开关电源电磁骚扰抑制技术应用与发展
- 格式:ppt
- 大小:255.00 KB
- 文档页数:50
开关电源电磁干扰抑制技术及设计方法电磁兼容( Elect ro Magnet ic Compat ibility, 简称EMC) 是指电子设备或系统在其电磁环境能正常工作, 且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
它包括电磁干扰( EMI ) 和电磁敏感( EMS) 两方面的内容。
EMI 是指电器产品向外发出干扰。
EMS 是指电器产品抵抗电磁干扰的能力。
一台具备良好电磁兼容性的设备应既不受周围电磁噪声的影响, 也不对周围环境造成电磁干扰。
电磁干扰的三个要素是干扰源、耦合通道和敏感体。
抑制开关电源产生的干扰对保证电子系统的正常稳定运行具有十分重要的意义, 电磁干扰的抑制技术主要包括削弱干扰的能量, 隔离和减弱噪声耦合途径及提高设备对电磁骚扰的抵抗能力等。
本文分析了开关电源电磁干扰产生原因, 介绍了开关电源电磁干扰抑制技术及设计方法。
1开关电源电磁干扰的产生开关电源通常是将工频交流电整流为直流电, 然后经过开关管的控制使其变为高频, 再经过整流滤波电路输出, 得到稳定的直流电压。
工频整流滤波使用大容量电容充、放电, 开关管高频通断, 输出整流二极管的反向恢复等工作过程中产生了极高的di/ dt和du/dt , 形成了强烈的浪涌电流和尖峰电压, 它是开关电源电磁干扰产生的最基本原因。
另外, 开关管的驱动波形, MOSFET漏源波形等都是接近矩形波形状的周期波。
因此, 其频率是MHz 级别的, 这些高频信号对开关电源的基本信号, 特别是控制电路的信号造成干扰。
1.1输入整流电路的谐波干扰开关电源输入端通常采用桥式整流、电容滤波电路。
整流桥只有在脉动电压超过输入滤波电容上的电压时才能导通, 电流才从市电电源输入, 并对滤波电容充电。
一旦滤波电容上的电压高于市电电源的瞬时电压, 整流管便截止。
所以, 输入电路的电流是脉冲性质的, 并且有着丰富的高效谐波电流。
这是因为整流电路的非线性特性, 整流桥交流侧的电流严重失真。
开关电源电磁干扰及其抑制技术研究开关电源电磁干扰是指在开关电源的工作过程中,由于电流的开关过程产生的电磁波辐射以及电源回路内部的高频噪声等因素,对周围电子设备和通信系统等产生的干扰。
这种干扰不仅会影响到开关电源自身的正常工作,而且还会对其它电子设备和系统产生不可忽视的影响,甚至引发严重的故障。
因此,研究开关电源电磁干扰及其抑制技术具有重要的理论和应用价值。
开关电源本身的工作原理决定了其在工作过程中会产生很高频率的开关波形,并伴随较大的电流急变。
这些急变的电流和电压波形会通过电源开关器件和电源回路上的导线辐射出去,形成电磁波辐射。
此外,开关电源内部的高速开关元件的开关过程会带来较高的开关频率噪声,也会导致系统内部的高频噪声。
这些干扰源的存在导致了开关电源电磁干扰的发生。
为了抑制开关电源电磁干扰,可以从以下几个方面着手进行研究和技术应用。
首先,可以从电源开关器件的选用和设计上入手。
对于开关电源来说,开关器件在工作过程中的开关速度需要尽量快,以减少器件转换过程中的损耗。
但是快速开关也会带来更高频率的电磁辐射。
因此,选择低辐射的开关器件以及合理的开关频率是减少电磁干扰的重要手段。
其次,可以通过合理设计电源回路和电源线路布局来减少电磁辐射。
合理布局电源线路可以减少电源回路的高频噪声对周围系统的干扰。
电源回路设计需要采用抗干扰的滤波电容和电感,减少电磁辐射。
此外,还可以利用开关电源自身的工作原理进行抗干扰设计。
