2022-2023学年人教版九年级数学第一学期期末测试题含答案
- 格式:docx
- 大小:466.16 KB
- 文档页数:10
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,点A ,B ,C 在⊙O 上,∠A=36°,∠C=28°,则∠B=( )A .100°B .72°C .64°D .36° 2.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .103.下列方程中是关于x 的一元二次方程的是 ( )A .2210x x +=B .20ax bx c ++=C .(1)(2)1x x -+=D .223250x xy y --=4.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为( )A .12B .14C .18D .1165.对于反比例函数1y x =,下列说法正确的是( ) A .图象经过点()1,1- B .图象位于第二、四象限C .图象是中心对称图形D .当0x <时,y 随x 的增大而增大 6.一个几何体的三视图如图所示,则这个几何体是( )A .球体B .圆锥C .棱柱D .圆柱7.对于二次函数y =﹣2x 2,下列结论正确的是( )A .y 随x 的增大而增大B .图象关于直线x =0对称C .图象开口向上D .无论x 取何值,y 的值总是负数8.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x ,那么下面列出的方程正确的是( )A .180(1+x )=300B .180(1+x )2=300C .180(1﹣x )=300D .180(1﹣x )2=3009.以下A 、B 、C 、D 四个三角形中,与左图中的三角形相似的是( )A .B .C .D .10.如图,二次函数y=ax 1+bx+c 的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,1)与(0,3)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc <0;②9a+3b+c >0;③若点M (12,y 1),点N (52,y 1)是函数图象上的两点,则y 1<y 1;④﹣35<a <﹣25;⑤c-3a >0其中正确结论有( )A .1个B .3个C .4个D .5个 11.将抛物线223y x x =-+向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线解析式为( )A .2(1)4y x =-+B .2(4)4y x =-+C .2(2)6y x =++D .2(4)6y x =-+ 12.在ABC ∆中,90C ∠=︒,4sin 5A =,则cos B 的值为( ) A .43 B .34 C .35 D .45二、填空题(每题4分,共24分)13.在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,从盒子中任意取出1个球,取出红球的概率是____.14.抛物线y=3x 2向右平移1个单位,再向下平移2个单位,所得到的抛物线是____.15.已知某品牌汽车在进行刹车测试时发现,该品牌某款汽车刹车后行驶的距离 S (单位:米)与行驶时间 t (单位:秒)满足下面的函数关系:2124(0)S t t t =-≥ .那么测试实验中该汽车从开始刹车到完全停止,共行驶了_________米.16.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.17.若2sin 2α=,则锐角α的度数是_____. 18.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是____ cm ².(结果保留).三、解答题(共78分)19.(8分)某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.20.(8分)用适当的方法解下列方程:(1)x 2-6x +1=0(2)x 2-4=2x +421.(8分)如图,已知抛物线25y ax bx =+-()0a ≠与x 轴相交于A 、B 两点,与y 轴相交于C 点,对称轴为1x =-,直线3y x =-+与抛物线相交于A 、D 两点.(1)求此抛物线的解析式;(2)P 为抛物线上一动点,且位于3y x =-+的下方,求出ADP ∆面积的最大值及此时点P 的坐标;(3)设点Q 在y 轴上,且满足OQA OCA CBA ∠+∠=∠,求CQ 的长.22.(10分)已知12,x x 是关于x 的一元二次方程222(1)50x m x m -+++=的两个实数根. (1)求m 的取值范围;(2)若()()121128x x --=,求m 的值;23.(10分)如图,已知ABC 的三个顶点的坐标分别为(2,2)A -、(5,0)B -、(10)C -,,P (a ,b )是△ABC 的边AC 上一点:(1)将ABC ∆绕原点O 逆时针旋转90°得到111A B C ∆,请在网格中画出111A B C ∆,旋转过程中点A 所走的路径长为 .(2)将△ABC 沿一定的方向平移后,点P 的对应点为P 2(a +6,b +2),请在网格画出上述平移后的△A 2B 2C 2,并写出点A 2、的坐标:A 2( ).(3)若以点O 为位似中心,作△A 3B 3C 3与△ABC 成2:1的位似,则与点P 对应的点P 3位似坐标为 (直接写出结果).24.(10分)如图,已知抛物线214y x bx c =++经过ABC 的三个顶点,其中点(0,3)A ,点(12,15)-B ,//AC x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交与点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与ABC 相似,若存在,直接写出点Q 的坐标;若不存在,请说明理由.25.(12分)如图,一根竖直的木杆在离地面3.1m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:sin380.62,cos380.79,tan380.78︒≈︒≈︒≈)26.如图,在ABC ∆中,90ACB ∠=︒,CA CB =,点O 在ABC ∆的内部,O 经过B ,C 两点,交AB 于点D ,连接CO并延长交AB于点G,以GD,GC为邻边作GDEC.(1)判断DE与O的位置关系,并说明理由.(2)若点B是DBC的中点,O的半径为2,求BC的长.参考答案一、选择题(每题4分,共48分)1、C【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:∠O=2∠A=72°,根据∠C=28°可得:∠ODC=80°,则∠ADB=80°,则∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本题选C.2、A【分析】作辅助线,连接OA,根据垂径定理得出AE=BE=4,设圆的半径为r,再利用勾股定理求解即可.【详解】解:如图,连接OA,设圆的半径为r ,则OE=r-2,∵弦AB CD ⊥,∴AE=BE=4,由勾股定理得出:()22242r r =+-,解得:r=5,故答案为:A.【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.3、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A 、2210x x +=不是整式方程,故本选项错误; B 、当a =0时,方程就不是一元二次方程,故本选项错误;C 、由原方程,得230x x +-=,符合一元二次方程的要求,故本选项正确;D 、方程223250x xy y --=中含有两个未知数,故本选项错误.故选C .【点睛】此题考查的是一元二次方程的判断,掌握一元二次方程的定义是解决此题的关键.4、B【分析】根据概率公式直接解答即可.【详解】∵共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境, ∴他选择的景点恰为丝路花雨的概率为14;【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.5、C【分析】根据反比例函数的图象和性质,可对各个选项进行分析,判断对错即可.【详解】解:A、∵当x=1时,y=1,∴函数图象过点(1,1),故本选项错误;k=>,∴函数图象的每个分支位于第一和第三象限,故本选项错误;B、∵10C、由反比例函数的图象对称性可知,反比例函数的图象是关于原点对称,图象是中心对称图,故本选项正确;k=>,∴在每个象限内,y随着x的增大而减小,故本选项错误;D、∵10故选:C.【点睛】本题重点考查反比例函数的图象和性质,熟练掌握反比例函数图象和性质是解题的关键.6、D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.7、B【分析】根据二次函数的性质可判断A、B、C,代入x=0,可判断D.【详解】解:∵a=﹣2<0,b=0,∴二次函数图象开口向下;对称轴为x=0;当x<0时,y随x增大而增大,当x>0时,y随x增大而减小,故A,C错误,B正确,当x=0时,y=0,故D错误,故选:B.【点睛】本题考查了二次函数的图象和性质,熟练掌握基础知识是解题关键.8、B【分析】本题可先用x表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x的方程.【详解】当商品第一次提价后,其售价为:180(1+x);当商品第二次提价后,其售价为:180(1+x)1.∴180(1+x)1=2.【点睛】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.9、B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】设小正方形的边长为1,所以三边之比为1:2A 、三角形的三边分别为2、2:B 、三角形的三边分别为2、4、1:2,故本选项正确;C 、三角形的三边分别为2、32:D 44,故本选项错误.故选:B .【点睛】本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键.10、D【分析】根据二次函数的图项与系数的关系即可求出答案.【详解】①∵图像开口向下,a 0∴< ,∵与y 轴的交点B 在(0,1)与(0,3)之间,0c ∴> ,∵对称轴为x=1,-22b a∴= , ∴b=-4a ,∴b>0,∴abc<0,故①正确;②∵图象与x 轴交于点A(-1,0),对称轴为直线x=1,∴图像与x 轴的另一个交点为(5,0),∴根据图像可以看出,当x=3时,函数值y=9a+3b+c>0,故②正确; ③∵点1215y y 22M N (,),(,) ,∴点M 到对称轴的距离为13|2-|=22 ,点N 到对称轴的距离为51|2-|=22, ∴点M 到对称轴的距离大于点N 到对称轴的距离,∴12y y < ,故③正确;④根据图像与x 轴的交点坐标可以设函数的关系式为:y=a (x-5)(x+1),把x=0代入得y=-5a ,∵图像与y 轴的交点B 在(0,1)与(0,3)之间,-5a 253a >⎧∴⎨-<⎩, 解不等式组得32-55a <<- ,故④正确; ⑤∵对称轴为x=1-22b a∴= , ∴b=-4a ,当x=1时,y=a+b+c=a-4a+c=c-3a>0,故⑤正确;综上分析可知,正确的结论有5个,故D 选项正确.故选D .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 1+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方.11、B【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】将223y x x =-+化为顶点式,得2(1)2y x =-+.将抛物线223y x x =-+向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为2(4)4y x =-+,故选B .【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.12、D【分析】在Rt△ABC中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【详解】解:在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=45.故选:D.【点睛】本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等.二、填空题(每题4分,共24分)13、2 3【分析】根据概率的定义即可解题.【详解】解:一共有3个球,其中有2个红球,∴红球的概率=2 3 .【点睛】本题考查了概率的实际应用,属于简单题,熟悉概念是解题关键.14、y=3(x﹣1)2﹣2【分析】根据图象向下平移减,向右平移减,即可得答案.【详解】抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2,故答案为y=3(x-1)2-2.【点睛】本题考查了二次函数图象与几何变换,解题的关键是用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.15、1【分析】此题利用配方法求二次函数最值的方法求解即可;【详解】∵221243492⎛⎫=--+⎪-⎝=⎭tS t t,∴汽车刹车后直到停下来前进了1m.故答案是1.【点睛】本题主要考查了二次函数最值应用,准确化简计算是解题的关键.16、y =2(x -2)2+3【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y =2(x -2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.17、45°.【分析】直接利用特殊角的三角函数值得出答案.【详解】解:∵sin α=, ∴α=45°.故答案为:45°.【点睛】本题考查的知识点特殊角的三角函数值,理解并熟记特殊角的三角函数值是解题的关键.18、15π【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:圆锥的侧面积=π×3×5=15πcm 2故答案为:15π.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.三、解答题(共78分)19、(1)10700y x =-+;(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x ≤56【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【详解】解:(1)y 与x 之间的函数关系式为:y kx b =+把(35,350),(55,150)代入得:由题意得:3503515055k b k b =+⎧⎨=+⎩解得:10700k b =-⎧⎨=⎩∴y 与x 之间的函数关系式为:10700y x =-+.(2)设销售利润为W 元则W=(x ﹣30)•y =(x ﹣30)(﹣10x +700),W =﹣10x 2+1000x ﹣21000W =﹣10(x ﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W =3640∴﹣10(x ﹣50)2+4000=3640∴x 1=44,x 2=56如图所示,由图象得:当44≤x ≤56时,每天利润不低于3640元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.20、(1)x 1=3+2,x 2=3-2 ;(2)x 1=-2,x 2=4【分析】(1)利用配方法进行求解一元二次方程即可;(2)根据十字相乘法进行求解一元二次方程即可.【详解】解:(1)2610x x -+=2698x x +-=,()238x -=, 解得:12322,322x x =+=-;(2)2424x x -=+2280x x --=,()()240x x +-=,解得:122,4x x =-=.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.21、(1)212533y x x =+-; (2)当52t =-时,ADP S ∆取最大值133124,此时P 点坐标为555,212⎛⎫-- ⎪⎝⎭. (3)7CQ =或17.