七年级上数学第三章代数式综合测试卷含答案
- 格式:pdf
- 大小:191.46 KB
- 文档页数:5
七年级数学上册《第三章 代数式的值》同步练习题及答案(冀教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.当a=﹣2时,代数式1﹣3a 2的值是( )A.﹣2B.11C.﹣11D.22.若x=-3,y=1,则代数式2x -3y +1的值为( )A.-10B.-8C.4D.103.已知a-b=2,则代数式2a-2b-3的值是( )A.1B.2C.5D.74.若x 2-3y-5=0,则6y-2x 2-6的值为( )A.4B.﹣4C.16D.﹣165.下列各数中,使代数式2(x -5)的值为零的是( )A.2B.-2C.5D.-56.当x =1时,代数式12ax 3-3bx +4的值是7.则当x =-1时,这个代数式的值是( ) A.7 B.3 C.1 D.-77.已知代数式x ﹣2y 的值是5,则代数式﹣3x+6y+1的值是( )A.16B.﹣14C.14D.﹣168.按如图所示的运算程序,能使输出的结果为12的是( )A.x =3,y =3B.x =﹣4,y =﹣2C.x =2,y =4D.x =4,y =2二、填空题9.若x 的相反数是3,|y|=5,则x -y=____________.10.已知:x ﹣2y+3=0,则代数式(2y ﹣x)2﹣2x+4y ﹣1的值为 .11.若2x-5y=3,则7-6x+15y=_______.12.已知y=2-x ,则4x +4y -3的值为 .13.试写一个只含字母x 的代数式:当x=﹣2时,它的值等于5.你写的代数式是 .14.下面是一个简单的数值运算程序,当首先输入a=-2时,计算出正数为止,那么输出的结果是________.三、解答题15.已知a=12,b=-3,求代数式4a 2+6ab -b 2的值;16.已知|a +2|与|b -3|互为相反数,求(b +a)(b -a)-(2a +b)2的值.17.某市出租车收费标准为:起步价6元(即行驶距离不超过3km 都付6元车费),超过3km 后,每增加1km ,加收2.4元.某人乘坐出租车行驶x(km)(x>3).①用代数式表示他应付的费用;②求当x=8km 时的乘车费用.18.如图,一块正方形的铁皮,边长为x cm(x>4),如果一边截去宽4 cm的一块,相邻一边截去宽3 cm的一块.(1)求剩余部分(阴影)的面积;(2)若x=8,则阴影部分的面积是多少?19.火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?20.用棋子摆成的“T”字形图如图所示:(1)填写表:图形序号①②③④…⑩每个图案中棋子个数 5 8 …(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数.(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)参考答案1.C2.B3.A4.D5.C6.C7.B8.C9.答案为:-8或210.答案为:14.11.答案为:112.答案为:513.答案为:﹣2x+1.14.答案为:2;15.解:当a=12,b=-3时,4a 2+6ab -b 2=4×(12)2+6×12×(-3)-(-3)2=-17 16.解:∵|a +2|与|b -3|互为相反数∴|a +2|+|b -3|=0.∵|a +2|≥0,|b -3|≥0∴a +2=0,b -3=0∴a=-2,b=3.∴(b +a)(b -a)-(2a +b)2=(3-2)[3-(-2)]-[2×(-2)+3]2=1×5-(-1)2=4.17.解:①2.4(x -3)+6=(2.4x -1.2)元.②当x=8时,2.4x -1.2=2.4×8-1.2=18(元).18.解:(1)阴影部分的面积=(x-3)(x-4)=x 2-7x+12;(2)x=8时,阴影部分的面积=(8-3)×(8-4)=20厘米2.19.解:(1)依题意得:(10a ﹣3b)+12(5a ﹣2b)﹣(5a ﹣2b)=152a ﹣2b ; (2)把a =250,b =100代入(152a ﹣2b),得15×250﹣2×100=1675(人).2答:在武汉站上车的有1675人.20.解:(1)11 14 32;(2)第n个“T”字形图案共有棋子(3n+2)个.(3)当n=20时,3n+2=3×20+2=62(个).即第20个“T”字形图案共有棋子62个.(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T”字形图案中,棋子的总个数为67×10=670(个).。
北师大版七年级数学上册第三章 3.2 代数式同步测试题一、选择题1.下列式子中,不属于代数式的是( )A.a+3 B.2mn C.0 D.x>y2.下列语句正确的是( )A.1+a不是一个代数式B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式3.用代数式表示:a的2倍与3的和.下列表示正确的是( )A.2a-3 B.2a+3 C.2(a-3) D.2(a+3) 4.当m=-1时,代数式2m+3的值是( )A.-1 B.0 C.1 D.25.若x=-3,y=1,则代数式2x-3y+1的值为( )A.-10 B.-8 C.4 D.106.下列解释3a表示的意义不正确的是( )A.如果葡萄的价格是3元/千克,那么3a表示买a千克葡萄的金额B.如果一个等边三角形的边长为a,那么3a表示这个三角形的周长C.如果在校平均一天的生活费用为a元,那么3a表示3天的生活费用D.如果步行的速度为a米/分钟,那么3a表示步行3米所用的时间7.下列用代数式表示错误的是( )A.比a的2倍大1的数是2a+1 B.a的相反数与b的和是-a+bC.比a的平方小1的数是a2-1 D.a的2倍与b的差的3倍是2a-3b8.根据流程图中的程序,当输入数值x 为-2时,输出数值y 为( )A .4B .6C .8D .10 9.设某数为m ,则代数式3m 2-52表示( ) A .某数的3倍的平方减去5除以2 B .某数平方的3倍与5的差的一半C .某数的3倍减5的一半D .某数与5的差的3倍除以210.按如图所示的运算程序,能使输出y 值为5的是( )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1二、填空题11.用代数式表示:(1)x 与y 两数的差的平方:_______;(2)a 与b 的平方差:_______.12.设一个三位数的个位数字为a ,十位数字为b ,百位数字为c ,请你用含a ,b ,c 的代数式表示这个三位数:_______.13.某风景区在“十一”黄金周期间推出了特惠活动:票价为每人100元,团体购票超过20人,票价可以享受八折优惠.活动期间,某旅游团有m(m>20)人来该景区观光,则应付票价总额为_______元.14.若x=1,则代数式2x2-x的值为_______.15.据省统计局发布,2019年我省有效发明专利数比2018年增长22.1%.