题意;∴小凯的说法错误,洋洋的说法正确.【点睛】本题考查反比例函数的应用.(1)①中需注意,因为墙的宽度为10m,所以y≤10,据此可求得自变量x的取值范围;②中求得x的取值要与①中取公共解集;(2)能根据根的判别式判断一元二次方程解的情况是解决此问的关键.26.(1)m<12;(2)该反比例函数的解析式为y=6x;(3)y1<y2.【分析】(1)由图象在第一、三象限可得关于m的不等式,然后解不等式即可;(2)先根据平行四边形的性质求出D点的坐标,然后将D点的坐标代入y=12mx-可求得1-2m的值即可;(3)利用反比例函数的增减性解答即可.【详解】解:(1)∵y=12mx-的图象在第一、三象限,∴1﹣2m>0,∴m<12;(2)∵四边形ABOD为平行四边形,∴AD∥OB,AD=OB=2,∴D点坐标为(2,3),∴1﹣2m=2×3=6,∴该反比例函数的解析式为y=6x;(3)∵x1>x2>0,∴E,F两点都在第一象限,又∵该反比例函数在每一个象限内,函数值y都随x的增大而减小,∴y1<y2.【点睛】本题考查了反比例函数的解析式、反比例函数的性质以及反比例函数与几何的综合,掌握反比例函数的定义及性质是解答本题的关键.。
反比例函数经典试题二姓名___________班级__________学号__________分数___________121.下列函数,①y =2x ,②y =x ,③y =x -1,④y =11x 是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个 122.反比例函数y =2x的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 123.已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象表示大致为( )124.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )125.已知点(3,1)是双曲线y =kx(k ≠0)上一点,则下列各点中在该图象上的点是( ) A .(13,-9) B .(3,1) C .(-1,3) D .(6,-12)126.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa 时,•气球将爆炸,为了安全起见,气体体积应( ) A .不大于2435m 3 B .不小于2435m 3 C .不大于2437m 3 D .不小于2437m 3127.某闭合电路中,电源电压为定值,电流I A .与电阻R (Ω)成反比例,如右图所表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I •的函数解析式为( ).A .I =6R B .I =-6R C .I =3R D .I =2R 128.函数y =1x与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ).A .1个B .2个C .3个D .0个 129.若函数y =(m +2)|m |-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×2130.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y =4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3231.一个反比例函数y =kx(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________. 132.已知关于x 的一次函数y =kx +1和反比例函数y =6x的图象都经过点(2,m ),则一次函数的解析式是________.133.一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________.134.正比例函数y =x 与反比例函数y =1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.135.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.136.反比例函数y =21039n n x--的图象每一象限内,y 随x 的增大而增大,则n =_______.137.已知一次函数y =3x +m 与反比例函数y =3m x-的图象有两个交点,当m =_____时,有一个交点的纵坐标为6. 138.若一次函数y =x +b 与反比例函数y =kx图象,在第二象限内有两个交点,•则k ______0,b _______0,(用“>”、“<”、“=”填空)139.两个反比例函数y=3x,y=6x在第一象限内的图象如图所示,点P1,P2,P3……P2005,在反比例函数y=6x的图象上,它们的横坐标分别是x1,x2,x3,…x2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P1,P2,P3,…,P2005分别作y轴的平行线与y=3x的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2005(x2005,y2005),则y2005=________.140.当>0时,两个函数值y,一个随x增大而增大,另一个随x的增大而减小的是(•).A.y=3x与y=1xB.y=-3x与y=1xC.y=-2x+6与y=1xD.y=3x-15与y=-1x141.在y=1x的图象中,阴影部分面积为1的有()142.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=mx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,•若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.143.如图,已知点A(4,m),B(-1,n)在反比例函数y=8x的图象上,直线AB•分别与x轴,y轴相交于C、D两点,(1)求直线AB的解析式.(2)C、D两点坐标.(3)S△AOC:S△BOD是多少?144.