比如,采用恰当的抗干扰技术对开关电源进行滤波和补偿,抑制高频噪声和电磁波辐射。
例如,采用电源输入端的滤波电容和电感,将电磁波辐射降低到最低水平。
最后可以采用外部的抑制技术对开关电源进行干扰抑制。
例如,采用EMI滤波器、磁珠、屏蔽罩等器件,将电磁干扰源隔离开来,减少对周围系统的干扰。
总之,开关电源电磁干扰及其抑制技术的研究对提高开关电源的质量和系统的稳定性具有重要意义。
通过在开关电源的设计和布局中合理应用这些干扰抑制技术,可以有效减少电磁波辐射和高频噪声对系统的干扰,提高系统的工作可靠性和稳定性。
抑制开关电源电磁干扰的措施开关电源存在着共模干扰和差模干扰两种电磁干扰形式。
根据上篇分析的电磁干扰源,结合它们的耦合途径,可以从EMI 滤波器、吸收电路、接地和屏蔽等几个方面来抑制干扰,把电磁干扰衰减到允许限度之内。
1.交流输入EMI 滤波器滤波是一种抑制传导干扰的方法,在电源输入端接上滤波器可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。
电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。
电源进线端通常采用如图1 所示的EMI 滤波器电路。
该电路可以有效地抑制交流电源输入端的低频差模骚扰和高频段共模骚扰。
在电路中,跨接在电源两端的差模电容Cx1、Cx2 (亦称X 电容)用于滤除差模干扰信号,一般采用陶瓷电容器或聚脂薄膜电容器,电容值通常取0.1~ 0. 47F。
而中间连线接地的共模电容Cy1和Cy2 (亦称Y 电容)则用来短路共模噪声电流,取值范围通常为C1=C2 # 2200 pF。
抑制电感L1、L2 通常取100~ 130H,共模扼流圈L 是由两股等同并且按同方向绕制在一个磁芯上的线圈组成,通常要求其电感量L#15~ 25 mH。
当负载电流渡过共模扼流圈时,串联在火线上的线圈所产生的磁力线和串联在零线上线圈所产生的磁力线方向相反,它们在磁芯中相互抵消。
因此,即使在大负载电流的情况下,磁芯也不会饱和。
而对于共模干扰电流,两个线圈产生的磁场是同方向的,会呈现较大电感,从而起到衰减共模干扰信号的作用。
2.利用吸收电路开关电源产生EMI 的主要原因是电压和电流的急剧变化,因而需要尽可能地降低电路中电压和电流的变化率( du/ dt 和di/ dt )。
采取吸收电路能够抑制EMI,其基本原理就是在开关关断时为其提供旁路,吸收积蓄在寄生分布参数中的能量,从而抑制干扰的发生。
可以在开关管两端并联如图2( a)所示的RC 吸收电路,开关管或二极管在开通和关断过程中,管中产生的反向尖峰电流和尖峰电压,可以通过缓冲的方法予以克服。
抑制开关电源电磁干扰的方法研究随着电子技术的飞速发展,开关电源的应用也越来越广泛。
开关电源具有效率高、噪声低、价格低等特点,但由于其时钟和开关频率较高,会产生大量的电磁波,这些电磁波会对原有电路造成严重的干扰,从而导致电子设备的错误工作或不能正常运行。
因此,有必要研究抑制开关电源电磁干扰的方法。
一是采用电磁屏蔽技术。
这种技术的原理是利用屏蔽材料产生一个电磁屏蔽环境,把电磁波从开关电源中过滤掉,从而保护原有电路不受干扰。
比如采用铝箔或者铝塑箔等物质作为屏蔽材料,再用电磁屏蔽丝缠绕在开关电源上,即可产生一个电磁屏蔽环境,杜绝电磁波影响原有电路。
二是采用电磁消波器技术。
电磁消波器是一种能够将电磁波过滤掉的电子元件,可以分为晶体消波器和谐振消波器两种。
其中晶体消波器的原理是利用电容和电感元件来平滑和整流电磁波,从而消除电磁波的影响。