【分析】(1)根据对称轴与点A 代入即可求解;(2)先求出()8,11D -,过P 点作y 轴的平行线,交直线AD 于点M ,设212,533P t t t ⎛⎫+- ⎪⎝⎭,得到(),3M t t -+,215833PM t t =--+,表示出21111582233ADP A D S PM x x t t ∆⎛⎫=-=--+ ⎪⎝⎭,根据二次函数的性质即可求解; (3)根据题意分①当Q 在y 轴正半轴上时, ②当Q 在y 轴负半轴上时利用相似三角形的性质即可求解.【详解】(1)∵对称轴为x =−1,∴−2b a=−1, ∴b =2a ,∴y =ax 2+2ax −5,∵y =−x +3与x 轴交于点A (3,0),将点A 代入y =ax 2+2ax−5可得a =13∴212533y x x =+-. (2)令2125333x x x +-=-+,解得:13x =,28x =-, ∴()8,11D -,过P 点作y 轴的平行线,交直线AD 于点M ,设212,533P t t t ⎛⎫+- ⎪⎝⎭,则(),3M t t -+, ∴215833PM t t =--+,83t -<<, 则21111582233ADP A D S PM x x t t ∆⎛⎫=-=--+ ⎪⎝⎭, ∵103-<, ∴当52t =-时,ADP S ∆取最大值133124, 此时P 点坐标为555,212⎛⎫-- ⎪⎝⎭. (3)存在,理由:①当Q 在y 轴正半轴上时,如图,过点Q 作QN AC ⊥于N ,根据三角形的外角的性质得,OQA OCA QAN ∠+∠=∠,又∵45OQA OCA CBA ∠+∠=∠=︒,∴45QAN CBA ∠=∠=︒,∴AN QN =,∵3AO =,5CO =,∴AC =设AN QN m ==,则CN AC AN m =+=+又∵90QNA COA ∠=∠=︒,QCN ACO ∠=∠,∴COA CNQ ∆∆∽, ∴CO AO AC CN QN QC==,3m QC==,∴1732QC ==,②当Q 在y 轴负半轴上时,记作'Q ,由①知,17512OQ QC CO =-=-=,取'12OQ OQ ==,如图,则由对称知:'OQ A OQA ∠=∠,∴'45OQ A OCA OQA OCA CBA ∠+∠=∠+=∠=︒,因此点'Q 也满足题目条件,∴''1257Q C OQ OC =-=-=,综合以上得:7CQ =或17.【点睛】本题考查二次函数的综合;熟练掌握二次与一次函数的图象及性质,掌握三角形相似、直角三角形的性质是解题的关键.22、(1)2m ≥;(2)6m =.【分析】(1)由方程有两个实数根可知0∆≥,代入方程的系数可求出m 的取值范围.(2)将等式左边展开,根据根与系数的关系12b x x a +=-,12c x x a =,代入系数解方程可求出m ,再根据m 的取值范围舍去不符合题意的值即可.【详解】解:(1)方程有两个实数根()()2221458160⎡⎤∴∆=-+-+=-≥⎣⎦m m m 2m ∴≥(2)由根与系数的关系,得:()1221x x m +=+,2125=+x x m()()121128x x --=()1212270x x x x -+-=()2521270m m ∴+-+-=126,4m m ∴==-2m ≥6m ∴=【点睛】本题考查一元二次方程根的判别式,根与系数的关系,熟记公式是解题的关键.23、(1)画图见解析,2π ;(2)画图见解析,(4,4);(3)P 3 (2a ,2b )或P 3 (-2a ,-2b )【解析】(1)分别得出△ABC 绕点O 逆时针旋转90º后的对应点得到111A B C 、、的位置,进而得到旋转后的得到111A B C ∆,而点A 所走的路径长为以O 为圆心,以OA 长为半径且圆心角为90°的扇形弧长;(2)由点P 的对应点为P 2(a +6,b +2)可知△ABC 向右平移6个单位长度,再向上平移2个单位长度,即可得到的△A 2B 2C 2;(3)以位似比2:1作图即可,注意有两个图形,与点P 对应的点P 3的坐标是由P 的横、纵坐标都乘以2或-2得到的.【详解】解:(1)111ΔA B C 如图所示,∵22222OA =+=∴点A 90222ππ⨯⨯= 2π(2)∵由点P 的对应点为P 2(a +6,b +2)∴△A 2B 2C 2是△ABC 向右平移6个单位长度,再向上平移2个单位长度可得到的,∴点A 对应点A 2坐标为(4,4)△A 2B 2C 2如图所示,(3)∵P (a ,b )且以点O 为位似中心,△A 3B 3C 3与△ABC 的位似比为2:1∴P 3 (2a ,2b )或P 3 (-2a ,-2b )△A 3B 3C 3如图所示,24、(1)21234y x x =++;(2)(6,0)P -;(3)存在,116(,3)3Q - ,2(4,3)Q 【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P (m ,21234m m ++),表示出PE =2134m m --,再用S 四边形AECP =S △AEC +S △APC =12AC ×PE ,建立函数关系式,求出最值即可;(3)先判断出PF =CF ,再得到∠PCA =∠EAC ,以C 、P 、Q 为顶点的三角形与△ABC 相似,分两种情况计算即可.【详解】(1)∵点(0,3)A ,(12,15)-B 在抛物线上,∴3115144124c b c =⎧⎪⎨=⨯-+⎪⎩, ∴23b c =⎧⎨=⎩, ∴抛物线的解析式为21234y x x =++, (2)∵AC ∥x 轴,A (0,3) ∴21234x x ++=3, ∴x 1=−6,x 2=0,∴点C 的坐标(−8,3),∵点(0,3)A ,(12,15)-B ,求得直线AB 的解析式为y =−x +3,设点P (m ,21234m m ++)∴E (m ,−m +3) ∴PE =−m +3−(21234m m ++)=2134m m --, ∵AC ⊥EP ,AC =8,∴S 四边形AECP=S △AEC +S △APC =12AC ×EF +12AC ×PF =12AC ×(EF +PF ) =12AC ×PE =12×8×(2134m m --) =−m 2−12m=−(m +6)2+36,∵−8<m <0∴当m =−6时,四边形AECP 的面积的最大,此时点P (−6,0);(3)∵21234y x x =++=21(4)14x +-, ∴P (−4,−1),∴PF =y F −y P =4,CF =x F −x C =4,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,3)且AB,AC=8,CP=∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴CQ CP AC AB=,∴88t+=,∴t=−163或t=−323(不符合题意,舍)∴Q(−163,3)②当△CQP∽△ABC时,∴CQ CP AB AC=,=∴t=4或t=−20(不符合题意,舍)∴Q(4,3)综上,存在点116 (,3)3Q-2(4,3)Q.【点睛】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.25、8.1m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】解:如图:3.1,38AC m B =∠=︒, ∴ 3.15sin 0.62AC AB B ===, ∴木杆折断之前高度()3.158.1AC AB m =+=+=故答案为8.1m【点睛】本题考查勾股定理的应用,熟练掌握运算法则是解题关键.26、(1)DE 是O 的切线;理由见解析;(2)BC 的长32π=. 【分析】(1)连接OD ,求得45ABC ∠=︒,根据圆周角定理得到290COD ABC ∠=∠=︒,根据平行四边形的性质得到//DE CG ,得到180EDO COD ∠+∠=︒,推出OD DE ⊥,于是得到结论;(2)连接OB ,由点B 是DBC 的中点,得到BC BD =,求得BOC BOD ∠=∠,根据弧长公式即可得到结论.【详解】(1)DE 是O 的切线;理由:连接OD , 90ACB ∠=︒,CA CB =,45ABC ∴∠=︒,290COD ABC ∴∠=∠=︒,四边形GDEC 是平行四边形,//DE CG ∴,180EDO COD ∴∠+∠=︒,90EDO ∴∠=︒,OD DE ∴⊥,DE ∴是O 的切线;(2)连接OB ,点B 是DBC 的中点,∴BC BD =,BOC BOD ∴∠=∠,360BOC BOD COD ∠+∠+∠=︒,∴BC 的长135231802ππ⨯==.【点睛】本题考查了直线与圆的位置关系,圆周角定理,平行四边形的性质,正确的识别图形是解题的关键.。
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
2022-2023学年辽宁省沈阳四十三中九年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下面图中所示几何体的左视图是( )A. B. C. D.2. 用配方法解一元二次方程y2−y−12=0时,下列变形正确的是( )A. (y+12)2=1 B. (y−12)2=34C. (y+12)2=34D. (y−12)2=13. 已知P是线段AB的黄金分割点,且AP>BP,那么下列比例式能成立的是( )A. ABAP =APBPB. ABAP=BPABC. BPAP=ABBPD. ABAP=√5−124. 在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA的值为( )A. 35B. 34C. 45D. 545. 如图,AB和DE是直立在地面上的两根立柱,AB=7米,某一时刻AB在阳光下的投影BC= 4米,DE在阳光下的投影长为6米,则DE的长为米.( )A. 212B. 247C. 143D. 146. 下列说法中,不正确的是( )A. 两组对边分别平行的四边形是平行四边形B. 一组对边平行另外一组对边相等的四边形是平行四边形C. 对角线互相平分且垂直的四边形是菱形D. 有一组邻边相等的矩形是正方形7. 线段a,b,c,d是成比例线段,已知a=2,b=√5,c=2√3,则d=( )A. √153B. 4√155C. 2√5D. √158. 如图,A是反比例函数y=kx图象上一点,过点A作AB⊥x轴于点B,点P在y轴上,△ABP 的面积为1,则k的值为( )A. 1B. 2C. −1D. −29. 关于x的一元二次方程kx2+4x−2=0有实数根,则k的取值范围是( )A. k≥−2B. k>−2且k≠0C. k≥−2且k≠0D. k≤−210. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1,有下列4个结论:①abc>0;②a+c>b;③4a+2b+c>0;④a+b≥am2+bm(m是任意实数).其中正确结论的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 如图,直线l1//l2//l3且与直线a、b相交于点A、B、C、D、E、F,若AB=1,BC=2,DE=1.5,则DF=______.12. 在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球有______个.13. 在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为______.14. 在△ABO中,已知点A(−6,3),B(−6,−4),以原点O为位似中心,相似比为1,把△ABO3缩小,则点A在第四象限的对应点A′的坐标是______.15. 如图,在平行四边形ABCD中,AB⊥AC,AB=3,AC=4,分别以A,C为圆心,大于1AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于2点F,连接AE,CF,则四边形AECF的周长为______.16. 如图,边长为5的正方形ABCD中,点E、G分别在射线AB、BC上,F在边AD上,ED与FG 交于点M,AF=1,FG=DE,BG>AF,则MC的最小值为______.三、计算题(本大题共1小题,共6.0分)17. 解方程:3x(x−2)=4(2−x)四、解答题(本大题共8小题,共76.0分。
2022-2023学年九上数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.下列汽车标志中,既是轴对称图形又是中心对称图形的是A .B .C .D .2.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁3.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( )A .B .C .D .4.如图,AB 为⊙O 的弦,半径OC 交AB 于点D ,AD =DB ,OC =5,OD =3,则AB 的长为( )A .8B .6C .4D .35.一条排水管的截面如图所示,已知排水管的半径10OB =,水面宽12AB =,则截面圆心O 到水面的距离OC 是( )A .3B .4C .33D .86.如图,在ABC ∆中,10AB =,8AC =,6BC =,以边AB 的中点O 为圆心作半圆,使BC 与半圆相切,点,P Q 分别是边AC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .8B .9C .10D .127.如图,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD =2OA =6,AD :A B =3:1,则点C 的坐标是( )A .(2,7)B .(3,7)C .(3,8)D .(4,8)8.如图所示,将一个含30角的直角三角板ABC 绕点A 逆时针旋转,点B 的对应点是点'B ,若点'B 、A 、C 在同一条直线上,则三角板ABC 旋转的度数是( )A .60B .90C .120D .1509.如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC ,若AD =4,AB =6,BC =12,则DE 等于( )A .4B .6C .8D .1010.一个不透明的袋子中装有仅颜色不同的1个红球和3个绿球,从袋子中随机摸出一个小球,记下颜色后,不放回再随机摸出一个小球,则两次摸出的小球恰好是一个红球和一个绿球的概率为( ) A .12B .716C .14D .38二、填空题(每小题3分,共24分)11.如图,点P 是∠AOB 平分线OC 上一点,PD ⊥OB ,垂足为D ,若PD =2,则点P 到边OA 的距离是_____.12.某同学用描点法y=ax 2+bx+c 的图象时,列出了表: x … ﹣2 ﹣1 0 1 2 … y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y 值,则这个错误的y 值是_______.13.如图,AB 为⊙O 的直径,C ,D 是⊙O 上两点,若∠ABC=50°,则∠D 的度数为______.14.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”) 15.如图,AB 是O 的直径,弦,30,23,CD AB CDB CD ⊥∠=︒=则阴影部分图形的面积为_________.16.做任意抛掷一只纸杯的重复实验,部分数据如下表 抛掷次数 50 100 500 800 1500 3000 5000 杯口朝上的频率0.10.150.20.210.220.220.22根据上表,可估计任意抛掷一只纸杯,杯口朝上的概率约为__________.17.已知二次函数2228y a x a x a =++(a 是常数,a ≠0),当自变量x 分别取-6、-4时,对应的函数值分别为y 1、y 2,那么y 1、y 2的大小关系是:y 1__ y 2(填“>”、“<”或“=”).18.如图,已知点A 在反比例函数图象上,AC ⊥y 轴于点C ,点B 在x 轴的负半轴上,且△ABC 的面积为3,则该反比例函数的表达式为__.三、解答题(共66分)19.(10分)解方程:x 2-5 = 4x .20.(6分)已知二次函数y =a 2x −4x +c 的图象过点(−1,0)和点(2,−9), (1)求该二次函数的解析式并写出其对称轴;(2)当x 满足什么条件时,函数值大于0?(不写求解过程), 21.(6分)(1)解方程:254111x x x x x -+=--+; (2)图①②均为7×6的正方形网络,点A ,B ,C 在格点上;(a )在图①中确定格点D ,并画出以A 、B 、C 、D 为顶点的四边形,使其为轴对称图形(画一个即可); (b )在图②中确定格点E ,并画出以A 、B 、C 、E 为顶点的四边形,使其为中心对称图形(画一个即可).22.(8分)若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根,23.(8分)如图,ABCD 是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG 的形状,其中点E 在AB 边上,点G 在AD 的延长线上,DG = 2BE .