假定2018年的年增长率保持不变,2018年和2020年我省有效发明专利分别为a万件和b万件,则b=_______.16.体育委员小金带了500元经费去买体育用品,已知一个足球x元,一个篮球y元,则代数式500-3x-2y表示的实际意义是_______.17.若a,b互为相反数,则代数式a+b-2的值为_______.18.用代数式表示:把a本书分给若干名学生,若每人5本,还剩余3本,则学生人数为_______人.19.已知a2+2a=1,则3(a2+2a)+2的值为_______.20.若代数式(m-2)x2+5y2+3的值与x的取值无关,则m=_______.三、解答题21.联系实际背景,说明代数式6a2的意义.22.某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x人、学生y人.(1)该旅游团应付多少门票费?(2)如果该旅游团有30个成人和15个学生,那么他们应付多少门票费?23.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.那么顾客到哪家超市购买这种商品更合算?请通过计算加以说明.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款[4000+40(x-20)]元(用含x的代数式表示);若该客户按方案②购买,需付款(3_600+36x)元(用含x的代数式表示);(2)若x=30,通过计算说明此时选择哪种方案购买较为合算?参考答案一、选择题1.下列式子中,不属于代数式的是(D)A.a+3 B.2mn C.0 D.x>y2.下列语句正确的是(B)A.1+a不是一个代数式B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式3.用代数式表示:a的2倍与3的和.下列表示正确的是(B)A.2a-3 B.2a+3 C.2(a-3) D.2(a+3) 4.当m=-1时,代数式2m+3的值是(C)A.-1 B.0 C.1 D.25.若x=-3,y=1,则代数式2x-3y+1的值为(B)A.-10 B.-8 C.4 D.106.下列解释3a表示的意义不正确的是(D)A.如果葡萄的价格是3元/千克,那么3a表示买a千克葡萄的金额B.如果一个等边三角形的边长为a,那么3a表示这个三角形的周长C.如果在校平均一天的生活费用为a元,那么3a表示3天的生活费用D.如果步行的速度为a米/分钟,那么3a表示步行3米所用的时间7.下列用代数式表示错误的是(D)A.比a的2倍大1的数是2a+1 B.a的相反数与b的和是-a+bC.比a的平方小1的数是a2-1 D.a的2倍与b的差的3倍是2a-3b8.根据流程图中的程序,当输入数值x 为-2时,输出数值y 为(A)A .4B .6C .8D .10 9.设某数为m ,则代数式3m 2-52表示(B) A .某数的3倍的平方减去5除以2 B .某数平方的3倍与5的差的一半C .某数的3倍减5的一半D .某数与5的差的3倍除以210.按如图所示的运算程序,能使输出y 值为5的是(D)A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =1二、填空题11.用代数式表示:(1)x 与y 两数的差的平方:(x -y)2;(2)a 与b 的平方差:a 2-b 2.12.设一个三位数的个位数字为a ,十位数字为b ,百位数字为c ,请你用含a ,b ,c 的代数式表示这个三位数:100c +10b +a .13.某风景区在“十一”黄金周期间推出了特惠活动:票价为每人100元,团体购票超过20人,票价可以享受八折优惠.活动期间,某旅游团有m(m >20)人来该景区观光,则应付票价总额为80m 元.14.若x =1,则代数式2x 2-x 的值为1.15.据省统计局发布,2019年我省有效发明专利数比2018年增长22.1%.假定2018年的年增长率保持不变,2018年和2020年我省有效发明专利分别为a 万件和b 万件,则b =(1+22.1%)2a .16.体育委员小金带了500元经费去买体育用品,已知一个足球x 元,一个篮球y 元,则代数式500-3x -2y 表示的实际意义是体育委员小金买了3个足球、2个篮球后剩余的经费.17.若a ,b 互为相反数,则代数式a +b -2的值为-2.18.用代数式表示:把a 本书分给若干名学生,若每人5本,还剩余3本,则学生人数为a -35人.19.已知a 2+2a =1,则3(a 2+2a)+2的值为5.20.若代数式(m -2)x 2+5y 2+3的值与x 的取值无关,则m =2.三、解答题21.联系实际背景,说明代数式6a 2的意义.解:答案不唯一,如:6个边长为a 的正方形的面积之和.22.某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x 人、学生y 人.(1)该旅游团应付多少门票费?(2)如果该旅游团有30个成人和15个学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费为(10x +5y)元.(2)当x =30,y =15时,10x+5y=10×30+5×15=375,即他们应付375元门票费.23.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.那么顾客到哪家超市购买这种商品更合算?请通过计算加以说明.解:设商品价格为a(a>0)元,甲超市的价格为a(1-20%)(1-10%)=0.72a元,乙超市的价格为a(1-15%)2=0.722 5a元,丙超市的价格为a(1-30%)=0.7a元,因为0.7a<0.72a<0.722 5a,所以到丙超市购买最合算.24.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款[4000+40(x-20)]元(用含x的代数式表示);若该客户按方案②购买,需付款(3_600+36x)元(用含x的代数式表示);(2)若x=30,通过计算说明此时选择哪种方案购买较为合算?解:当x=30时,4000+40(x-20)=4000+40×(30-20)=4 400(元),3 600+36x=3 600+36×30=4 680(元),因为4 400<4 680,所以选择方案①购买较为合算.。