谐振消波器是利用元件上电流进行消波,以降低谐波噪声,减轻负荷的影响,达到电磁抑制的目的。
另外,还可采用信号分离技术。
这种技术的实现原理是将开关电源的控制信号保持在一个独立的区域,然后再将其从其他电子元件中分离出来,从而减少电磁波的影响。
上述三种方法可以有效抑制开关电源造成的电磁干扰,从而保证原有电路的正常运行。
不过,在实际应用中需要根据实际情况选择最合适的技术手段,抑制其造成的电磁干扰。
总之,抑制开关电源电磁干扰是一项重要的研究工作,可以为电子设备正常运行提供有效的保障,从而改善实际应用效果。
综上所述,通过采用电磁屏蔽、消波器和信号分离技术等多种方式,可以有效抑制开关电源造成的电磁干扰,保证电子设备的正常工作。
因此,对于抑制开关电源电磁干扰的方法研究有着重要的意义,具有重要的现实意义和社会意义。
大功率开关电源的电磁干扰EMI的抑制[最终版]第一篇:大功率开关电源的电磁干扰EMI的抑制[最终版]大功率开关电源的电磁干扰EMI的抑制引言随着开关电源应用领域的不断扩大,其电磁干扰已成为一个很严重的问题,为了使电源产品满足EMC的要求,设计人员就应在设计阶段考虑这一问题,同时也要做好在现场处理这一问题的准备。
开关电源EMI的特点与危害开关电源的功率管工作在非线性条件下,采用脉宽调制(PWM)开关控制方式,加之开关频率的不断提高,使得电磁干扰越来越突出,对电网造成污染。
因干扰的存在,输入电源的电网受到了干扰,影响到其它设备,使其不能正常的工作,也影响到电网的供电质量。
所以寻找干扰抑制的方法是很必要的。
大功率开关电源中EMI抑制实验在中科院近代物理研究所新建的大型物理实验装置CSR冷却存储环中,有大量开关电源为磁铁提供电能,以满足试验所需的磁场能量。
其中195A/370V开关电源就是运用在其冷却段。
由于在设计和生产阶段,厂家未考虑电磁兼容问题,以至于在安装调试阶段,造成对其他设备的影响,也是输入电网受到污染,为此我们按照图1(a)所示得方案,对其进行EMI干扰测试,其结果见图1(b)。
测试仪器是德国SCHWARZBECK公司生产的FCKL1528接收机一台,NNLK 8129线路阻抗稳定网络(LISN)一台,计算机一台。
图1(a)测试方案图1(b)测试数据根据图1的方案和结果可以看出,在该台设备未做任何改造以前,其EMI干扰是存在的,而且很严重超越国家标准GB4824-2001关于1组A类传导骚扰的标准(150KHz~0.5MHz 是79dB,0.5MHz~30MH是73 dB),尤其是在150KHz~2MHz之间。
为此,我们采用了截断干扰源的方法,即利用EMI滤波器(滤波器的接地要可靠)和一变压器(△/Y-11接发),该变压器其隔离作用,其中EMI滤波器的原理图如图2所示,共按照三种方案测试,通过测试,找出适合我们需要的方案。
开关电源的电磁干扰及其抑制技术综述摘要:在开关电源的运用使用中,因为各种原因而产生电磁干扰,产生诸多不良影响。
为尽量避免电磁干扰影响,对其抑制方法的研究非常必要。
本文从开关电源的电磁干扰的主要特点、产生原因等方面,对开关电源的电磁干扰进行了系统整理,对相应的抑制技术进行了简析,以助于全面了解、解决开关电源的电磁干扰方面的相关问题。
关键词:开关电源,电磁干扰,抑制,综述0 引言随着电子信息技术的进步,开关电源也得到了相应更新与普及。
因为其具有控制效率高、稳定性好等优点,开关电源已然广泛运用于各个领域。
然而,在实际使用过程中,不仅要求开关电源应该具有很高的稳定性,它还需要有很强的安全性。
但在实际使用过程中,开关电源极易受到电磁干扰。
如果不采取措施加以抑制,将会影响电网、通信设备和各种电子产品的正常使用。