设BE 的长为x 米,改造后苗圃AEFG 的面积为y 平方米.(1)求y 与x 之间的函数关系式(不需写自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等,请问此时BE 的长为多少米?24.(8分)先化简,再求值:222222111x x x x x x x ⎛⎫--+÷ ⎪-+--⎝⎭,其中1245302x cos sin =︒-︒. 25.(10分)如图,△ABC 中,AB =AC =23,∠BAC =120°,D 为BC 边上的点,将DA 绕D 点逆时针旋转120°得到DE .(1)如图1,若AD =DC ,则BE 的长为 ,BE 2+CD 2与AD 2的数量关系为 ;(2)如图2,点D 为BC 边山任意一点,线段BE 、CD 、AD 是否依然满足(1)中的关系,试证明;(3)M 为线段BC 上的点,BM =1,经过B 、E 、D 三点的圆最小时,记D 点为D 1,当D 点从D 1处运动到M 处时,E 点经过的路径长为 .26.(10分)计算:22sin30cos60cos 45︒+︒-︒;参考答案一、选择题(每小题3分,共30分) 1、D【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此, A 、是轴对称图形,不是中心对称图形,故本选项错误; B 、既不是中心对称图形,也不是轴对称图形,故本选项错误; C 、不是轴对称图形,是中心对称图形,故本选项错误; D 、是中心对称图形,也是轴对称图形,故本选项正确. 故选D . 2、B【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得01442b cb c=-+⎧⎨=++⎩ 解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意; B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得1201b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键. 3、D【分析】本题可先由一次函数y=ax+c 图象得到字母系数的正负,再与二次函数y=ax 2+bx+c 的图象相比较看是否一致. 【详解】A 、一次函数y=ax+c 与y 轴交点应为(0,c ),二次函数y=ax 2+bx+c 与y 轴交点也应为(0,c ),图象不符合,故本选项错误;B 、由抛物线可知,a >0,由直线可知,a <0,a 的取值矛盾,故本选项错误;C 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误;D 、由抛物线可知,a <0,由直线可知,a <0,且抛物线与直线与y 轴的交点相同,故本选项正确. 故选D . 【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法. 4、A【分析】连接OB ,根据⊙O 的半径为5,CD =2得出OD 的长,再由垂径定理的推论得出OC ⊥AB ,由勾股定理求出BD 的长,进而可得出结论. 【详解】解:连接OB ,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴BD=2222OB OD534∴AB=2BD=1.故选:A.【点睛】本题主要考查的是圆中的垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”,掌握垂径定理是解此题的关键.5、D【分析】根据垂径定理,OC⊥AB,故OC平分AB,由AB=12,得出BC=6,再结合已知条件和勾股定理,求出OC 即可.【详解】解:∵OC⊥AB,AB=12∴BC=6OB=∵10∴2222-=-=OB BC1068故选D.【点睛】本题主要考查了垂径定理以及勾股定理,能够熟悉定理以及准确的运算是解决本题的关键.6、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,∵AB=20,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP2A=90°,∴OP2∥BC.∵O为AB的中点,∴P2C=P2A,OP2=12BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=12AC=4=OQ2.∴P2Q2最小值为OQ2-OP2=4-2=2,如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=AO+OQ2=5+4=9,∴PQ长的最大值与最小值的和是20.故选:C.【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ 取得最大值、最小值时的位置,属于中考常考题型.7、A【解析】过C作CE⊥y轴于E,∵四边形ABCD是矩形,∴CD=AB,∠ADC=90°,∴∠ADO+∠CDE=∠CDE+∠DCE=90°,∴∠DCE=∠ADO,∴△CDE∽△ADO,∴CE DE CD OD OA AD==,∵OD=2OA=6,AD:AB=3:1,∴OA=3,CD:AD=13,∴CE=13OD=2,DE=13OA=1,∴OE=7,∴C(2,7),故选A.8、D【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解. 【详解】解:旋转角是'18030150BAB ∠=-= 故选:D. 【点睛】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键. 9、C【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质可得出AD DEAB BC=,再代入AD =4,AB =6,BC =12即可求出DE 的长. 【详解】∵DE ∥BC , ∴△ADE ∽△ABC , ∴AD DE AB BC =,即4612DE=, ∴DE =1. 故选:C . 【点睛】此题考查相似三角形的判定及性质,平行于三角形一边的直线与三角形的两边相交,所截出的三角形与原三角形相似,故而依次得到线段成比例,得到线段的长. 10、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球恰好是一个红球和一个绿球的情况,再利用概率公式即可求得答案. 【详解】画树状图为:共有12种等可能的结果数,其中两次摸出的小球恰好是一个红球和一个绿球的结果数为6, 所以两次摸出的小球恰好是一个红球和一个绿球的概率=612=12.故选A .【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.二、填空题(每小题3分,共24分)11、1【分析】作PE ⊥OA,再根据角平分线的性质得出PE=PD 即可得出答案.【详解】过P 作PE ⊥OA 于点E ,∵点P 是∠AOB 平分线OC 上一点,PD ⊥OB ,∴PE =PD ,∵PD =1,∴PE =1,∴点P 到边OA 的距离是1.故答案为1.【点睛】本题考查角平分线的性质,关键在于牢记角平分线的性质并灵活运用.12、﹣1.【解析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得212a b c c a b c -+=-⎧⎪=⎨⎪++=-⎩, 解得,301a b c =-⎧⎪=⎨⎪=⎩,函数解析式为y=﹣3x 2+1x=2时y=﹣11,故答案为﹣1.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.13、40°.【解析】根据直径所对的圆心角是直角,然后根据直角三角形的两锐角互余求得∠A的度数,最后根据同弧所对的圆周角相等即可求解.【详解】∵AB是圆的直径,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案为:40°.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角以及同弧所对的圆周角相等,理解定理是关键.14、不公平.【分析】先根据题意画出树状图,然后根据概率公式求解即可.【详解】画出树状图如下:共有9种情况,积为奇数有4种情况所以,P(积为奇数)=4 9即甲获胜的概率是49,乙获胜的概率是59所以这个游戏不公平.【点睛】解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.15、2 3【分析】根据垂径定理求得3COE=60°.然后通过解直角三角形求得线段OC,求出扇形COB 面积,即可得出答案.【详解】解:∵AB 是⊙O 的直径,弦CD ⊥AB ,CD=23,∴CE=123CEO=90°, ∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴OC=sin 60CE =2, ∴阴影部分的面积S=S 扇形COB =26022=3603ππ⨯, 故答案为:23π. 【点睛】本题考查了垂径定理、解直角三角形,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB 的面积是解此题的关键.16、0.1【解析】观察表格的数据可以得到杯口朝上的频率,然后用频率估计概率即可求解.【详解】解:依题意得杯口朝上频率逐渐稳定在0.1左右,估计任意抛掷一只纸杯,杯口朝上的概率约为0.1.故答案为:0.1.【点睛】本题考查利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.17、>【分析】先求出抛物线的对称轴为4x =-,由20a >,则当4x <-,y 随x 的增大而减小,即可判断两个函数值的大小.【详解】解:∵二次函数2228y a x a x a =++(a 是常数,a ≠0),∴抛物线的对称轴为:22842a x a=-=-, ∵20a >,∴当4x <-,y 随x 的增大而减小,∵64-<-,∴12y y >;故答案为:>.【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质进行解题.18、y =﹣6x【解析】根据同底等高的两个三角形面积相等,可得△AOC 的面积=△ABC 的面积=3,再根据反比例函数中k 的几何意义,即可确定k 的值,进而得出反比例函数的解析式.【详解】解:如图,连接AO ,设反比例函数的解析式为y =k x . ∵AC ⊥y 轴于点C ,∴AC ∥BO ,∴△AOC 的面积=△ABC 的面积=3,又∵△AOC 的面积=12|k |, ∴12|k |=3, ∴k =±2; 又∵反比例函数的图象的一支位于第二象限,∴k <1.∴k =﹣2.∴这个反比例函数的解析式为y =﹣6x . 故答案为y =﹣6x.【点睛】本题考查待定系数法求反比例函数的解析式和反比例函数中k 的几何意义.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.三、解答题(共66分)19、x 1=5,x 2=﹣1.【解析】试题分析:移项后,用因式分解法解答即可.试题解析:解:∵x 2﹣5=4x ,∴x 2﹣4x ﹣5=0,∴(x ﹣5)(x +1)=0,∴x ﹣5=0或者x +1=0,∴x 1=5,x 2=﹣1.20、(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于1.【分析】(1)把(-1,1)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,1)和点(2,−9), ∴40449a c a c ++=⎧⎨-+=-⎩, 解得:15a c =⎧⎨=-⎩, ∴245y x x =--; ∴对称轴为:4222b x a -=-=-=; (2)令2450x y x --==,解得:11x =-,25x =,如图:-,1),点B的坐标为(5,1);∴点A的坐标为(1-或x>5时,函数值大于1.∴结合图象得到,当x<1【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.21、(1)x=4.5;(2)(a)见解析;(b)见解析【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【详解】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;经检验,x=4.5是原方程的解;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为中心对称图形;.【点睛】此题主要考查分式方程及方格的作图,解题的关键是熟知分式方程的解法及轴对称图形与中心对称图形的特点.22、(1)b=2或b=10-;(2)x 1=x 2=2;【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【详解】解:(1)由题意可知:△=(b+2)2-4(6-b )=0,∴28200b b +-=解得:b=2或b=10-.(2)当b=2时,此时x 2-4x+4=0,∴2(2)0x -=,∴x 1=x 2=2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.23、(1)y=-2x 2+4x+16;(2)2米【分析】(1)若BE 的长为x 米,则改造后矩形的宽为(4)x -米,长为(42)x +米,求矩形面积即可得出y 与x 之间的函数关系式;(2)根据题意可令函数值为16,解一元二次方程即可.【详解】解:(1)∵BE 边长为x 米,∴AE=AB-BE=4-x ,AG=AD+DG=4+2x苗圃的面积=AE×AG=(4-x)(4+2x) 则苗圃的面积y (单位:米2)与x (单位:米)的函数关系式为:y=-2x 2+4x+16(2)依题意,令y=16 即-2x 2+4x+16=16解得:x 1=0(舍)x 2=2答:此时BE 的长为2米.【点睛】本题考查的知识点是列函数关系式以及二次函数的实际应用,难度不大,找准题目中的等量关系式是解此题的关键.24、1,x +原式=74. 【分析】先把分式进行化简,得到最简代数式,然后根据特殊角的三角函数值,求出x 的值,把x 代入计算,即可得到答案.【详解】解:原式()()()()21112121x x x x x x x ⎡⎤-+-=-⋅⎢⎥---⎢⎥⎣⎦ ()()112112x x x x x x +-⎛⎫=-⋅ ⎪---⎝⎭ ()()11221x x x x x +-⋅---= 1x =+;当1113453022224x sin =︒-︒=-⨯=时, 原式371144x =+=+=. 【点睛】 本题考查了特殊值的三角函数值,分式的化简求值,以及分式的加减混合运算,解题的关键是熟练掌握运算法则进行运算.25、(1)BE 1+CD 1=4AD 1;(1)能满足(1)中的结论,见解析;(3)【分析】(1)依据旋转性质可得:DE =DA =CD ,∠BDE =∠ADB =60°,再证明:△BDE ≌△BDA ,利用勾股定理可得结论;(1)将△ACD 绕点A 顺时针旋转110°得到△ABD ′,再证明:∠D ′BE =∠D ′AE =90°,利用勾股定理即可证明结论仍然成立;(3)从(1)中发现:∠CBE =30°,即:点D 运动路径是线段;分别求出点D 位于D 1时和点D 运动到M 时,对应的BE 长度即可得到结论.【详解】解:(1)如图1,∵AB =AC ,∠BAC =110°,∴∠ABC =∠ACB =30°,∵AD =DC∴∠CAD =∠ACB =30°,∠ADB =∠CAD +∠ACB =60°,∴∠BAD =90°,由旋转得:DE =DA =CD ,∠BDE =∠ADB =60°∴△BDE ≌△BDA (SAS )∴∠BED =∠BAD =90°,BE =AB=∴BE 1+CD 1=BE 1+DE 1=BD 1∵AD BD =cos ∠ADB =cos60°=12∴BD =1AD∴BE 1+CD 1=4AD 1;故答案为:BE 1+CD 1=4AD 1;(1)能满足(1)中的结论.如图1,将△ACD 绕点A 顺时针旋转110°得到△ABD ′,使AC 与AB 重合,∵∠DAD ′=110°,∠BAD ′=∠CAD ,∠ABD ′=∠ACB =30°,AD ′=AD =DE ,∠DAE =∠AED =30°,BD ′=CD ,∠AD ′B=∠ADC∴∠D ′AE =90°∵∠ADB +∠ADC =180°∴∠ADB +∠AD ′B =180°∴A 、D 、B 、D ′四点共圆,同理可证:A 、B 、E 、D 四点共圆,A 、E 、B 、D ′四点共圆;∴∠D ′BE =90°∴BE 1+BD ′1=D ′E 1∵在△AD ′E 中,∠AED ′=30°,∠EAD ′=90°∴D ′E =1AD ′=1AD∴BE 1+BD ′1=(1AD )1=4AD 1∴BE 1+CD 1=4AD 1.(3)由(1)知:经过B 、E 、D 三点的圆必定经过D ′、A ,且该圆以D ′E 为直径,该圆最小即D ′E 最小,∵D ′E =1AD∴当AD 最小时,经过B 、E 、D 三点的圆最小,此时,AD ⊥BC如图3,过A 作AD 1⊥BC 于D 1,∵∠ABC =30°∴BD 1=AB •cos ∠ABC ==3,AD 1∴D 1M =BD 1﹣BM =3﹣1=1由(1)知:在D 运动过程中,∠CBE =30°,∴点D 运动路径是线段;当点D 位于D 1时,由(1)中结论得:22211143BE AD CD =-=,∴BE 1当点D 运动到M 时,易求得:BE 1∴E 点经过的路径长=BE 1+BE 1=故答案为:【点睛】本题考查的是圆的综合,综合性很强,难度系数较大,运用到了全等和勾股定理等相关知识需要熟练掌握相关基础知识.26、1【分析】根据特殊角的三角函数值代入即可求解.【详解】22sin30cos60cos 45︒+︒-︒21122222⎛⎫=⨯+- ⎪ ⎪⎝⎭ 11122=+- 1=【点睛】此题主要考查实数的计算,解题的关键是熟知特殊角的三角函数值.。