随堂测试3.3代数式的值一、单选题1.若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式201920192020a b c ++的值为()A .0B .2C .2019D .20202.当2m =,3n =时,多项式()()12m n m n ---的值是().A .12B .12-C .32D .32-3.若2x =,则318x 的值是().A .12B .1C .4D .84.若a 、b 互为相反数,c 、d 互为倒数,则223a b cd +-的值是().A .0B .-3C .3D .25.当1x =-时,代数式323ax bx -值为10,则代数式962b a -+的值为()A .28B .28-C .32D .32-6.已知x ﹣2y =2,则代数式3x ﹣6y+2014的值是()A .2016B .2018C .2020D .20217.当x =1时,代数式ax 2+bx+3的值为1,当x =﹣1时,代数式ax 2﹣bx ﹣3的值为()A .1B .﹣1C .5D .﹣58.若a ,b 互为相反数,c ,d 互为倒数,则(a +b +d )÷1c 等于()A .0B .1C .2D .39.当a ,b 互为相反数时,代数式22a ab +-的值为()A .2B .0C .-2D .110.当1x =时,代数式31px qx ++的值为2021,则当1x =-时,代数式31px qx ++的值为()A .2020B .-2020C .2019D .-2019二、填空题11.已知a ﹣2b =1,则3﹣2a+4b =____.12.已知a 、b 互为相反数,m 、n 互为倒数,则()3a b mn ++=____________.13.若a 和b 互为相反数,c 和d 互为倒数,则20192020()()a b cd ++=_________.14.若关于x 的五次四项式ax 5+bx 3+(x ﹣6),当x =﹣2时的值是7,则当x =2时的值是__.15.当a =5,b =23时,代数式5(a 2+ab )﹣(5a 2﹣ab )的值为_____.16.在数轴上,点(A 表示整数)a 在原点的左侧,点(B 表示整数)b 在原点的右侧.若2016a b -=,且2AO BO =,则a b +的值为______.17.(1)当1x =-,2y =时,代数式3x y -的值是_______;(2)当2x =,3y =-时,代数式3x y -的值是_______;18.若多项式()()4322311x a x x b x --+-+-中不含3x 和x 项,则a+b=_______.19.当3x =时,代数式33ax bx -+的值为12,则当3x =-时,代数式37ax bx -+的值为___.三、解答题20.图中正方形的边长为2㎝,求下图中阴影部分的面积.21.底面为正方形的长方体,体积为332cm ,底面边长为cm x ,请用含x 的式子表示这个长方体的高h ,并求当底面边长2cm x =时,h 的值.22.若a 5=,b 7=.(1)求a ,b 的值(2)若ab 0>,求a b +的值.22.已知a b 、互为倒数,,c d 互为相反数,2m =,求4m c d ab m+++23.已知当2x =-时,代数式31ax bx ++的值为6.求当2x =时,代数式31ax bx ++的值.25.()1若3a =,4b =,且a b <,求a b -的值.()2已知3520a b c -+++-=,计算2a b c ++的值.26.已知代数式535ax bx cx ++-,当2x =-时的值为7,那么当2x =时,该代数式的值是多少?27.已知当2x =-时,代数式21ax bx ++的值为6,利用等式的性质求代数式84a b -+的值.28.公安人员在破案时,常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用(cm)a 表示脚印长度,(cm)b 表示身高,关系类似于 3.7 07b a =-.(1)某人脚印长度为24.5cm ,则他的身高约为多少厘米?(2)在某次案件中,抓获了两个可疑人员,一个身高为1.87m ,另一个身高为1.79m ,现场测量的脚印长度为26.3cm ,请你帮助侦察一下,哪个可疑人员的可能性更大?参考答案1.A2.A3.B4.B5.C6.C7.D8.B9.C10.D11.112.113.114.﹣1915.2016.672-17.-5;9.18.119.-220.阴影的面积=正方形面积-四个四分之一圆面积即:阴影的面积=正方形面积2144r p -´=2×2-3.14×1×1=4-3.14=0.86∴阴影部分的面积为0.86平方厘米.21.2V x h =,223232h x x=¸=,当2cm x =,23282h ==cm 22.解:()1a |5= ,b 7=,a 5\=±,b 7=±;()2ab 0> ,①5a =时,b 7=,∴a b 5712+=+=;②a 5=-时,b 7=-,∴()a b 5712+=-+-=-;a b \+的值为:12±.23.解:,a b 互为倒数,1ab \=,c d 互为相反数,0c d \+=2,22m m m =\==- 或()1当2m =时,原式231042=++=()2当2m =-时,原式211042=-++=所以原式3122=或24.解:将2x =-代入31ax bx ++得:318216ax bx a b ++=--+=,所以825a b +=-,当2x =时,31821514ax bx a b ++=++=-+=-25.解:()1根据题意得:3a =,4b =或3a =-,4b =,则1a b -=-或7-;()23520a b c -+++-= ,3a \=,5b =-,2c =,则26523a b c ++=-+=.26.解:当2x =-时,()()535352225328257ax bx cx a b c a b c ++-=-+---=----=,∴328212a b c ---=,即328212a b c ++=-当2x =时,535ax bx cx ++-532225a b c =++-32825a b c =++-125=--17=-.27.因为当x=-2时,21ax bx ++=4a-2b+1=6,所以4a-2b=5,所以84a b -+=-2(4a-2b)=-10.28.(1)当24.5a =时,7 3.07168.43b a =-=,所以他的身高约为168.43cm ;(2)当脚印的长度为26.3cm 时,7 3.07181.03b a =-=,因为179cm 更接近181.03cm ,所以身高为1.79m 的可疑人员可能性更大.。
人教版数学七年级上册第三章测试题(时间:90分钟总分:120分)一、选择题:(每题3分,共18分)1.下列等式变形正确的是( )A.如果s = 12ab,那么b =2sa; B.如果12x = 6,那么x = 3C.如果x - 3 = y - 3,那么x - y = 0;D.如果mx = my,那么x = y2. 方程12x - 3 = 2 + 3x的解是( )A.-2;B.2;C.-12; D.123.关于x的方程(2k -1)x2 -(2k + 1)x + 3 = 0是一元一次方程, 则k值为( )A.0B.1C.12D.24.已知:当b = 1,c = -2时,代数式ab + bc + ca = 10, 则a的值为( )A.12B.6C.-6D.-125.下列解方程去分母正确的是( )A.由1132x x--=,得2x - 1 = 3 - 3x;B.由232124x x---=-,得2(x - 2) - 3x - 2 = - 4C.由131236y y yy+-=--,得3y + 3 = 2y - 3y + 1 - 6y;D.