所以研究开关电源电磁干扰的一些问题和抑制方法是非常必要的。
1 电磁干扰的含义及其危害1.1 电磁干扰的含义电磁干扰(Electromagnetic Interference),简称EMI,是指所有在传导过程中或者在有电磁场中伴随着电压、电流的作用而引起的电子装置、设备或系统性能下降甚至失效,还有可能对生命或无生命物质产生损害的电磁现象。
几乎每一种设备都可以产生电磁干扰信号,而且对此干扰信号都很敏感。
从传导途径来看,电磁干扰信号既可以通过载流导体进行传输,又可以电磁辐射的形式辐射出来,因此电磁干扰可以分为传导干扰和辐射干扰两种。
传导干扰产生的原因是由于电子系统内部的各个模块区域之间存在者各种导线连线,这样就有可能使得其中一个个模块区域的电磁能量沿着这类导线连线传输到其它的模块区域,从而相互之间造成干扰。
而辐射干扰指的是干扰源通过空间把其信号耦合到另一个电网络上。
作为干扰源的电路、输入输出信号的电路和控制电路等部分的导线以及干扰源的外壳在一定情况下,如流过高频电流时,可作为接收天线或辐射天线。
1.2 电磁干扰的危害电磁干扰造成的危害有众多,例如电磁干扰会使电子装置的有效性能造成一定的损失或使电子装置的技术指标下降。
开关电源电磁干扰的抑制措施及应用摘要本文先分析了开关电源的工作原理、EMI的特点,并结合PDM智能电力综合监控仪表就如何进行有效的开关电源电磁干扰抑制措施,即电磁兼容性设计进行了分析,并提出一些参考建议。
关键词开关电源;电磁干扰;电磁兼容性设计1 概述由于开关电源的电磁干扰EMI信号输出既能有很宽的频率范围,又具有一定的幅度,经传导和辐射后会污染电磁环境,对通信设备和电子产品造成干扰。
因此,如何进行电磁兼容性设计,有效地抑制开关电源的电磁干扰,对保证电子系统的正常稳定运行具有重要意义。
2 开关电源的电磁干扰2.1 开关电源的工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。
功率转换部分是开关电源的核心,主要由开关三极管和高频变压器组成。
它首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压(其原理图及等效原理框图如图1所示)。
2.2 电磁干扰EMI的特点作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大,干扰源主要集中在开关管、输出二极管和高频变压器等。
同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。
相对于数字电路干扰源的位置较为清楚,开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;PCB走线因需采用手工调整,具有随意性,这更增加了PCB分布参数的提取和近场干扰估计的难度。
3 电磁兼容性EMC设计图1电磁兼容性EMC设计包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力。
形成电磁干扰的三要素是干扰源、耦合通道、敏感体。
因而,抑制电磁干扰即进行电磁兼容性EMC设计首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。
开关电源电磁干扰及其抑制技术的分析开关电源的发展趋势正呈现出小型化、高频化的态势,它的电磁兼容性在工作中显现出关键性的地位,由于开关电源在工作过程中,存在严重的电磁干扰,会对电网产生一定程度的污染,而且不利于电气设备的稳定安全使用。