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.若△ABC ∽△ADE ,若AB =9,AC =6,AD =3,则EC 的长是( )A .2B .3C .4D .52.如图,⊙O 的半径OC 垂直于弦AB ,P 是优弧AB 上的一点(不与点A B 、重合),若55BOC ∠=︒,则APC ∠等于( )A .27.5B .25C .22.5D .203.如图,在AOC ∆中,31OA cm OC cm =,=,将△AOC 绕点O 顺时针旋转90后得到BOD ∆,则AC 边在旋转过程中所扫过的图形的面积为( )2cm .A .2πB .2πC .178πD .198π4.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( )A .m ≥1B .m ≤1C .m ≥-1D .m ≤-15.已点A (﹣1,y 1),B (2,y 2)都在反比例函数y =1k x -的图象上,并且y 1<y 2,那么k 的取值范围是( ) A .k >0 B .k >1 C .k <1 D .k ≠16.下面是由几个小正方体搭成的几何体,则这个几何体的左视图为( )A .B .C .D .7.函数1k y x=和2y kx k =-在同一坐标系中的图象大致是( ) A . B . C . D .8.如图,E ,F 分别为矩形ABCD 的边AD ,BC 的中点,若矩形ABCD 与矩形EABF 相似,AB =1,则矩形ABCD 的面积是( )A .4B .2C .3D .29.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC 的高为 1.6 m ,并测得BC =2.2 m ,CA =0.8 m, 那么树DB 的高度是( )A .6 mB .5.6 mC .5.4 mD .4.4 m10.点A(1,y 1)、B(3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .不能确定11.下列关系式中,y 是x 的反比例函数的是( )A .y=4xB .3y x =C .1y x =-D .21y x =-12.如图,在纸上剪一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径r =1,扇形的半径为R ,扇形的圆心角等于90°,则R 的值是( )A .R =2B .R =3C .R =4D .R =5二、填空题(每题4分,共24分)13.方程x 2=1的解是_____.14.如图,在矩形 ABCD 中,如果 AB =3,AD =4,EF 是对角线 BD 的垂直平分线,分别交 AD ,BC 于 点 EF ,则 ED 的长为____________________________.15.某校七年级共380名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中20名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有______人.16.如图,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 与CB 的延长线上的点E 重合连接CD ,则∠BDC 的度数为_____度.17.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.18.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.三、解答题(共78分)19.(8分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形统计图(如图1)和不完整的扇形图(如图2),其中条形统计图被墨迹遮盖了一部分.(1)求条形统计图中被遮盖的数,并写出册数的中位数;(2)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没有改变,则最多补查了____人.20.(8分)如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.21.(8分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.22.(10分)如图,在等边△ABC 中,把△ABC 沿直线MN 翻折,点A 落在线段BC 上的D 点位置(D 不与B 、C 重合),设∠AMN =α.(1)用含α的代数式表示∠MDB 和∠NDC ,并确定的α取值范围;(2)若α=45°,求BD :DC 的值;(3)求证:AM •CN =AN •BD .23.(10分)如图,在ABC ∆中,90,10,6ACB AB AC ︒∠===,正方形DEFG 的顶点D G 、分别在边AC 、BC 上,EF 在边AB 上.(1)点C 到AB 的距离为_________.(2)求DE 的长.24.(10分)(1)解方程:2340x x --=(2)计算:222sin 60cos 602tan 45︒+︒-︒25.(12分)如图,O 的半径为3AB 是O 的直径,F 是O 上一点,连接FO 、FB .C 为劣弧BF 的中点,过点C 作CD AB ⊥,垂足为D ,CD 交FB 于点E ,//CG FB ,交AB 的延长线于点G .(1)求证:CG是O的切线;(2)连接BC,若//BC OF,如图2.①求CE的长;②图中阴影部分的面积等于_________.26.如图所示是某路灯灯架示意图,其中点A表示电灯,AB和BC为灯架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于点C,求电灯A与地面l的距离.(结果精确到0.1m.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)参考答案一、选择题(每题4分,共48分)1、C【分析】利用相似三角形的性质得,对应边的比相等,求出AE的长,EC=AC-AE,即可计算DE的长;【详解】∵△ABC∽△ADE,∴AB AC AD AE,∵AB=9,AC=6,AD=3,∴AE=2,即EC=AC-AE=6-2=4;故选C.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质是解题的关键.2、A【分析】根据题意,⊙O 的半径 O C 垂直于弦 AB ,可应用垂径定理解题, O C 平分弦,平分弦所对的弧、平分弦所对的圆心角,故 55AOC BOC ∠=∠=︒,又根据同一个圆中,同弧所对的圆周角等于其圆心角的一半,可解得27.5APC ∠=︒【详解】 ⊙O 的半径 O C 垂直于弦AB , AC BC ∴=55BOC ∠=︒127.52APC BOC ∴∠=∠=︒ 故选A【点睛】本题考查垂径定理、圆周角与圆心角的关系,熟练掌握相关知识并灵活应用是解题关键.3、B【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式即可求解.【详解】解:AOC BOD ∆∆≌,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积229039012360360πππ⋅⨯⋅⨯=-= 故选B .【点睛】考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题关键.4、C【解析】根据函数解析式可知,开口方向向上,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧,y 随x 的增大而减小.【详解】解:∵函数的对称轴为x=222b m m a -=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.5、B【分析】利用反比例函数的性质即可得出答案.【详解】∵点A(﹣1,y1),B(1.y1)都在反比例函数y=1kx的图象上,并且y1<y1,∴k﹣1>0,∴k>1,故选:B.【点睛】本题考查反比例函数的图象上的点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.6、D【分析】根据几何体的三视图的定义以及性质进行判断即可.【详解】根据几何体的左视图的定义以及性质得,这个几何体的左视图为故答案为:D.【点睛】本题考查了几何体的三视图,掌握几何体三视图的性质是解题的关键.7、D【解析】试题分析:当k<0时,反比例函数过二、四象限,一次函数过一、二、四象限;当k>0时,反比例函数过一、三象限,一次函数过一、三、四象限.故选D.考点:1.反比例函数的图象;2.一次函数的图象.8、D【分析】根据相似多边形的性质列出比例式,计算即可.【详解】∵矩形ABCD与矩形EABF相似,∴AE ABAB AD=,即121AD=1AD,解得,AD,∴矩形ABCD的面积=AB•AD,故选:D.【点睛】此题主要考查相似多边形,解题的关键是根据相似的定义列出比例式进行求解.9、A【分析】先根据相似三角形的判定定理得出Rt△ACE∽Rt△ABD,再根据相似三角形的对应边成比例即可求出BD的长.【详解】解:∵EC∥AB,BD⊥AB,∴EC∥BD,∠ACE=∠ABD=90°,在Rt△ACE∽Rt△ABD中,∠A=∠A,∠ACE=∠ABD=90°,∴Rt△ACE∽Rt△ABD,∴EC CABD CA BC=+,即1.60.80.8 2.2BD=+,解得BD=6m.故选A.【点睛】本题考查的是相似三角形的应用,用到的知识点为:相似三角形的对应边成比例.10、A【解析】∵反比例函数y=9x中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y₁)、B(3,y₂)都位于第一象限,且1<3,∴y₁>y₂,故选A.11、C【解析】根据反比例函数的定义判断即可.【详解】A、y=4x是正比例函数;B 、y x=3,可以化为y =3x ,是正比例函数; C 、y =﹣1x 是反比例函数; D 、y =x 2﹣1是二次函数;故选C .【点睛】本题考查的是反比例函数的定义,形如y =k x (k 为常数,k≠0)的函数称为反比例函数. 12、C【分析】利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算.【详解】解:扇形的弧长是:90180R π=2R π, 圆的半径r =1,则底面圆的周长是2π, 圆锥的底面周长等于侧面展开图的扇形弧长则得到:2R π=2π, ∴2R =2, 即:R =4,故选C .【点睛】本题主要考查圆锥底面周长与展开扇形弧长关系,解决本题的关键是要熟练掌握圆锥底面周长与展开扇形之间关系.二、填空题(每题4分,共24分)13、±1 【解析】方程利用平方根定义开方求出解即可.【详解】∵x 2=1∴x =±1. 【点睛】本题考查直接开平方法解一元二次方程,解题关键是熟练掌握一元二次方程的解法.14、258【分析】连接EB ,构造直角三角形,设AE 为x ,则4DE BE x ==-,利用勾股定理得到有关x 的一元一次方程,即可求出ED 的长.【详解】连接EB ,∵EF 垂直平分BD ,∴ED=EB ,设AE x =,则4ED EB x ==-,在Rt △AEB 中,222AE AB BE +=,即:()22234x x +=-, 解得:78x =. ∴725488ED EB ==-=, 故答案为:258. 【点睛】 本题考查了矩形的性质,线段的垂直平分线的性质和勾股定理,正确根据勾股定理列出方程是解题的关键. 15、152.【解析】随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数.【详解】随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀,∴样本优秀率为:20÷50=40%, 又∵某校七年级共380名学生参加数学测试,∴该校七年级学生在这次数学测试中达到优秀的人数为:380×40%=152人. 故答案为:152.【点睛】本题考查了用样本估计总体,解题的关键是求样本的优秀率.16、1【分析】根据△EBD 由△ABC 旋转而成,得到△ABC ≌△EBD ,则BC =BD ,∠EBD =∠ABC =30°,则有∠BDC =∠BCD ,∠DBC =180﹣30°=10°,化简计算即可得出15BDC ∠=︒.【详解】解:∵△EBD 由△ABC 旋转而成,∴△ABC ≌△EBD ,∴BC =BD ,∠EBD =∠ABC =30°,∴∠BDC =∠BCD ,∠DBC =180﹣30°=10°, ∴()1180150152BDC BCD ∠=∠=︒-︒=︒; 故答案为1.【点睛】此题考查旋转的性质,即图形旋转后与原图形全等.17、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x 个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%, ∴5154x =+, 解得x=15,检验:x=15是原方程的根,∴白球的个数为15个,故答案为:15.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键.18、y =1(x ﹣3)1﹣1.【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =1x 1的图象先向右平移3个单位长度,再向下平移1个单位长度得到新函数的图象,得 新函数的表达式是y =1(x ﹣3)1﹣1,故答案为y =1(x ﹣3)1﹣1.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.三、解答题(共78分)19、 (1)被遮盖的数是9,中位数为5;(2)1.【分析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数;(2)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.【详解】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24-5-6-4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了1人.故答案为1.【点睛】本题考查了统计图和中位数,解题的关键是明确题意,找出所求问题需要的条件.20、(1)证明见解析;(2)1.【解析】试题分析:(1)根据DE ⊥AB ,DF ⊥AC ,AB=AC ,求证∠B=∠C .再利用D 是BC 的中点,求证△BED ≌△CFD即可得出结论.(2)根据AB=AC ,∠A=60°,得出△ABC 为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC 的周长.试题解析:(1)∵DE ⊥AB ,DF ⊥AC ,∴∠BED=∠CFD=90°,∵AB=AC ,∴∠B=∠C (等边对等角).∵D 是BC 的中点,∴BD=CD .在△BED 和△CFD 中,{BED CFDB CBD CD ∠=∠∠=∠=,∴△BED ≌△CFD (AAS ).∴DE=DF(2)∵AB=AC ,∠A=60°,∴△ABC 为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=12BD ,∵BE=2,∴BD=4,∴BC=2BD=8,∴△ABC的周长为1.考点:全等三角形的判定与性质.21、(1)抛物线的解析式为:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F 的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).