已知y =y 1-y 2,y 1y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3. 求(1)y 与x 之间的函数关系式. (2)自变量x 的取值范围. (3)当x =14时,y 的值.145.如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A 、B 两点. (1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.146.如图,双曲线y =5x在第一象限的一支上有一点C (1,5),•过点C •的直线y =kx +b (k >0)与x 轴交于点A (a ,0). (1)求点A 的横坐标a 与k 的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D 的横坐标是9时,求△COA •的面积.反比例函数经典试题二答案姓名___________班级__________学号__________分数___________反比例函数试卷 难度 3 级121.下列函数,①y =2x ,②y =x ,③y =x -1,④y =11x 是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个 反比例函数试卷 难度 3 级 122.反比例函数y =2x的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 反比例函数试卷 难度 4 级123.已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象表示大致为( )A反比例函数试卷 难度 3 级 124.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )A反比例函数试卷 难度 3 级125.已知点(3,1)是双曲线y =kx(k ≠0)上一点,则下列各点中在该图象上的点是( ) A .(13,-9) B .(3,1) C .(-1,3) D .(6,-12)反比例函数试卷 难度4.5级126.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa 时,•气球将爆炸,为了安全起见,气体体积应( ) A .不大于2435m 3 B .不小于2435m 3 C .不大于2437m 3 D .不小于2437m 3反比例函数试卷 难度 3 级127.某闭合电路中,电源电压为定值,电流I A .与电阻R (Ω)成反比例,如右图所表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I •的函数解析式为( ).A .I =6R B .I =-6R C .I =3R D .I =2R反比例函数试卷 难度 3 级 128.函数y =1x与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ). A .1个 B .2个 C .3个 D .0个 反比例函数试卷 难度 4 级 129.若函数y =(m +2)|m |-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×2 反比例函数试卷 难度 4 级130.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y =4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3 反比例函数试卷 难度 3 级 131.一个反比例函数y =kx(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________.11.y =2x;反比例函数试卷 难度 4 级132.已知关于x 的一次函数y =kx +1和反比例函数y =6x的图象都经过点(2,m ),则一次函数的解析式是________. 12.y =x +1;反比例函数试卷 难度 4 级133.一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________. 13.y =20x; 反比例函数试卷 难度 4 级 134.正比例函数y =x 与反比例函数y =1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.14.2;反比例函数试卷 难度 4 级135.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.15.y =-8x; 反比例函数试卷 难度 4 级 136.反比例函数y =21039n n x--的图象每一象限内,y 随x 的增大而增大,则n =_______.16.n =-3;反比例函数试卷 难度4.5级137.已知一次函数y =3x +m 与反比例函数y =3m x-的图象有两个交点,当m =_____时,有一个交点的纵坐标为6. 17.m =5;反比例函数试卷 难度4.5 级138.若一次函数y =x +b 与反比例函数y =kx图象,在第二象限内有两个交点,•则k ______0,b _______0,(用“>”、“<”、“=”填空) 18.<,>;反比例函数试卷 难度 4.5级139.两个反比例函数y =3x ,y =6x 在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2005,在反比例函数y =6x的图象上,它们的横坐标分别是x 1,x 2,x 3,…x 2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线与y =3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.19.2004.5;反比例函数试卷 难度 4 级140.当>0时,两个函数值y ,一个随x 增大而增大,另一个随x 的增大而减小的是( •).A .y =3x 与y =1xB .y =-3x 与y =1xC .y =-2x +6与y =1xD .y =3x -15与y =-1x20.A .;反比例函数试卷 难度 4 级 141.在y =1x的图象中,阴影部分面积为1的有( )21.A .;C .;D .;反比例函数试卷 难度 4 级142.