由44153x y+-=,得12x - 1 = 5y + 206.某件商品连续两次9折降价销售,降价后每件商品售价为a元,则该商品每件原价为( ) A.0.92a B.1.12a C.1.12aD.0.81a二、填空题:(每空3分,共36分)7.x = 3和x = - 6中,________是方程x - 3(x + 2) = 6的解.8.若x = -3是方程3(x - a) = 7的解,则a = ________.9.若代数式213k--的值是1,则k = _________.10.当x = ________时,代数式12x-与113x+-的值相等.11. 5与x的差的13比x的2倍大1的方程是__________.12. 若4a-9与3a-5互为相反数, 则a2 - 2a + 1的值为_________.13.一次工程,甲独做m天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要_______天完成.14.解方程132x-=,则x=_______.15.三个连续偶数的和为18,设最大的偶数为 x, 则可列方程______.16.甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一样多.三、解方程:(每题5分,共20分)17.70%x+(30-x)×55%=30×65% 18.511241263x x x+--=+;19.1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦; 20.432.50.20.05x x ---=.四、解答题:(共46分) 21.(做一做,每题4分,共8分) 已知2y+ m = my - m. (1)当 m = 4时,求y 的值.(2)当y = 4时,求m 的值.22.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米? (8分)23. 一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数。
苏科版七年级数学上册第3章代数式整章同步测试题(共10套有答案)3.1 字母表示数知识点用字母表示数 1.甲数比乙数小1,设甲数为x,则乙数为( ) A.x-1 B.x+1 C.x-2 D.x+2 2.2016•吉林小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图3-1-1所示的手链,小红购买珠子应该花费( ) 图3-1-1 A.(3a+4b)元 B.(4a+3b)元 C.4(a+b)元D.3(a+b)元 3.2017•吉林苹果原价是每千克x元,按8折出售,该苹果现价是每千克________元(用含x的式子表示). 4.2017•微山县一模一天,小明读一本数学课外书,他从m页读到n页,他共读了________页. 5.非零数m的倒数是________. 6.一枝铅笔a元,一个书包的价格比一枝铅笔的价格的6倍多5元,则一个书包的价格是________元. 7.(1)若学校购买200本练习本共用240元,则平均每本多少元? (2)如果用m表示购买练习本的总钱数,n表示购买练习本的本数,那么平均每本练习本的价格应怎样表示?8.公路全长p米,骑车n小时走完,若想提前1小时走完,则需每小时走( ) A.pn+1米 B.pn-1米 C.pn-1米 D.pn+1米9.2017•天水观察下列“蜂窝图”,则第n个图案中“ ”的个数是________.(用含有n的代数式表示) 图3-1-2 10.如图3-1-3,把一块长、宽分别为a,b的长方形铁片的四角各剪去一个边长为2的小正方形(4<b<a),然后做成一个无盖的长方体盒子,用字母表示出该长方体盒子的底面积和容积.图3-1-311.按图3-1-4所示方式用火柴棒搭三角形:图3-1-4 (1)填写下表:三角形个数1 2 3 4 ... 100 ... 火柴棒根数... (2)当三角形个数为n时,火柴棒的根数为________.1.B. 2.A 3.0.8x 4.(n-m+1) 5.1m 6.(6a+5) 7.解:(1)若学校购买200本练习本共用240元,则平均每本240÷200=1.2(元). (2)如果用m表示购买练习本的总钱数,n表示购买练习本的本数,那么平均每本练习本的价格应为mn元. 8B . 9.3n+1 10.解:由题意,得该长方体盒子的底面长为(a-4),宽为(b -4),高为2,所以该长方体盒子的底面积为(a-4)(b-4),容积为2(a-4)(b-4). 11.解:(1)填写表格如下:三角形个数1 2 3 4 ... 100 ... 火柴棒根数3 5 7 9 ... 201 (2)当三角形个数为n时,火柴棒的根数为2n+1.3.2 第1课时代数式及列代数式知识点 1 代数式的概念与列代数式 1.在2x2,1-2x=0,ab,a>0,0,1a,π中,是代数式的有( ) A.5个 B.4个 C.3个 D.2个 2.2017•岳麓区校级一模“x的2倍与y的和的平方”用代数式表示为( ) A.(2x+y)2 B.2x+y2 C.2x2+y2 D.2(x+y)2 3.已知一个长方形的周长为20,设它的长为x,则它的宽为( ) A.20-x B.10-x C.20-2x D.20-x2 4.用代数式表示: (1)x的相反数与-8的和________;(2)x的倒数与5的差________; (3)a的平方的2倍与b的平方的4倍的差______;(4)a,b两数的和与a,b两数的差的商________. 5.小明有m张邮票,小亮有n张邮票,小亮过生日时,小明把自己的邮票的一半作为礼物送给小亮,现在小亮有________张邮票. 6. 小丁期中考试考了a分,之后他继续努力,期末考试比期中考试提高了b%,则小丁期末考试考了________分. 7.鸡兔同笼,鸡m只,兔n只,则共有________个头,________只脚. 8.一本书已看了20页,还剩下(b-20)页没看,则字母b表示________________. 9.指出下列哪些是代数式,哪些不是代数式. (1)a2-b2;(2)6a;(3)x+1=3;(4)5>-3;(5)0;(6)c=2πr;(7)1a;(8)m.知识点 2 代数式的书写格式 10.下列代数式符合代数式书写格式的是() A.(a+b)÷c B.a-b厘米 C. 113x D.43x 11.某校为适应电化教学的需要,新建了阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,则第n排有________个座位. 12.小明今年x岁,爸爸y岁. (1)爸爸比小明大多少岁? (2)5年后小明和爸爸的年龄之和是多少?13.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算?1.A 2.A 3.B 4.(1)-x+(-8) (2)1x-5 (3)2a2-4b2 (4)a +ba-b 5.n+12m 6.a(1+b%) 7.(m+n) (2m+4n) 8.这本书共有b页 9.解:(1)(2)(5)(7)(8)是代数式;(3)(4)(6)不是代数式. 10.D . 11.(a+n-1). 12.解:(1)(y-x)岁.(2)(x+y +10)岁. 13.解:设该商品的定价为a(a>0),则甲超市的售价为a×(1-20%)(1-10%)=0.72a;乙超市的售价为a×(1-15%)2=0.7225a;丙超市的售价为a×(1-30%)=0.7a. 因为0.7a<0.72a <0.7225a,所以顾客到丙超市购买这种商品更合算.。