解得:,∴抛物线的解析式为:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴抛物线的对称轴是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x轴于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)当y=0时,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+1.如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1时,S四边形CDBF的面积最大=,∴E(1,1).考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值22、(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(23;(3)见解析【分析】(1)利用翻折不变性,三角形内角和定理求解即可解决问题.(2)设BM=x.解直角三角形用x表示BD,CD即可解决问题.(3)证明△BDM∽△CND,推出DMND=BDCN,推出DM•CN=DN•BD可得结论.【详解】(1)由翻折的性质可知∠AMN=∠DMN=α,∵∠AMB=∠B+∠MDB,∠B=60°,∴∠MDB=2α﹣60°,∠NDC=180°﹣∠MDB﹣∠MDN=180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)设BM=x.∵α=45°,∴∠AMD=90°,∴∠BMD=90°,∵∠B=60°,∴∠BDM=30°,∴BD=2x,DN=BD•cos30°3,∴MA=MD3,∴BC=AB=x3,∴CD=BC﹣BD3﹣x,∴BD :CD =2x :(3x ﹣x )=3+1. (3)∵∠BDN =∠BDM +∠MDN =∠C +∠DNC ,∠MDN =∠A =∠C =60°,∴∠BDM =∠DNC , ∵∠B =∠C ,∴△BDM ∽△CND ,∴DM ND =BD CN, ∴DM •CN =DN •BD ,∵DM =AM ,ND =AN ,∴AM •CN =AN •BD .【点睛】本题考查了翻折变换、解直角三角形以及相似三角形的判定与性质,熟练掌握折叠的性质是解题的关键.23、(1)245;(2)12037【分析】(1)根据勾股定理即可得出BC=8,再运用等面积法,即可得出答案.(2)根据正方形的性质,即可得出//DG AB ,再根据相似三角形的判定可得出CDG CAB ∆∆,进而得出::DG AB CN CM =,设x 得出方程进行求解即可.【详解】解:(1)∵90,10,6ACB AB AC ︒∠===∴BC=8∴ABC S ∆ =1682⨯⨯ =24 ∴110h=242⨯⨯ ∴点C 到AB 的距离是245. (2)如图,过点C 作CM AB ⊥于点M ,交DG 于点N ,∵四边形DEFG 是正方形,∴//DG AB ,∴,MN DE CN DG =⊥,∴CDG CAB ∆∆,∴::DG AB CN CM =.设DE DG x ==,则2424:10:55x x ⎛⎫=- ⎪⎝⎭, 解得12037x =∴DE 的长为12037. 【点睛】本题主要考察了勾股定理和相似三角形,正确找出三角形的线段关系和灵活运用等面积法是解题的关键.24、(1)121,4x x =-=;(2)-1【分析】(1)方程因式分解后即可求出解;(2)原式利用特殊角的三角函数值计算,即可得到结果.【详解】(1)()()2x 3x 4x 4x 10--=-+=, ()()x 40x 10-=+=或,x 4x 1==-所以,解得或;(2)22231sin 60cos 602tan 452144︒+︒-︒=+-⨯=1-2=-1 【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.25、(1)见解析;(2)①2CE =,②2S π=阴.【分析】(1)连接OC ,利用等腰三角形三线合一的性质证得OC ⊥BF ,再根据CG ∥FB 即可证得结论; (2)①根据已知条件易证得OBC 是等边三角形,利用三角函数可求得CD 的长,根据三角形重心的性质即可求得答案;②易证得OBC FBC S S =,利用扇形的面积公式即可求得答案.【详解】(1)连接CO . C 是BF 的中点,BOC FOC ∴∠=∠.又OF OB =,OC BF ∴⊥.//CG FB ,OC CG ∴⊥.CG ∴是O 的切线.(2)①//OF CB ,∴FOC OCB ∠=∠.OC OB =,BOC FOC ∠=∠60AOF COF BOC ∴∠=∠=∠=︒.∴OBC 是等边三角形.CD OB ⊥,OC BF ⊥,又O 的半径为23在Rt OCD 中,3sin sin 60233CD OC COD OC ∠==︒=⨯=, ∵BF ⊥OC ,CD ⊥OB ,BF 与CD 相交于E ,点E 是等边三角形OBC 的垂心,也是重心和内心,∴223CE CD ==. ②∵AF ∥BC ,∴OBC FBC S S =∴(260232360OBC S S ππ⨯⨯===阴扇形.【点睛】要题考查了等腰三角形的性质,等边三角形的判定和性质,三角函数的知识,扇形的面积公式,根据三角形重心的性质求得CE的长是解题的关键.26、电灯A距离地面l的高度为6.4米.【分析】过A作AD⊥l,过B作BE⊥AD于E,则DE=BC=5.7m,解直角三角形即可得到结论.【详解】解:过A作AD⊥l,过B作BE⊥AD于E,则DE=BC=5.7m,∵∠ABC=110°,∴∠ABE=20°,∴∠A=70°,∴sin20°=AEAB=AE2=0.34,解得:AE=0.68,∴AD=AE+DE≈6.4;答:电灯A距离地面l的高度为6.4米.【点睛】考核知识点:解直角三角形应用.构造直角三角形,解直角三角形是关键.。
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.如图,数轴上的点A ,B ,C ,D 表示的数分别为3-,1-,1,2,从A ,B ,C ,D 四点中任意取两点,所取两点之间的距离为2的概率是( )A .16B .14C .23D .132.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个3.如图所示,在矩形ABCD 中,4,5==AB BC ,点E 在BC 边上,AF 平分DAE ∠,EF AE ⊥,垂足为E ,则CF 等于( )A .23B .1C .32D .24.如图所示,抛物线y=ax²+bx+c (a≠0)的对称轴为直线x=1,与y 轴的一个交点坐标为(0,3),其部分图象如图所示,下列5个结论中,其中正确的是( )①abc >0;②4a+c >0;③方程ax²+bx+c=3两个根是1x =0,2x =2;④方程ax²+bx+c=0有一个实数根大于2;⑤当x<0,y 随x 增大而增大A .4B .3C .2D .15.把方程2310x x +-=的左边配方后可得方程( )A .2313()24x +=B .235 ()24x += C .2313 ()24x -= D .235 ()24x -= 6.下列事件中,是随机事件的是( )A .任意画两个直角三角形,这两个三角形相似B .相似三角形的对应角相等C .⊙O 的半径为5,OP =3,点P 在⊙O 外D .直径所对的圆周角为直角7.⊙O 的半径为6cm ,点A 到圆心O 的距离为5cm ,那么点A 与⊙O 的位置关系是( )A .点A 在圆内B .点A 在圆上C .点A 在圆外D .不能确定8.方程248x x =的解是( )A .2x =B .0x =C .10x =,22x =D .12x =-,22x =9.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .410.如图,在Rt △ABC 中,∠ABC=90°,BA=BC .点D 是AB 的中点,连结CD ,过点B 作BG ⊥CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①AG FG AB FB=;②点F 是GE 的中点;③23AF AB =;④5∆∆=ABC BDF S S ,其中正确的结论个数是( )A.4个B.3个C.2个D.1个11.半径为R的圆内接正六边形的面积是()A.R2B.32R2C.332R2D.34R212.已知一扇形的圆心角为60︒,半径为5,则以此扇形为侧面的圆锥的底面圆的周长为()A.53πB.10πC.56πD.16π二、填空题(每题4分,共24分)13.已知(a+b)(a+b﹣4)=﹣4,那么(a+b)=_____.14.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为3,则AK= .15.如图,小明同学用自制的直角三角形纸板DEF测量树AB的高度,他调整自己的位置,使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,则AB=_____m.16.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=2:3,则△ADE与△ABC的面积之比为________.17.如图,在直角坐标系中,已知点30A -(,)、04B (,),对OAB 连续作旋转变换,依次得到1234、、、,则2019的直角顶点的坐标为__________.18.已知函数22(0)(0)x x x y x x ⎧-+>=⎨≤⎩的图象如图所示,若直线y x m =+与该图象恰有两个不同的交点,则m 的取值范围为_____.三、解答题(共78分)19.(8分)如图,海南省三沙市一艘海监船某天在黄岩岛P 附近海域由南向北巡航,某一时刻航行到A 处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B 处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P 的距离BP 的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,2≈1.414,3≈1.732)20.(8分)若关于x 的一元二次方程2(1)410m x x --+=方有两个不相等的实数根. ⑴求m 的取值范围.⑵若m 为小于10的整数,且该方程的根都是有理数,求m 的值.21.(8分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是14. (1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.22.(10分)一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案) 23.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A .非常愿意B .愿意C .不愿意D .无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.24.(10分)解方程:2x2﹣4x+1=1.25.(12分)已知抛物线的顶点坐标是(1,-4),且经过点(0,-3),求与该抛物线相应的二次函数表达式.26.为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C 足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.(1)学生小红计划选修两门课程,请写出所有可能的选法;(2)若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?参考答案一、选择题(每题4分,共48分)1、D【分析】利用树状图求出可能结果即可解答.【详解】解: 画树状图为:共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所取两点之间的距离为2的概率=412=13.故选D.【点睛】本题考查画树状图或列表法求概率,掌握画树状图的方法是解题关键.2、B【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点. 3、C【分析】利用矩形的性质、全等的性质结合方程与勾股定理计算即可得出答案.【详解】根据矩形的性质可得,∠D=90°又EF ⊥AE∴∠AEF=90°∴AEF D ∠∠=∵AF 平分∠DAE∴∠EAF=∠DAF在△AEF 和△ADF 中AEF D EAF DAF AF AF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△ADF∴AE=AD=BC=5 ,DF=EF在RT △ABE中,3BE ==∴EC=BC-BE=2设DF=EF=x ,则CF=4-x在RT △CEF 中,222EF FC EC =+即()22242x x =-+ 解得:x=52∴32CF DC DF =-=故答案选择C.【点睛】本题考查的是矩形的综合,难度适中,解题关键是利用全等证出△AEF ≌△ADF.4、B【分析】根据二次函数图象的开口方向、对称轴位置、与x 轴的交点坐标等知识,逐个判断即可.【详解】抛物线开口向下,a <0,对称轴为直线x =1>0,a 、b 异号,因此b >0,与y 轴交点为(0,3),因此c =3>0,于是abc <0,故结论①是不正确的;由对称轴为直线x =− 2b a=1得2a +b =0,当x =−1时,y =a−b +c <0,所以a +2a +c <0,即3a +c <0,又a <0,4a +c <0,故结论②不正确;当y =3时,x 1=0,即过(0,3),抛物线的对称轴为直线x =1,由对称性可得,抛物线过(2,3),因此方程ax 2+bx +c =3的有两个根是x 1=0,x 2=2;故③正确;抛物线与x 轴的一个交点(x 1,0),且−1<x 1<0,由对称轴为直线x =1,可得另一个交点(x 2,0),2<x 2<3,因此④是正确的;根据图象可得当x <0时,y 随x 增大而增大,因此⑤是正确的;正确的结论有3个,故选:B .【点睛】考查二次函数的图象和性质,掌握a 、b 、c 的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.5、A【分析】首先把常数项1-移项后,再在左右两边同时加上一次项系数3的一半的平方,继而可求得答案. 【详解】2310x x +-=,∴231x x +=,∴29931+44x x ++=, ∴231324x ⎛⎫+= ⎪⎝⎭. 故选:A .【点睛】此题考查了配方法解一元二次方程的知识,此题比较简单,注意掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.6、A【分析】根据相似三角形的判定定理、相似三角形的性质定理、点与圆的位置关系、圆周角定理判断即可.【详解】解:A 、任意画两个直角三角形,这两个三角形相似是随机事件,符合题意;B 、相似三角形的对应角相等是必然事件,故不符合题意;C 、⊙O 的半径为5,OP =3,点P 在⊙O 外是不可能事件,故不符合题意;D 、直径所对的圆周角为直角是必然事件,故不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.也考查了相似三角形的判定与性质,点与圆的位置关系,圆周角定理等知识. 7、A【解析】∵⊙O 的半径为6cm ,点A 到圆心O 的距离为5cm ,∴d <r ,∴点A 与⊙O 的位置关系是:点A 在圆内,故答案为:A . 8、C【分析】先把从方程的右边移到左边,并把两边都除以4化简,然后用因式分解法求解即可.【详解】∵248x x =,∴2480x x -=,∴220x x -=,∴()20x x -=,∴10x =,22x =.故选C.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.9、B【解析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在直角三角形OMF中,OM2+MF2=OF2,即:(4-x)2+22=x2,解得:x=2.5,故选B.【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.10、C【分析】易得AG∥BC,进而可得△AFG∽△CFB,然后根据相似三角形的性质以及BA=BC即可判断①;根据余角的性质可得∠ABG=∠BCD,然后利用“角边角”可证明△ABG≌△BCD,可得AG=BD,于是有AG=12BC,由①根据相似三角形的性质可得12FG AGFB BC==,进而可得FG=12FB,然后根据FE≠BE即可判断②;根据相似三角形的性质可得12AF AGCF BC==,再根据等腰直角三角形的性质可得AC2AB,然后整理即可判断③;过点F作FM⊥AB于M,如图,根据相似三角形的性质和三角形的面积整理即可判断④.