如图,已知一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别交于A 、B •两点,且与反比例函数y =mx(m ≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,•若OA =OB =OD =1. (1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.22.解:(1)∵OA =OB =OD =1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0). (2)∵点AB 在一次函数y =kx +b (k ≠0)的图象上, ∴01k b b -+=⎧⎨=⎩ 解得11k b =⎧⎨=⎩∴一次函数的解析式为y =x +1,∵点C 在一次函数y =x +1的图象上,•且CD ⊥x 轴, ∴C 点的坐标为(1,2),又∵点C 在反比例函数y =mx(m ≠0)的图象上, ∴m =2,•∴反比例函数的解析式为y =2x.;反比例函数试卷 难度 4 级143.如图,已知点A (4,m ),B (-1,n )在反比例函数y =8x的图象上,直线AB •分别与x 轴,y 轴相交于C 、D 两点, (1)求直线AB 的解析式.(2)C 、D 两点坐标.(3)S △AOC :S △BOD 是多少?23.(1)y =2x -6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.;反比例函数试卷 难度4.5级144.已知y =y 1-y 2,y 1y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3. 求(1)y 与x 之间的函数关系式.(2)自变量x 的取值范围.(3)当x =14时,y 的值. 24.(1)y =216x 提示:设y =k22k x,再代入求k 1,k 2的值. (2)自变量x 取值范围是x >0. (3)当x =14时,y =162=255.;反比例函数试卷 难度 4 级145.如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A 、B 两点. (1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.25.解:(1)由图中条件可知,双曲线经过点A (2,1)∴1=2m ,∴m =2,∴反比例函数的解析式为y =2x .又点B 也在双曲线上,∴n =21-=-2,∴点B 的坐标为(-1,-2).∵直线y =kx +b 经过点A 、B . ∴122k b k b =+⎧⎨-=-+⎩ 解得11k b =⎧⎨=-⎩ ∴一次函数的解析式为y =x -1.(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x >2或-1<x <0.;反比例函数试卷 难度 4.5级146.如图,双曲线y =5x在第一象限的一支上有一点C (1,5),•过点C •的直线y =kx +b (k >0)与x 轴交于点A (a ,0). (1)求点A 的横坐标a 与k 的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D 的横坐标是9时,求△COA •的面积.26.解:(1)∵点C(1,5)在直线y=-kx+b上,∴5=-k+b,又∵点A(a,0)也在直线y=-kx+b上,∴-ak+b=0,∴b=ak将b=ak代入5=-k+a中得5=-k+ak,∴a=5k+1.(2)由于D点是反比例函数的图象与直线的交点∴599yy k ak⎧=⎪⎨⎪=-+⎩∵ak=5+k,∴y=-8k+5 ③将①代入③得:59=-8k+5,∴k=59,a=10.∴A(10,0),又知(1,5),∴S△COA=12×10×5=25.;反比例函数测试题(一)答案1.B.;2.D.;3.A.;4.A.;5.B.;6.B.;7.A.;8.B.;9.A.;10.D.;11.y=2x;12.y=x+1;13.y=20x;14.2;15.y=-8x;16.n=-3;17.m=5;18.<,>;19.2004.5;20.A.;B.;;21.A.;C.;D.;22.解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0).(2)∵点AB在一次函数y=kx+b(k≠0)的图象上,∴1k bb-+=⎧⎨=⎩解得11kb=⎧⎨=⎩∴一次函数的解析式为y=x+1,∵点C在一次函数y=x+1的图象上,•且CD⊥x轴,∴C点的坐标为(1,2),又∵点C 在反比例函数y =mx(m ≠0)的图象上,∴m =2,•∴反比例函数的解析式为y =2x.;23.(1)y =2x -6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.; 24.(1)y =216x 提示:设y =k22k x ,再代入求k 1,k 2的值. (2)自变量x 取值范围是x >0. (3)当x =14时,y =162=255.; 25.解:(1)由图中条件可知,双曲线经过点A (2,1)∴1=2m ,∴m =2,∴反比例函数的解析式为y =2x .又点B 也在双曲线上,∴n =21-=-2,∴点B 的坐标为(-1,-2).∵直线y =kx +b 经过点A 、B . ∴122k b k b =+⎧⎨-=-+⎩ 解得11k b =⎧⎨=-⎩ ∴一次函数的解析式为y =x -1.(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x >2或-1<x <0.;26.解:(1)∵点C (1,5)在直线y =-kx +b 上,∴5=-k +b , 又∵点A (a ,0)也在直线y =-kx +b 上,∴-ak +b =0,∴b =ak 将b =ak 代入5=-k +a 中得5=-k +ak ,∴a =5k+1. (2)由于D 点是反比例函数的图象与直线的交点∴599y y k ak⎧=⎪⎨⎪=-+⎩ ∵ak =5+k ,∴y =-8k +5 ③ 将①代入③得:59=-8k +5,∴k =59,a =10. ∴A (10,0),又知(1,5),∴S △COA =12×10×5=25.;。