一、初一数学代数式解答题压轴题精选(难)1.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.2.已知A=2x2+3xy-2x-1,B=x2-xy-1(1)化简:4A-(2B+3A),将结果用含有x、y的式子表示(2)若式子4A-(2B+3A)的值与字母x的取值无关,求的值【答案】(1)解:∵A=2x2+3xy-2x-1,B=x2-xy-1,∴4A-(2B+3A)=A-2B=2x2+3xy-2x-1-2(x2-xy-1)=5xy-2x+1(2)解:根据(1)得4A-(2B+3A)= 5xy-2x+1;∵4A-(2B+3A)的值与字母x的取值无关,∴4A-(2B+3A)=5xy-2x+1=(5y-2)x+1,5y-2=0,则y= .则y3+ A- B= y3+ (A-2B)= y3+ ×1= + = = .【解析】【分析】(1)先将4A-(2B+3A)化简,再将A,B的值分别代入代数式,去括号合并同类项化为最简形式即可;(2)根据(1)化简的结果,由4A-(2B+3A)的值与字母x的取值无关,得出5y-2=0,求解得出y的值,再将代数式中含A,B的项,逆用乘法分配律最后整体代入即可算出代数式的值。
北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列式子符合书写规范的是( )A .-1xB .115xyC .0.3÷xD .-52a 2.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 3 3.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D.13,4 4.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab5.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =16.下列去括号正确的是( )A .(a -b )-(c -d )=a -b -c -dB .-a -2(b -c )=-a -2b +2cC .-(a -b )+c =-a -b +cD .-2(a -b )-c =-2a +b -c7.【2021·台州】将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A.20% B.x+y2×100% C.x+3y20×100% D.x+3y10x+10y×100%8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线(对称轴)剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( ) A.20 B.18 C.16 D.1510.【教材P104复习题T16变式】【2020·德州】如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202二、填空题(每题3分,共24分)11.用代数式表示“比a的平方的一半小1的数”是____________.12.若单项式-2x3yn与4x m+2y5合并后的结果还是单项式,则m+n=________.13.【教材P101复习题T2变式】按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.在山东部分地区,大年初一常常包上几个装有硬币的饺子,吃到“钱馅”饺子的人,寓意新的一年财源滚滚、大吉大利.因为怕弄坏牙齿,朵朵的奶奶就把花生放在饺子里代替硬币,朵朵家有6口人,奶奶按照每人n 粒花生的规则包饺子(每个饺子包1粒),那么有花生的饺子有________个.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含x 2项,则m =________.16.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确的结果是__________.17.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为________.18.【2021·怀化】观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2……已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是__________.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2.20.先化简,再求值:(1)7a 2b +(-4a 2b )-(2a 2b -2ab ),其中a =-2,b =1;(2)2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.21.【教材P 102复习题T 9变式】已知代数式A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)当x =y =-1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.22.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m).(1)求阴影部分的面积(用含x的代数式表示);(2)当x=9,π取3时,求阴影部分的面积.23.比较两个数的大小时,我们可以用“作差法”.它的基本思路是求a与b两数的差,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b.试运用“作差法”解决下列问题:(1)比较2a+1与2(a+1)的大小;(2)比较a+b与a-b的大小.24.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一、1.D 2.B 3.B 4.A 5.C 6.B 7.D8.C 9.A10.C点思路:根据图案知,第1个图案有12个棋子,第2个图案有22个棋子,第3个图案有34个棋子,…第n 个图案有2[1+2+…+(n +1)+(n +2)]+2(n -1)=(n +2)(n +3)+2(n -1)(个)棋子.故第10个这样的图案需要黑色棋子的个数为(10+2)(10+3)+2×(10-1)=174.二、11.12a 2-1 12.6 13.