【详解】解:在Rt△ABC中,∵∠ABC=90°,∴AB⊥BC,∵AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴AG FG BC FB=,∵BA=BC,∴AG FGAB FB=,故①正确;∵∠ABC=90°,BG⊥CD,∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,∴∠ABG=∠BCD,又∵BA=BC,∠BAG=∠CBD=90°,∴△ABG≌和△BCD(ASA),∴AG=BD,∵点D是AB的中点,∴BD=12 AB,∴AG=12 BC,∵△AFG∽△CFB,∴12 FG AGFB BC==,∴FG=12FB,∵FE≠BE,∴点F是GE的中点不成立,故②错误;∵△AFG∽△CFB,∴12 AF AGCF BC==,∴AF =13 AC,∵AC=2AB,∴23AF AB=,故③正确;过点F作FM⊥AB于M,如图,则FM∥CB,∴△AFM∽△ACB,∴13 AF FMAC BC==,∵12 BDBA=,∴1111212362BDFABCBD FMS BD FMS AB BCAB BC⋅==⋅=⨯=⋅,故④错误.综上所述,正确的结论有①③共2个.故选:C.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质和等腰直角三角形的性质等知识,属于常考题型,熟练掌握全等三角形和相似三角形的判定和性质是解题的关键.11、C【分析】连接OE、OD,由正六边形的特点求出判断出△ODE的形状,作OH⊥ED,由特殊角的三角函数值求出OH 的长,利用三角形的面积公式即可求出△ODE的面积,进而可得出正六边形ABCDEF的面积.【详解】解:如图示,连接OE、OD,∵六边形ABCDEF 是正六边形, ∴∠DEF=120°, ∴∠OED=60°, ∵OE=OD=R ,∴△ODE 是等边三角形, 作OH ⊥ED ,则3322R OH OE sin OED R∴211223324ODER R SDE OH R ∴223336642ODEABCDEF R R S S正六边形 故选:C . 【点睛】本题考查了正多边形和圆的知识,理解正六边形被半径分成六个全等的等边三角形是解答此题的关键. 12、A【分析】利用弧长公式计算出扇形的弧长,以此扇形为侧面的圆锥的底面圆的周长即是扇形的弧长. 【详解】解:扇形的弧长=60?••55=180?3,以此扇形为侧面的圆锥的底面圆的周长为53. 故选:A . 【点睛】本题考查了弧长的计算:••180n rl.二、填空题(每题4分,共24分) 13、2【分析】设a+b =t ,根据一元二次方程即可求出答案. 【详解】解:设a+b =t , 原方程化为:t (t ﹣4)=﹣4, 解得:t =2, 即a+b =2, 故答案为:2 【点睛】本题考查换元法及解一元二次方程,关键在于整体换元,简化方程. 14、233-.【详解】连接BH ,如图所示:∵四边形ABCD 和四边形BEFG 是正方形, ∴∠BAH=∠ABC=∠BEH=∠F=90°, 由旋转的性质得:AB=EB ,∠CBE=30°, ∴∠ABE=60°,在Rt △ABH 和Rt △EBH 中, ∵BH=BH ,AB=EB ,∴Rt △ABH ≌△Rt △EBH (HL ), ∴∠ABH=∠EBH=12∠ABE=30°,AH=EH , ∴AH=AB•tan ∠ABH=333⨯=1, ∴EH=1, ∴FH=31-,在Rt △FKH 中,∠FKH=30°, ∴KH=2FH=2(31)-,∴AK=KH ﹣AH=2(31)1--=233-; 故答案为233-.考点:旋转的性质. 15、6.5【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上AC 的长即可求得树AB 的高. 【详解】∵∠DEF =∠BCD =90°,∠D =∠D , ∴△DEF ∽△DCB ,∴BC DC EF DE=,∵DE=40cm=0.4m,EF=20cm=0.2m,CD=10m,∴10 0.20.4 BC=,解得:BC=5(m),∵AC=1.5m,∴AB=AC+BC=1.5+5=6.5(m),故答案为:6.5【点睛】本题考查相似三角形的应用,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.16、4:1【解析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=4:1.故答案为:4:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.17、()8076,0【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),∴,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标. 18、104m <<【解析】直线与y x =有一个交点,与22y x x =-+有两个交点,则有0m >,22x m x x +=-+时,140m ∆=->,即可求解.【详解】解:直线y x m =+与该图象恰有三个不同的交点, 则直线与y x =有一个交点, ∴0m >,∵与22y x x =-+有两个交点, ∴22x m x x +=-+,140m ∆=->,∴14m <, ∴104m <<;故答案为104m <<. 【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m 的范围.三、解答题(共78分) 19、28.3海里【分析】过B 作BD ⊥AP 于D ,由已知条件求出AB=40,∠P=45°,在Rt △ABD 中求出1202BD AB ==,在Rt △BDP 中求出PB 即可.【详解】解:过B 作BD ⊥AP 于D ,由已知条件得:AB=20×2=40海里,∠P=75°-30°=45°, 在Rt △ABD 中,∵AB=40,∠A=30°, ∴1202BD AB ==海里, 在Rt △BDP 中, ∵∠P=45°,∴28.3PB ==≈(海里). 答:此时海监船与黄岩岛P 的距离BP 的长约为28.3海里. 【点睛】此题主要考查解直角三角形的应用-方向角问题,根据已知得出△PDB 为等腰直角三角形是解题关键. 20、(1)3m >-且1m ≠.(2)2m =-或6【分析】(1)根据一元二次方程根的判别式,即可求出答案;(2)结合(1),得到m 的整数解,由该方程的根都是有理数,即可得到答案. 【详解】解:(1)∵方程2(1)410m x x --+=有两个不相等的实数根,2(4)4(1)11240m m ∴∆=--⨯-⨯=+>,解得:3m >- 又10m -≠,1m ∴≠m ∴的取值范围为:3m >-且1m ≠;(2)m 为小于10的整数,又3m >-且1m ≠.m ∴可以取:2-,1-,0,2,3,4,5,6,7,8,9.当2m =-或6时,4∆=或36为平方数, 此时该方程的根都是有理数. ∴m 的值为:2-或6. 【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式,利用根的判别式求参数的值. 21、(1)1;(2)见解析,13【分析】(1)设红球有x 个,根据题意得:11214x =++;(2)列表,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种. 【详解】解:(1)设红球有x 个,根据题意得:11214x =++,解得:x=1,经检验x=1是原方程的根. 则口袋中红球有1个 (2)列表如下:由上表可知,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种, 则P=41123= 【点睛】考核知识点:用列举法求概率.列表是关键.22、(1)见解析(2)(1)53或163或1 【分析】(1)根据已知中相似对角线的定义,只要证明△AEF ∽△ECF 即可;(2)AC 是四边形ABCD 的相似对角线,分两种情形:△ACB ~△ACD 或△ACB ~△ADC ,分别求解即可;(1)分三种情况①当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线.②取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD′,延长CD′交AB 于E ,则可得出 EF 是四边形AECF 的相似对角线.③取AB 的中点E ,连接CE ,作EF ⊥AD 于F ,延长CB 交FE 的延长线于M ,则可证出EF 是四边形AECF 的相似对角线.此时BE=1; 【详解】解:(1)∵四边形ABCD 是正方形, ∴AB=BC=CD=AD=4, ∵E 为AD 的中点,1AF =, ∴AE=DE=2,12∴==AF AE DE CD ∵∠A=∠D=90°, ∴△AEF ∽△DCE ,∴∠AEF=∠DCE ,12==EF AF CE DE ∵∠DCE+∠CED=90°, ∴∠AEF+∠CED=90°, ∴∠FEC=∠A=90°,12==AF EF AE EC ∴△AEF ∽△ECF ,∴EF 为四边形AECF 的相似对角线. (2)∵AC 平分BAD ∠, ∴∠BAC=∠DAC =60°∵AC 是四边形ABCD 的相似对角线, ∴△ACB ~△ACD 或△ACB ~△ADC①如图2,当△ACB ~△ACD 时,此时,△ACB ≌△ACD∴AB=AD=1,BC=CD , ∴AC 垂直平分DB ,在Rt △AOB 中,∵AB=1,∠ABO=10°,33cos302233︒∴=⋅=∴==BO AB BD OB②当△ACB ~△ADC 时,如图1∴∠ABC=∠ACD ∴AC 2=AB•AD , ∵6AC =,3AB =∴6=1AD , ∴AD=2,过点D 作DHAB 于H在Rt △ADH 中,∵∠HAD=60°,AD=2,11,332∴====AH AD DH AH 在Rt △BDH 中,2222419(3)=+=+=BD DH BH综上所述,BD 的长为:33或19(1)①如图4,当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线,设AE=EC=x ,在Rt △BCE 中,∵EC 2=BE 2+BC 2, ∴x 2=(6-x )2+42, 解得x=133, ∴BE=AB-AE=6-133=53. ②如图5中,如图取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD′,延长CD′交AB 于E ,则 EF 是四边形AECF 的相似对角线.∵△AEF ∽△DFC ,∴=AE AF DF DC 22623163∴=∴=∴=-=AE AE BE AB AE③如图6,取AB 的中点E ,连接CE ,作EF ⊥AD 于F ,延长CB 交FE 的延长线于M ,则EF 是四边形AECF 的相似对角线.则 BE=1.综上所述,满足条件的BE 的值为53或163或1. 【点睛】 本题主要考查了相似形的综合题、相似三角形的判定和性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、(1)40;(2)180;(3)12. 【解析】试题分析:(1)用选D 的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B 所占的百分比得到选B 的人数,然后用总人数分别减去选B 、C 、D 的人数得到选A 的人数,再补全条形统计图; (2)利用样本估计总体,用450乘以样本中选A 和选B 所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B 的人数=40×30%=12(人),选A 的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×41240=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率=612=12.点睛:本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A 或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.24、x1=1+22,x2=1﹣22【分析】先把方程两边除以2,变形得到x2-2x+1=12,然后利用配方法求解.【详解】x2-2x+1=12,(x-1)2=12,x-1=±22,所以x1=1+22,x2=1-22.【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.25、y=x2-2 x-3【分析】由于知道了顶点坐标是(1,-4),所以可设顶点式求解,即设y=a(x-1)2-4,然后把点(0,-3)代入即可求出系数a,从而求出解析式.【详解】解:设y=a(x-1)2-4,∵经过点(0,-3),∴-3= a(0-1)2-4,解得a=1∴二次函数表达式为y=x2-2 x-326、(1)答案见解析;(2)1 4【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B 阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率41. 164 ==点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式计算事件A或事件B的概率.。
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有实数根,则k 的取值范围是( )A .k ≥﹣1且k ≠0B .k ≥﹣1C .k ≤1D .k ≤1且k ≠0 2.下列各点中,在反比例函数3y x =图象上的是( ) A .(3,1) B .(-3,1) C .(3,13) D .(13,3) 3.2的相反数是( )A .12-B .12C .2D .2-4.对于反比例函数y=1x,下列说法正确的是( ) A .图象经过点(1,﹣1) B .图象关于y 轴对称C .图象位于第二、四象限D .当x <0时,y 随x 的增大而减小 5.如图,△ABC 内接于圆O,∠A=50°,∠ABC=60°,BD 是圆O 的直径,BD 交AC 于点E ,连结DC ,则∠AEB 等于( )A .70°B .110°C .90°D .120°6.已知反比例函数6y x=-,下列结论中不正确的是( ) A .图象必经过点 ()1,6- B .y 随x 的增大而增大C .图象在第二,四象限内D .若1x >,则60y -<< 7.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB =120°,半径OA 为3m ,那么花圃的面积为( )A .6πm 2B .3πm 2C .2πm 2D .πm 28.如图所示,河堤横断面迎水坡AB 的坡比是1:3,坡高BC =20,则坡面AB 的长度( )A .60B .1002C .503D .20109.在比例尺为1:1000000的地图上量得A ,B 两地的距离是20cm ,那么A 、B 两地的实际距离是( ) A .2000000cmB .2000mC .200kmD .2000km 10.已知11x y =3,则代数式232x xy y x xy y+---的值是( ) A .72- B .112- C .92 D .3411.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且将这个四边形分成①②③④四个三角形.若OA OC OB OD =∶∶,则下列结论中一定正确的是( )A .①和②相似B .①和③相似C .①和④相似D .③和④相似12.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是( )A .8πB .6πC .5πD .4π 二、填空题(每题4分,共24分)13.小莉身高1.50m ,在阳光下的影子长为1.20m ,在同一时刻站在阳光下,小林的影长比小莉长0.2m ,则小林的身高为_________m .14.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m ,此时小球距离地面的高度为_________m.15.已知圆锥的底面圆的半径是8cm ,母线长是10cm ,则圆锥的侧面积是________2cm .16.如图,⊙O 的半径OA 长为6,BA 与⊙O 相切于点A ,交半径OC 的延长线于点B ,BA 长为63,AH ⊥OC ,垂足为H ,则图中阴影部分面积为_____.(结果保留根号)17.若二次函数25(0)y ax bx a =-+≠的图像经过点(2,2),则242017b a -+的值是_______.18.已知反比例函数m 1y x-=的图象的一支位于第一象限,则常数m 的取值范围是___. 三、解答题(共78分)19.(8分)(1)计算:16﹣|﹣3|+3 cos 60°; (2)化简:()()22-121a a ++20.(8分)如图,已知直线334y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线23y ax bx =++经过B 、C 两点并与x 轴的另一个交点为A ,且3OC OA =.