因而,需要开展开关电源电磁抗干扰的研究,要采用适宜、科学、合理的抑制技术,有效地防范电磁干扰,保持电气设备的安全稳定、可靠运行,全面保障电网系统的性能稳定、高效。
标签:开关电源;电磁干扰;抑制;技术开关电源由于其实用性,广泛运用于工业、军事、医疗等领域,在大功率高电压的电气设备之中,开关电源会受到难以避免的电磁干扰,在开关频率加大或功率密度提高的条件下,电磁的兼容性能需要加以密切的关注,也是需要切实解决的问题,本文从电子线路电磁干扰的特点入手,探讨高频开关电源电磁干扰的机理及抑制技术,对于开关电源的电磁兼容性进行测量,提供了干扰源的干扰量、传输特性及敏感度等依据,从而提高开关电源的使用效率和质量。
1 高频开关电源的概念及特点电磁干扰即是电磁的兼容性不足,对电子设备之间的电磁辐射传导加以破坏的进程。
开关电源在小型化、高频化发展的趋势中,自身的噪声源也会产生大量的传导性电磁干扰,即EMI,从而对电子系统造成不良效果。
由于大量的电器设备如:计算机、通信产品、电器等的涌入,空间人为电磁能量以成倍的速度递增,电磁环境的恶化态势正显现出严重的问题。
开关电源的电磁干扰是一种有害的电磁效应,它必须具备三个干扰要素,即:干扰源、敏感体、干扰耦合路径。
它具有以下特点:①开关电源在频繁的开关过程中,会产生较大的电流变化,从而不可避免地产生强大的干扰强度。
②开关电源干扰源的关键干扰装置表现在功率的开关器件、散热器、高频变压器之中,具有较为清晰的电路干扰位置。
③开关电源的干扰频率不高,主要表现为传导干扰和近距离电场干扰。
④由于线路板通常是人工布设,随意性较大,对于线路板分布参数的提取和评估,增加了难度,同时,人工布设不当也是产生电磁干扰源的一个原因。
开关电源电磁兼容设计及电磁骚扰的抑制总结开关电源电磁兼容(EMC)设计及电磁骚扰的抑制是在开关电源设计中不可避免的问题。
为了确保设备在工作时不会产生电磁干扰或受到电磁干扰的影响,我们需要采取一些措施来保证电磁兼容性。
以下是一些关键点,总结了开关电源的电磁兼容设计和电磁骚扰抑制的方法。
1.开关电源的布局设计:-尽量减小导线的长度和面积,在布局时要避免导线的交叉和平行排列,尤其是高频信号线和低频信号线。
-将高频部分布局在一起,低频部分布局在一起,以减少电磁干扰。
-使用多层PCB板设计,将地线、电源线和信号线分层布局,以降低电磁辐射和互相干扰。
2.滤波器设计:-在输入和输出端口附近添加滤波器,以减少电磁干扰的传播。
-使用电源滤波器,以减少电源线上的高频噪声。
-使用输入和输出滤波器,以降低辐射和传导的电磁干扰。
3.接地设计:-使用良好的接地方法,包括终端接地、屏蔽接地和共地接法,以降低电磁辐射和互相干扰。
-在布局时,将地线设计为低阻抗、低干扰的传输路径,确保电磁干扰的可靠耗散。
4.耦合器件的选择:-在开关和滤波器中选择适当的元器件,如电感、电容和变压器,以减少电磁辐射和传导的干扰。
-使用优质的耦合器件,具有更好的电磁兼容性和抑制电磁骚扰的能力。
5.使用屏蔽和接地:-在关键部位使用屏蔽盖板或屏蔽罩,以减少电磁辐射和传导的干扰。
-在电源线和信号线上使用屏蔽,并正确地接地屏蔽以提高电磁兼容性。
6.EMI测试和符合性认证:-完成EMI测试,以确保产品符合相关标准和规定。
-定期进行EMI测试,并及时修正和改进设计,以满足不断变化的要求和标准。
总之,开关电源电磁兼容设计及电磁骚扰的抑制是在开关电源设计中不可或缺的部分。
通过合理的布局设计、滤波器设计、接地设计、耦合器件选择、屏蔽和接地以及EMI测试和符合性认证等措施,我们可以有效地降低电磁辐射和传导的干扰,提高开关电源的电磁兼容性,保证产品的可靠性和稳定性。