-6 14.6n 15.4 16.3xy -8yz -xz 点拨:由题意可知原多项式为(xy -2yz +3xz )+(xy -3yz-2xz )=2xy -5yz +xz ,则正确的结果为(2xy -5yz +xz )+(xy -3yz -2xz)=3xy -8yz -xz .17.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0,所以原式=-(a+c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b =2b -2c.18.m 2-m点技巧:由题中规律,得2100+2101+2102+…+2199=(2+22+23+...+2199)-(2+22+23+ (299)=(2200-2)-(2100-2)=(2100)2-2100.因为2100=m ,所以原式=m 2-m .三、19.解:(1)原式=2a -5a +3b +4a -b =a +2b ;(2)原式=3x 2y -(2xy 2-2xy +3x 2y +xy )+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.20.解:(1)7a 2b +(-4a 2b )-(2a 2b -2ab )=7a 2b -4a 2b -2a 2b +2ab =a 2b +2ab .把a =-2,b =1代入,得原式=(-2)2×1+2×(-2)×1=0.(2)2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2)=2x 2-(-x 2+2xy -2y 2)-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2.把x =12,y =-1代入,得原式=⎝ ⎛⎭⎪⎫122-2×(-1)2=-74. 21.解:(1)2A +4B =2(2x 2+3xy -2x -1)+4(-x 2+xy -1)=4x 2+6xy -4x -2-4x 2+4xy -4=10xy -4x -6.当x =y =-1时,原式=10×(-1)×(-1)-4×(-1)-6=10+4-6=8.(2)2A +4B =10xy -4x -6=(10y -4)x -6.因为2A +4B 的值与x 的取值无关,所以10y -4=0,解得y =0.4.22.解:(1)由题图中各个部分面积之间的关系可得,阴影部分的面积=2(x -2)+4(x -2-2)-12π·⎝ ⎛⎭⎪⎫2+422=2x -4+4x -16-92π=⎝ ⎛⎭⎪⎫6x -20-92πm 2. (2)当x =9,π取3时,阴影部分的面积为54-20-272=412(m 2). 23.解:(1)因为2a +1-2(a +1)=2a +1-2a -2=-1<0,所以2a +1<2(a +1).(2)(a+b)-(a-b)=a+b-a+b=2b.①当b>0时,a+b>a-b;②当b<0时,a+b<a-b;③当b=0时,a+b=a-b.24.解:(1)当x=100时,方案一:100×200=20 000(元);方案二:100×(200+80)×80%=22 400(元).因为20 000<22 400,所以方案一划算.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000(元);方案二:(100×200+80x)×80%=64x+16 000(元).(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子:100×200+80×200×80%=32 800(元),36 000>35 200>32 800,即先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子最省钱。
北师大版数学七年级上册第三章《整式及其加减》综合检测卷 班级 座号 姓名 成绩一、选择题(本大题8小题,每小题3分,共24分.)在每小题列出的四个选项中,只有一个是正确的.1.下列代数式 a ,-2ab ,x +y ,x 2+y 2,-1,2312ab c 中,单项式共有( ) A .6个 B .5 个 C .4 个 D .3个2.下列各式,符合代数式书写格式的是( )A .(a +b )÷cB .a -b cmC .113x D .43x 3.现有四种说法:①-a 表示负数;②若|x |=-x ,则x <0;③绝对值最小的有理数是0;④3×102x 2y 是5次单项式.其中正确的是( )A .①B .②C .③D .④4.计算-a 2+3a 2的结果为( )A .2a 2B .-2a 2C .4a 2D .-4a 25.下列各式中,去括号正确的是( )A .x 2-(2y -x +z )=x 2-2y -x +zB .2a +(-6x +4y -2)=2a -6x +4y -2C .3a -[6a -(4a -1)]=3a -6a -4a +1D .-(2x 2-y )+(z -1)=-2x 2-y -z -16.若-x 3y m 与x n y 是同类项,则m +n 的值为( )A .1B .2C .3D .47.如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如4如如如如如如4如如如如如如如如如如如如如如如如如如如如如如如如如如 如A .17段B .32段C .33段D .34段8.已知有理数a ,b ,c 在数轴上所对应点的位置如图所示,化简代数式a a b c a b c +++---的结果是( )A .-3aB .2c -aC .2a -2bD .b 二、填空题(本大题7小题,每小题4分,共28分.)请将下列各题的正确答案填在该题的横线上. 第8题图 第7题图9.单项式225xy -的系数是 ,次数是 . 10.买单价a 元/支的体温计n 支,付费b 元,则应找回的钱数是 .11.若x +y =4,a ,b 互为倒数,则12(x +y )+5ab 的值是 . 12.若A +(a +b 2-c )=a +c ,则A 为 .13.若合并多项式3x 2-2x +m -x -mx +1中的同类项后,得到的多项式中不含x 的一次项,则m 的值为________.14.对于有理数a ,b ,定义a *b =3a +2b ,化简:(x+y )*(x -y )= .15.一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为________.三、解答题(本大题4小题,16、17题每小题10分,18、19题每小题14分,共48分.)解答过程应写出文字说明、推理过程及演算步骤.16.先化简,再求值:(6a 2-6ab -12b 2)-3(2a 2-4b 2),其中a =-12,b =-8.17.已知A =x -2y ,B =-x -4y +1.(1)求2(A +B )-(2A -B )的值(结果用含x ,y 的代数式表示);(2)当12x +与y 2互为相反数时,求(1)中代数式的值.18.如图,一个点从数轴上的原点开始,先向左移动 2 cm 到达A 点,再向左移动3 cm 到达B 点,然后向右移动9 cm 到达C 点.