(1)求抛物线的解析式;(2)点R 为直线BC 上方对称轴右侧抛物线上一点,当RBC △的面积为92时,求R 点的坐标; (3)在(2)的条件下,连接CR ,作RH x ⊥轴于H ,连接CH 、AC ,点P 为线段CR 上一点,点Q 为线段CH 上一点,满足2QH CP =,过点P 作PE AC ∥交x 轴于点E ,连接EQ ,当45PEQ ∠=︒时,求CP 的长.21.(8分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC 为10m ,测角仪的高度CD 为1.5m ,测得树顶A 的仰角为33°.求树的高度AB .(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)22.(10分)如图,等边△ABC 内接于⊙O ,P 是AB 上任一点(点P 不与点A 、B 重合),连AP 、BP ,过点C 作CM ∥BP 交PA 的延长线于点M .(1)填空:∠APC= 度,∠BPC= 度;(2)求证:△ACM ≌△BCP ;(3)若PA=1,PB=2,求梯形PBCM 的面积.23.(10分)某商场销售一种名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件, (1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)当每件衬衫降价多少元时,商场每天获利最大,每天获利最大是多少元?24.(10分)已知二次函数2y x 4x 3=-+. ()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.25.(12分)在直角坐标平面内,直线122y x =+分别与x 轴、y 轴交于点A ,C .抛物线212y x bx c =-++经过点A 与点C ,且与x 轴的另一个交点为B .点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC ,BD ,且BD 交AC 于点E ,如果ABE ∆的面积与ABC ∆的面积之比为4:5,求DBA ∠的余切值; (3)过点D 作DF AC ⊥,垂足为点F ,联结CD .若CFD ∆与AOC ∆相似,求点D 的坐标.26.在平面直角坐标系中,二次函数y=ax 2+bx+c(a≠0)的顶点A (-3,0),与y 轴交于点B (0,4),在第一象限内有一点P (m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P 为圆心的圆与直线AB 、x 轴相切,求点P 的坐标.(3)若点A 关于y 轴的对称点为点A′,点C 在对称轴上,且2∠CBA+∠PA′O=90◦.求点C 的坐标.参考答案一、选择题(每题4分,共48分)1、A【分析】根据一元二次方程的定义和判别式的意义得到k≠1且△=22-4k×(-1)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得k≠1且△=22-4k×(-1)≥1, 解得k≥-1且k≠1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=1(a≠1)的根的判别式△=b 2-4ac :当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.2、A【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3. 【详解】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;B、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵13=133, ∴此点不在反比例函数的图象上,故C错误;D、∵13=133, ∴此点不在反比例函数的图象上,故D错误;故选A.3、D【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.4、D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B选项:反比例函数的图象关于原点中心对称,故本选项错误;C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.故选B.5、B【解析】解:由题意得,∠A=∠D=50°,∠DCB=90°,∠DBC=40°,∠ABC=60°,ABD=20°,∠AEB=180°- ∠ABD - ∠D = 110°,故选B.6、B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k,可以判断出A的正误;根据反比例函数的性质:k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大可判断出B、C、D的正误.【详解】A、反比例函数6yx=-,所过的点的横纵坐标之积=−6,此结论正确,故此选项不符合题意;B、反比例函数6yx=-,在每一象限内y随x的增大而增大,此结论不正确,故此选项符合题意;C、反比例函数6yx=-,图象在第二、四象限内,此结论正确,故此选项不合题意;D、反比例函数6yx=-,当x>1时图象在第四象限,y随x的增大而增大,故x>1时,−6<y<0;故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y=kx(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.7、B【分析】利用扇形的面积公式计算即可.【详解】解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为21203360π⨯=3π,故选:B.【点睛】本题考查扇形的面积,解题的关键是记住扇形的面积公式.8、D【分析】在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【详解】Rt△ABC中,BC=20,tan A=1:3;∴AC=BC÷tan A=60,∴AB==.故选:D.【点睛】本题考查了学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.9、C【分析】比例尺=图上距离:实际距离,根据比例尺关系可直接得出A、B两地的实际距离.【详解】根据比例尺=图上距离:实际距离,得A、B两地的实际距离为20×1000000=20000000(cm),20000000cm=200km.故A、B两地的实际距离是200km.故选:C.【点睛】本题考查了线段的比,能够根据比例尺正确进行计算,注意单位的转化.10、D【分析】由113x y -=得出3y x xy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得. 【详解】 113x y-=, ∴ 3y x xy-=, ∴ 3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xy xy xy xy -+-+-====-----. 故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.11、B【解析】由题图可知,AOB COD ∠=∠,由OA OC OB OD =∶∶,可得OA OB OC OD= 即可得出 【详解】由题图可知,AOB COD ∠=∠,结合OA OC OB OD =∶∶,可得AOB COD ∽.故选B .【点睛】当题中所给条件中有两个三角形的两边成比例时,通常考虑利用“两边成比例且夹角相等”的判定方法判定两个三角形相似一定要记准相等的角是两边的“夹角”,否则,结论不成立(类似判定三角形全等的方法“SAS "). 12、D【分析】根据几何概型的意义,求出圆的面积,再求出正方形的面积,算出其比值即可.【详解】解:设正方形的边长为2a ,则圆的半径为a ,则圆的面积为:2a π,正方形的面积为:22(2)4a a =, ∴针扎到阴影区域的概率是2244a a ππ=,故选:D .【点睛】 本题考查几何概型的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积和总面积的比,这个比即事件(A )发生的概率.二、填空题(每题4分,共24分)13、1.75【分析】由同一时刻物高与影长成比例,设出小林的身高为x 米,列方程求解即可.【详解】解:由同一时刻物高与影长成比例,设小林的身高为x 米,则 1.50,1.20 1.40x ∴= 1.75.x ∴=即小林的身高为1.75米.故答案为:1.75.【点睛】本题考查的是利用相似三角形的原理:“同一时刻物高与影长成比例”,测量物体的高度,掌握原理是解题的关键. 14、10【详解】如图:Rt △ABC 中,∠C=90°,i=tanA=1:3,AB=1.设BC=x ,则AC=3x ,根据勾股定理,得:222(3)10x x +=, 解得:10(负值舍去)10米.15、80π【解析】先计算出圆锥的底面圆的周长=1π×8cm=16πcm ,而圆锥的侧面展开图为扇形,然后根据扇形的面积公式进行计算.【详解】∵圆锥的底面圆的半径是8cm , ∴圆锥的底面圆的周长=1π×8cm=16πcm,∴圆锥的侧面积=12×10cm×16πcm=80πcm 1. 故答案是:80π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了扇形的面积公式.16、6π 【分析】由已知条件易求直角三角形AOH 的面积以及扇形AOC 的面积,根据阴影部分的面积=扇形AOC 的面积﹣直角三角形AOH 的面积,计算即可.【详解】∵BA 与⊙O 相切于点A ,∴AB ⊥OA ,∴∠OAB =90°,∵OA =6,AB =∴tan ∠B =OA AB ==, ∴∠B =30°,∴∠O =60°,∴∠OAH =30°,∴OH =12OA =3,∴AH =∴阴影部分的面积=扇形AOC 的面积﹣直角三角形AOH 的面积=2606360π⨯﹣12×3×6π;故答案为:6π. 【点睛】此题考查圆的性质,直角三角形中30°角所对的直角边等于斜边的一半,扇形面积公式,三角函数.17、1【分析】首先根据二次函数25(0)y ax bx a =-+≠的图象经过点(2,2)得到243b a -=,再整体代值计算即可.【详解】解:∵二次函数25(0)y ax bx a =-+≠的图象经过点(2,2),∴4252a b -+=,∴243b a -=,∴242017b a -+=32017+=1,故答案为1.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单.18、m >1【解析】试题分析:∵反比例函数的图象关于原点对称,图象一支位于第一象限,∴图象的另一分支位于第三象限.∴m ﹣1>0,解得m >1.三、解答题(共78分)19、(1)12+;(2)24-23a a+ 【分析】(1)分别计算平方根、绝对值、特殊角的三角函数值,然后根据实数的运算法则计算即可.(2)利用完全平方公式及单项式乘多式展开后,合并同类项即可.【详解】(1|﹣ cos 60° 14-32=+12=+ (2)()()22-121a a ++244122a -a++a+=24-23a a+=【点睛】本题考查了实数的运算,整式的化简,熟练掌握运算法则是解题的关键.20、(3)239344y x x =-++;(3)R (3,3);(3)3或83. 【分析】(3)求出A 、B 、C 的坐标,把A 、B 的坐标代入抛物线解析式,解方程组即可得出结论;(3)设R (t ,239344t t -++).作RK ⊥y 轴于K ,RW ⊥x 轴于W ,连接OR . 根据RBC COB RCO ROB COB RCOB S S S S S S =-=+-△△△△△四边形计算即可;(3)在RH 上截取RM =OA ,连接CM 、AM ,AM 交PE 于G ,作QF ⊥OB 于H .分两种情况讨论:①点E 在F 的左边;②点E 在F 的右边.【详解】(3)当x =0时y =3,∴C (0,3),∴OC =3.∵OC =3OA ,∴OA =3,∴A (-3,0).当y =0时x =4,∴B (4,0).把A 、B 坐标代入得0301643a b a b =-+⎧⎨=++⎩解得:3494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为239344y x x =-++. (3)设R (t ,239344t t -++). 作RK ⊥y 轴于K ,RW ⊥x 轴于W ,连接OR .∵211391=34(3)3422442RBC COB RCO ROB COB RCOB S S S S S S t t t =-=+-⨯+⨯⨯-++-⨯⨯△△△△△四边形 2362t t =-+ ∵92ROB S =△, ∴239622t t -+=,11t =(舍去),23t =, ∴R (3,3).(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①当点E在F的左边时,如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴QF EF MH AH.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.设CP=m,∴QH2CP2m.∵OC=OH,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②当点E在F的右边时,设AM交QE于N.如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴QF EF AH MH,∴QF=3EF.设CP=m,∴QH CP m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=12 m,∴EH=12 m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=12 m,∴m=83,∴CP=83.综上所述:CP的值为3或83.【点睛】本题是二次函数的综合题目,涉及了相似三角形的判定与性质、平行四边形的性质,解答本题需要我们熟练各个知识点的内容,注意要分类讨论.21、8米【详解】解:如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=AE DE,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8 m.22、(1)60;60;(2)证明见解析;(3153.【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角;(2)利用(1)中得到的相等的角和等边三角形中相等的线段证得两三角形全等即可;(3)利用(2)证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°,故答案为60, 60;(2)∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC,∵AC=BC,∴△ACM ≌△BCP ;(3)作PH ⊥CM 于H ,∵△ACM ≌△BCP ,∴CM=CP AM=BP ,又∠M=60°, ∴△PCM 为等边三角形,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt △PMH 中,∠MPH=30°, ∴PH=332, ∴S 梯形PBCM =12(PB+CM )×PH=12×(2+3)×332=1534.【点睛】本题考查了圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题,解题的关键是熟练掌握和灵活运用相关的性质与判定定理.23、(1)每件应该降价20元;(2)当每件降价15元时,每天获利最大,且获利1250元【分析】(1)设每件应该降价x 元,则每件利润为()40x -元,此时可售出数量为()202x +件,结合盈利1200元进一步列出方程求解即可;(2)设每件降价n 元时,每天获利最大,且获利y 元,然后进一步根据题意得出二者的关系式()()40202y n n =-+,最后进一步配方并加以分析求解即可.【详解】(1)设每件应该降价x 元,则:()()402021200x x -+=,整理可得:22604000x x -+=,解得:120x =,210x =,∵要尽量减少库存,在获利相同的情况下,降价越多,销售越快,∴每件应该降价20元,答:每件应该降价20元;(2)设每件降价n 元时,每天获利最大,且获利y 元,则:()()40202y n n =-+,配方可得:()22151250y n =--+,∵20-<,∴当15n =时,y 取得最大值,且1250y =,即当每件降价15元时,每天获利最大,且获利1250元,答:当每件降价15元时,每天获利最大,且获利1250元.【点睛】本题主要考查了一元二次方程与二次函数的实际应用,根据题意正确找出等量关系是解题关键.24、(1)2(x 2)1--;(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可;(2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+ =222x 4x 223-+-+=2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.25、(1)213222y x x =--+;(2)9cot 8DBA ∠=;(3)D 的坐标为()3,2-或325,28⎛⎫- ⎪⎝⎭【分析】(1)先根据直线表达式求出A,C 的坐标,再用待定系数法求出抛物线的表达式即可;(2)过点E 作EH AB ⊥于点H ,先求出点B 的坐标,再根据面积之间的关系求出点E 的坐标,然后利用余切的定义即可得出答案;(3)若CFD ∆与AOC ∆相似,分两种情况:若DCF CAO ∠=∠,DCF CAO ;若DCF ACO ∠=∠时,DCF ACO ,分情况进行讨论即可.【详解】(1)当0y =时,1202x += ,解得4x =- ,∴()4,0A - 当0x =时,1222y x =+= ,∴()0,2C 把A ,C 两点的坐标代入212y x bx c =-++, 得2840c b c =⎧⎨--+=⎩,解得322b c ⎧=-⎪⎨⎪=⎩, 213222y x x ∴=--+. (2)过点E 作EH AB ⊥于点H ,当0y =时,213x x 2022--+= 解得124,1x x =-=∴()10B ,, 45ABE ABC S S ∆∆=, 141252AB EH AB OC ∴⋅=⨯⋅, 4855EH OC ∴==, 48,55E ⎛⎫∴- ⎪⎝⎭, 95HB ∴=. 90EHB ∠=︒,995cot 885HB DBA HE ∴∠===. (3)DF AC ⊥,DFC AOC ∴∠=∠90=︒,①若DCF CAO ∠=∠,DCFCAO ,则CD AO ∥∴点D 的纵坐标为2,把2y =代入213222y x x =--+ 得3x =-或0x =(舍去), ()3,2D ∴-.②若DCF ACO ∠=∠时,DCF ACO过点D 作DG y ⊥轴于点G ,过点C 作CQ DC ⊥交x 轴于点Q ,90DCQ AOC ∠=∠=︒,DCF ∴∠+90ACQ ACO CAO ∠=∠+∠=︒,ACQ CAO ∴∠=∠,AQ CQ ∴=,设(),0Q m ,则244m m +=+32m ∴=-, 3,02Q ⎛⎫∴- ⎪⎝⎭. ∵90QCO DCG ∠+∠=︒,90QCO CQO ∠+∠=︒∴DCG CQO ∠=∠∴COQ DGC ∆∆∽,24332DG CO GC QO ∴===,设()4,32D t t -+,代入213222y x x =--+得0t =(舍去)或者38t =, 325,28D ⎛⎫∴- ⎪⎝⎭. 综上所述,D 的坐标为()3,2-或325,28⎛⎫-⎪⎝⎭. 【点睛】本题主要考查相似三角形的判定及性质,待定系数法,三角函数,掌握相似三角形的判定方法和分情况讨论是解题的关键.26、(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B (0,4)代入得,4=9a∴a=49∴24(3)9y x =+ (2)如图∵P (m,n),且满足4m+3n=12 ∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切,∴点P 在∠BAO 的角平分线上,∠BAO 的角平分线:y=1322x +, ∴134=4223x x +-+, ∴x=1511,∴y=2411∴P(1511,2411)(3)C(-3,-5)或(-3,2513)理由如下:如图,A´(3,0),可得直线L A´B的表达式为443y x=-+,∴P点在直线A´B上,∵∠PA´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE⊥AG于G点, 设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为(-3, 2513);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.。
北京市朝阳区2022 ~ 2023学年度第一学期期末检测九年级数学参考答案及评分标准(选用) 2022.12一、选择题二、填空题 三、解答题17. 解:244 1.x x ++=()22 1.x += 2 1.x +=±11x =-,23x =-.18. 解:(1)根据题意,二次函数图象的顶点为(1,-4).设该二次函数的表达式为()21 4.y a x =-- 把(3,0)代入,得04 4.a =-∴ 1.a =∴二次函数的表达式为()21 4.y x =-- (2)1 3.x -≤≤19.解:2(1)5a a a a -++225a a a a =-++ 224.a a =+∵1x =是关于x 的方程2223x ax a ++=的一个根, ∴2123a a ++=. ∴22 2.a a +=∴原式22(2) 4.a a =+=20.解:①CD ,②∠CAB ,③直径所对的圆周角是直角,④ OA ,⑤经过半径的外端并且垂直于这条半径的直线是圆的切线.21.解:根据题意,得△ABC ≌△DEC .∴AB =DE ,AC =DC . ∵AC =3, ∴DC =3. ∵BC =4, ∴BD =1.在Rt △ABC 中,根据勾股定理,得22 5.AB AC BC =+= ∴DE =5.22.解:如图,作OC ⊥AB 于点C ,连接OA .∴∠ACO =90°,1.2AC AB = ∵AB =0.8,∴AC =0.4.在Rt △ACO 中,根据勾股定理,得220.3OC OA AC =-=. ∴0.3+0.5=0.8.∴水的最大深度为0.8 m.23. 解:(1)依题意得 ∆=16-4(2m -1)>0.∴ m <52. (2) ∵m 为正整数, ∴m =1或2.当m =1时,方程2410x x -+=的根23x =±不是整数;当m=2时,方程2430x x -+=的根1213x x ==,都是整数. 综上所述,m =2.24. (1)证明:∵OC ⊥AB ,∴∠ODB =90°. ∴∠O +∠B =90°. ∵∠O =2∠A , ∴2∠A +∠B =90°.(2)解:∵AC ∥BE ,∴∠CAB =∠B . ∵2∠CAB +∠B =90°, ∴3∠B =90°. ∴∠B =30°. ∴∠CAB =30°. ∵EF 是⊙O 的切线, ∴∠FEB =90°. ∵EF =4, ∴BF =8.在Rt △BEF 中,根据勾股定理,得224 3.BE BF EF =-= ∴2 3.OC OB == ∴ 3.OD CD == ∴2 3.AC =25.解:如图,建立平面直角坐标系xOy .则B (0,3.85),C (2,3.05). 设抛物线的表达式为y =ax 2+3.85. ∵该抛物线经过C (2,3.05), 代入得a =-0.2.∴抛物线的表达式为y =-0.2x 2+3.85. 当x =-3时,y =2.05. 2.05-1.75-0.15=0.15.∴球出手时,他跳离地面的高度是0.15 m.26. 解:(1)当1a =时,函数表达式为22.y x x =-当x =2时,0.m = 当x =4时, 8.n =(2)由44168m a n a =-=-,,m n <得44168.a a --<∴1.3a >根据题意,抛物线的对称轴为1x a=. ∵0a >,∴10 3.a <<当113a<<时,当x =0时,y =0;当x =1时,y =a -2. ∵001x ≤≤,y 随x 的增大而减小, ∴20.a -< ∵m t n <<,∴440168 2.a a a ---<且>∴21.5a << 当101a<≤时,总有t m n ≤<,不符合题意.综上,a 的取值范围是21.5a <<27. (1)∠B =∠ACD .证明:根据题意,∠BCD =180°-α.∴∠ACD +∠BCA =180°-α. ∵∠A =α,∴∠B +∠BCA =180°-α. ∴∠B =∠ACD .(2)①DM = EM .证明:延长CA至点N,使CN=BA.∵CB=CD,∠B=∠ACD,∴△ABC≌△NCD.∴AC=ND,∠N=∠BAC.∵AC=CE,∴CE=ND∵∠ACE=∠BAC=α,∴∠ACE=∠N.∵∠CME=∠NMD,∴△CME≌△NMD.∴DM=EM.②1.2 AM b a=-28. 解:(1)(-2,-1),(-1,0);(2)①2;②22 2222 +-(,),22 2222 -+(,).。
第1页,共4页 第2页,共4页
………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………
………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………
考
点
考
场
考
号
姓 名
座位号
2022-2023学年第一学期期末质量监测试卷
九年级 数学学科
(考试时间:120分钟 考试分值:150分)
一、选择题。
(每题5分,共45分)
1.在下列图形中,是中心对称图形的是( )
A.
B.
C.
D.
2.下列事件属于必然事件的是( )
A.打开电视,正在播放新闻
B.我们班的同学将会有人成为航天员
C.实数0<a ,则02<a
D.新疆的冬天不下雪
3.若关于x 的一元二次方程
01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45
≤
k B.45>k
C.45<k 且1≠k
D.4
5
≤k 且1≠k
4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+x
D.7)4(2=+x
5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-
B.)3,1(
C.)3,1(--
D.)3,1(-
6.如图,在圆O 中,所对的圆周角
50=∠ACB ,若P 为
上一点,
55=∠AOP ,
则=∠POB ( ) A.
30
B.
45 C.
55
D.
60
第6题图 第7题图
7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日
礼帽需要纸板的面积为( ) A.2648cm Π
B.2432cm Π
C.2324cm Π
D.2216cm Π
8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数
c ax y +=的大致图象,有且只有一个是正确的,正确的是( )
A.
B. C. D.
9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )
A.10890)1050)(20180=-
-+x
x ( B.10890)10
180
50)(20=---x x (
C.180902050)10
80
50(=⨯---x x
D.108902050)10
50)(180=⨯--+x
x (
二、 填空题。
(本题共计 6 小题 ,每题 5 分 ,共计30分)
10.已知点)
,(32-P 关于原点的对称点为),(b a M ,则=+b a ________. 11.抛掷一枚质地均匀的骰子(骰子六个面上分别标以1、2、3、4、5、6六个点数),则骰子面朝上的点数大于4的概率是________.
12.某农牧区学校宿舍改造工程初见成效,2013年市政府对农牧区校舍改造的投入资金是5786万元,到2015年的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x ,则根据题意可列方程为________. 13.抛物线c x x y +-=82的顶点在x 轴上,则c 的值为________.
第3页,共20页
第4页,共20页
装订线内不许答
题
14.如图,在矩形ABCD 中, 30,1=∠=DBC AB .若将BD 绕点B 旋转后,点D 落在BC 延长线上的点E 处,点D 经过的路径为,则图中阴影部分的面积为________.
第14题图 第15题图
15. 如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线3
3=y 相切.设
三个半圆的半径依次为r 1,r 2,r 3则当r 1=1时,r 3=________.
三、 解答题。
(本题共计 7 小题 ,共计75分 )
16.(10分)解下列方程
0112=-+x x )(
02)2()2(=-+-x x x
17.(10分) 已知关于x 的方程0222
=-++a x x
(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.
18.(10分) 如图,ABC ∆三个顶点的坐标分别为)1,1(A ,)2,4(B ,)4,3(C . (1)请画出ABC ∆向左平移5个单位长度后得到的111C B A ∆; (2)请画出ABC ∆关于原点对称的222C B A ∆; (3)请写出点21,B A 的坐标; (4)请计算ABC ∆的面积;
19.(9分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
20.(12分) 如图,AB 是圆O 的直径,点F ,C 是圆O 上两点,且,连
接AC ,AF ,过点C 作CD ⊥AF 交AF 延长线于点D ,垂足为D . (1)求证:CD 是圆O 的切线; (2)若32=CD ,求圆O 的半径.
21. (12分)销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价定为x (元),日销量为y (件),日销售利润为ω(元).
(1)求y 与x 的函数关系式;
(2)若销售利润为720元,则销售单价应定为多少?
(3)求日销售利润ω(元)与销售单价x (元)的函数关系式,当x 为何值时,日销售利润最大,并求出最大利润.
22.(12分) 如图,已知抛物线32++=bx ax y 与x 轴交于A,B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3). (1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D ,使BCD ∆的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;
(3)若点E 是(1)中抛物线上的一个动点,且位于直线AC 的下方,试求ACE ∆的最大面积及E 点的坐标.
2022-2023学年第一学期期末质量监测试卷
九年级数学学科参考答案
一、选择题(本题共计 9 小题,每题 5 分,共计45分)
1 2 3 4 5 6 7 8 9
C C
D D B B C D B
二、填空题(本题共计 6 小题,每题 5 分,共计30分)
10.11.
12.13.
14.15.
三、解答题(本题共计 7 小题,共计75分)
16.
解:(2分)
,(4分)
所以,;(5分)
因式分解得:(2分)
所以或(4分)
所以,;(5分)
17.
解:原方程根的判别式(3分)
解得:;(5分)
依题意,得(2分)
解得(3分)
故原方程为.
解得,(4分)
∴=,该方程的另一根为;(5分)18.
解:(1),(2)如图;
(1)(2分)(2)(4分)
(3)由直角坐标系得A
1(-4,1),B
2
(-2,-2);
(7分)
;(10分)
19.解:(1)从获得美术奖和音乐奖的名学生中选取名参加颁奖大会,刚好是
男生的概率(3分)
(2)
第7页,共20页
共有种等可能的结果数,其中刚好是一男生一女生的结果数为,所以刚好是一男生一女生的概率;(9分)
20.解:证明:连结,如图,
∵,
∴.
∵,
∴,
∴,
∴.
∵,
∴,
∴是的切线;(6分)
连结.
∵为直径,
∴.
∵,
∴,
∴,
∴,
在中,,
∴.
在中,设,则,
满足,
∴,
∴的半径为;(12分)
21.解:根据题意得,
,
故与的函数关系式为;(3分)根据题意得,,
解得:,(不合题意舍去),
答:要使日销售利润为元,销售单价应定为元;(7分)
第11页,共20页
根据题意得,
,
∵,
∴当时,随的增大而增大,
当时,,
答:当为时,日销售利润最大,最大利润元.(12分)
22.解:(1)∵抛物线经过点,点,∴,
解得,
所以,抛物线的解析式为;(3分)
(2)∵点、关于对称轴对称,
∴点为与对称轴的交点时的周长最小,
设直线的解析式为,
则,
解得,
所以,直线的解析式为,
∵,
∴抛物线的对称轴为直线,
当时,,
∴抛物线对称轴上存在点,使的周长最小;(6分)(3)如图,设过点与直线平行线的直线为,
联立,
消掉得,,
,
解得:,
即时,点到的距离最大,的面积最大,
此时,,
∴点的坐标为,
设过点的直线与轴交点为,则,
∴,
∵直线的解析式为,
∴,
∴点到的距离为,
第15页,共20页
又∵,
∴的最大面积,此时点坐标为;(12分)
第19页,共20页。