(1)用1个单位长度表示1 cm ,请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记作CA ,则CA = cm ;(3)若点B以每秒2 cm的速度向左移动,同时A,C点分别以每秒1 cm,4 cm的速度向右移动,设移动时间为t秒,试探索CA-AB的值是否会随着t的变化而改变.请说明理由.19.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.参考答案一、选择题:1.C 2.D 3.C 4.A 5.B 6.D 7.A 8.A二、填空题:9.25-,3 10.(b -na )元 11.7 12.2c -b 2 13.-3 14.5x +y 15.-13x 8三、解答题:16.原式=6a 2-6ab -12b 2-6a 2+12b 2=-6ab ,当a =-12,b =-8时,原式=-6×1()2-×(-8)=-24 17.(1)原式=2A +2B -2A +B =3B =3(-x -4y +1)=-3x -12y +3;(2)∵12x +与y 2互为相反数, ∴12x ++y 2=0, ∴x +12=0,y 2=0, ∴x =-12,y =0, ∴2(A +B )-(2A -B )=-3×1()2--12×0+3=92 18.(1)图略;(2)CA =4-(-2)=4+2=6(cm);(3)不变.理由: 当移动t 秒时,点A ,B ,C 分别表示的数为-2+t ,-5-2t ,4+4t , 则CA =(4+4t )-(-2+t )=6+3t ,AB =(-2+t )-(-5-2t )=3+3t ,∵CA -AB =(6+3t )-(3+3t )=3, ∴CA -AB 的值不会随着t 的变化而改变 19.(1)平行四边形框内的九个数之和是中间的数的9倍;(2)规律仍然成立.设框中间的数为n ,这九个数按大小顺序依次为:(n -18),(n -16),(n -14),(n -2),n ,(n +2),(n+14),(n +16),(n +18),和为9n ;(3)这九个数之和不能为1998.若和为1998,则9n =1998,n =222,是偶数,则不在数阵中.这九个数之和也不能为2005,因为2005不能被9整除;若和为1017,则中间数可能为113,最小的数为113-16-2=95.。
2020-2021学年苏科新版七年级上册数学《第3章代数式》单元测试卷一.选择题1.下列用语言叙述式子:﹣4表示的数量关系,表述不正确的是()A.比x的倒数小4的数B.比x的倒数大4的数C.x的倒数与4的差D.1除以x的商与4的差2.单项式﹣的系数是()A.2B.﹣1C.﹣3D.﹣3.下列各组代数式中,属于同类项的是()A.ab与3ba B.a2b与a2c C.2a2b与2ab2D.a与b4.下列整式中,去括号后得﹣a﹣b+c的是()A.a﹣(b+c)B.﹣a﹣(b﹣c)C.﹣a﹣(b+c)D.﹣(a﹣b)+c 5.若a2+3a=1,则代数式2a2+6a﹣2的值为()A.0B.1C.2D.36.表示“a与b两数和的平方”的代数式是()A.a2+b2B.a+b2C.(a+b)2D.2(a+b)7.下列变形正确的是()A.3a﹣2a=1B.﹣(a+2)=a﹣2C.3a2b﹣2ab2=a2b D.﹣a+1=﹣(a﹣1)8.点A1,A2,A3,…,A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1O=1;点A2在点A1的右边,且A2A1=2;点A3在点A2的左边,且A3A2=3;…,依照上述规律,点A2020,A2021所表示的数分别为()A.2020,﹣2021B.﹣2020,2021C.1010,﹣1011D.1010,﹣1010 9.在式子,x+y,2020,﹣a,﹣3x2y,中,整式的个数()A.5个B.4个C.3个D.2个10.观察图中正方形四个顶点所标数的规律,可知2020应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左下角D.第505个正方形的右下角二.填空题11.写出一个次数为3,且含有字母a、b的整式:.12.若﹣7x m y4与2x9y n的和是单项式,则n+m=.13.去括号:a﹣(﹣2b+c)=.14.2x﹣y=1.则(x2+2x)﹣(x2+y﹣1)=.15.整数n=时,多项式2x1+n﹣3x4﹣|n|+x是三次三项代数式.16.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚(用含n的代数式表示).17.把多项式x3﹣7x2y+y3﹣4xy2按x的升幂排列为.18.如果x=﹣3时,代数式ax5+bx3+cx的值是6,那么x=3时,代数式ax5+bx3+cx的值是.19.小刚做了一道数学题:已知两个多项式A和B,其中B=3x﹣2y,求A+B.他误将“A+B”看成“A﹣B”,结果求出的答案是x﹣y,那么A+B的结果应该是.20.某种商品原价是m元,第一次降价打“九折”,第二次降价每件又减20元,第二次降价后的售价是元.三.解答题21.化简:8a2+4﹣2a2﹣5a﹣a2﹣5+7a.22.如图,在数轴上A点表示数a,B点表示数b,C点表示数c.且a,b,c满足(c﹣7)2+|a+10|+|b﹣1|=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与表示的数的点重合;(3)点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点B向右运动(点M、点N同时出发),经过几秒,点M、点N分别到点B的距离相等?23.某公园准备修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽为2米.(1)用含a、b的代数式表示修建的十字路的面积.(2)当a=40,b=30时,求修建的十字路的面积.24.已知单项式x3y a与单项式﹣5x b y是同类项,c是多项式2mn﹣5m﹣n﹣3的次数.(1)写出a,b,c的值;(2)若关于x的二次三项式ax2+bx+c的值是3,求代数式2019﹣2x2﹣6x的值.25.如图,一个大长方形中剪下两个大小相同的小长方形(有关线段的长如图所示)留下一个“T”型的图形(阴影部分).(1)用含x,y的代数式表示阴影部分的周长;(2)用含x,y的代数式表示阴影部分的面积;(3)当x=2,y=2.5时,计算阴影部分的面积.26.已知多项式x|m|﹣(m+2)x+12是关于x的二次二项式,求m的值.27.已知:代数式A=2x2﹣2x﹣1,代数式B=﹣x2+xy+1,代数式M=4A﹣(3A﹣2B)(1)当(x+1)2+|y﹣2|=0时,求代数式M的值;(2)若代数式M的值与x的取值无关,求y的值;(3)当代数式M的值等于5时,求整数x、y的值.参考答案与试题解析一.选择题1.解:A选项表示的是﹣4;B选项表示的是+4;C选项表示的是﹣4;D选项表示﹣4.故选:B.2.解:单项式﹣的系数是:﹣.故选:D.3.解:A、ab与3ba符合同类项的定义,它们是同类项.故本选项正确;B、a2b与a2c所含的字母不相同,它们不是同类项.故本选项错误;C、2a2b与2ab2相同字母的指数不相同,它们不是同类项.故本选项错误;D、a与b所含字母不相同,它们不是同类项.故本选项错误;故选:A.4.解:A、a﹣(b+c)=a﹣b﹣c,不合题意;B、﹣a﹣(b﹣c)=﹣a﹣b+c,符合题意;C、﹣a﹣(b+c)=﹣a﹣b﹣c,不合题意;D、﹣(a﹣b)+c=﹣a+b+c,不合题意;故选:B.5.解:∵a2+3a=1,∴2a2+6a﹣2=2(a2+3a)﹣2=2﹣2=0.故选:A.6.解:表示“a与b两数和的平方”的代数式是(a+b)2.故选:C.7.解:A、原式=﹣a,故本选项变形错误;B、原式=﹣a﹣2,故本选项变形错误;C、不是同类项,不能合并,故本选项变形错误;D、原式=﹣(a﹣1),故本选项变形正确.故选:D.8.解:如图,根据题意可得:A1=﹣1,A2=1,A3=﹣2,A4=2,…,由此可知,当n为奇数时,;当n为偶数时,.∴A2020=,A2021=﹣=﹣1011.故选:C.9.解:在式子,x+y,0,﹣a,﹣3x2y,中,整式的个数是:x+y,2020,﹣a,﹣3x2y,共5个.故选:A.10.解:因为2020÷4=505,而第505个正方形是从右下角开始计数的,所以2020应标在左下角.故选:C.二.填空题11.解:由题意可得:a2b(答案不唯一).故答案为:a2b(答案不唯一).12.解﹣7x m y4与2x9y n的和是单项式,∴﹣7x m y4与2x9y n是同类项,∴m=9,n=4,∴n+m=9+4=13,故答案为:13.13.解:a﹣(﹣2b+c)=a+2b﹣c.故答案为:a+2b﹣c.14.解:当2x﹣y=1时,(x2+2x)﹣(x2+y﹣1),=x2+2x﹣x2﹣y+1,=2x﹣y+1,=1+1,=2,故答案为:2.15.解:∵2x1+n﹣3x4﹣|n|+x为三次三项式,∴1+n=3或者4﹣|n|=3,解的n=2或n=±1,当n=2时,原多项式是2x3﹣3x2+x满足;当n=1时,原多项式是2x2﹣3x3+x满足;当n=﹣1时,原多项式是2x0﹣3x3+x,当x=0时无意义.故答案:2或1;16.解:∵第1个图形有2个棋子,第2个图形有2+3×1=5个棋子,第3个图形有2+3×2=8个棋子,∴第n个图形需棋子:2+3(n﹣1)=(3n﹣1)枚.故答案为:(3n﹣1).17.解:多项式x3﹣7x2y+y3﹣4xy2的各项为x3,﹣7x2y,y3,﹣4xy2,按x的升幂排列为:y3﹣4xy2﹣7x2y+x3.故答案为:y3﹣4xy2﹣7x2y+x3.18.解:∵当x=﹣3时,代数式ax5+bx3+cx的值是6,∴﹣243a﹣27b﹣3c=6,即243a+27b+3c=﹣6,∴当x=3时,ax5+bx3+cx=243a+27b+3c=﹣6;故答案为:﹣6.19.解:根据题意得:A﹣(3x﹣2y)=x﹣y,即A=x﹣y+3x﹣2y=4x﹣3y,则A+B=4x﹣3y+3x﹣2y=7x﹣5y.故答案为:7x﹣5y.20.解:根据题意得:第一次降价后的售价是0.9m,第二次降价后的售价是(0.9m﹣20)元.故答案为:(0.9m﹣20).三.解答题21.解:原式=(8﹣2﹣1)a2+(﹣5+7)a+(4﹣5)=5a2+2a﹣1.22.解:(1)∵(c﹣7)2+|a+10|+|b﹣1|=0,∴c﹣7=0,a+10=0,b﹣1=0,解得,a=﹣10,b=1,c=7,故答案为:﹣10;1;7;(2)∵a=﹣10,c=7,,∴数轴沿着表示的数对折,∴,∴点B与表示﹣4的数重合,故答案为:﹣4;(3)设点M,N运动的时间为t秒,则由题意得:点M表示的数为﹣10+3t,点N表示的数为1﹣2t,∴当点M、点N分别到点B距离相等时,|﹣10+3t﹣1|=1+2t﹣1,解得,t=11或t=.所以经过11秒或秒时,点M、点N分别到点B距离相等.23.解:(1)根据题意得:(2a+2b﹣4)米2;(2)当a=40,b=30时,原式=2×40+2×30﹣4=136(平方米),答:修建十字路的面积为136平方米.24.解:(1)因为单项式x3y a与单项式﹣5x b y是同类项,所以a=1,b=3,因为c是多项式2mn﹣5m﹣n﹣3的次数,所以c=2;(2)依题意得:x2+3x+2=3,所以x2+3x=1,所以2019﹣2x2﹣6x=2019﹣2(x2+3x)=2019﹣2×1=2017.25.解:(1)根据题意得:2(y+3y+2.5x)=5x+8y;(2)根据题意得:y•2.5x+3y•0.5x=4xy;(3)当x=2,y=2.5时,S=4×2×2.5=20.26.解:∵多项式x|m|﹣(m+2)x+12是关于x的二次二项式,∴|m|=2,且m+2=0,∴m=﹣2.即m的值是﹣2.27.解:先化简,依题意得:M=4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,将A、B分别代入得:A+2B=2x2﹣2x﹣1+2(﹣x2+xy+1)=2x2﹣2x﹣1﹣2x2+2xy+2=﹣2x+2xy+1(1)∵(x+1)2+|y﹣2|=0∴x+1=0,y﹣2=0,得x=﹣1,y=2将x=﹣1,y=2代入原式,则M=﹣2×(﹣1)+2×(﹣1)×2+1=2﹣4+1=﹣1(2)∵M=﹣2x+2xy+1=﹣2x(1﹣y)+1的值与x无关,∴1﹣y=0∴y=1(3)当代数式M=5时,即﹣2x+2xy+1=5整理得﹣2x+2xy﹣4=0,∴x﹣xy+2=0 即x(1﹣y)=﹣2∵x,y为整数∴或或或∴或或或。
七上第三章 代数式 单元复习卷(满分:100分 时间:90分钟)一、选择题(每题3分,共24分)1.在多项式223x y --中,二次项的系数是 ( ) A .2 B .-2 C .-23 D .232.如图,做一个试管架,在长a cm 的木条上钻4个圆孔,每个孔的直径均为2 cm ,则图中x 为( )A .85a cm +B .165a cm -C .45a cm -D .85a cm - 3.根据如图所示的计算程序,当输入数值x 为-2时,输出数值y 为 ( )A .4B .6C .8D .104.一个两位数是a ,在它的左边加上一个数字b 变成一个三位数,则这个三位数用代数式表示为( )A .10a +100bB .baC .100baD .100b +a5.已知-x +3y =5,则5(x -3y)2-8x +24y -5的值为 ( )A .80B .-170C .160D .606.已知代数式m(m -2)x 3+(m -2)x +2x 是关于x 的一次多项式,则m 的值为 ( )A .0B .2C .0或2D .不能确定7.已知-1<b<0,0<a<1,那么在代数式a -b ,a +b ,a +b 2,a 2+b 中,对于任意的a 、b ,对应的代数式的值最大的是 ( )A .a +bB .a -bC .a +b 2D .a 2+b8.已知两个多项式M 和N 都是六次多项式,那么M +N 的次数 ( )A .为6B .不大于6C .小于6D .大于6.。