七年级数学下学期期末考试试题新人教版 (2)
- 格式:doc
- 大小:1007.00 KB
- 文档页数:9
新七年级下学期期末考试数学试题及答案人教版七年级下学期期末考试数学试题(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B考点:实数的概念。
解析:无限不循环的小数为无理数,无理数有:1.010010001…,π,共2个,其它为有理数。
2.下列运算正确的是()A、3a+2a=5a2B、2a2b﹣a2b=a2b C.3a+3b=3ab D、a5﹣a2=a3答案:B考点:整式的运算。
解析:A、3a+2a=5a,故错误;B、正确;C、不是同类项,不能合并;D、不是同类项,不能合并;3.下列调查中,最适合采用全面调查的是()A、对全国中学生睡眠时间的调查B.了解一批节能灯的使用寿命C.对“中国诗词大会”节目收视率的调查D.对玉免二号月球车零部件的调查答案:D考点:统计。
解析:A、B、C容量大,不能做全面调查,只有D适合做全面调查。
4.如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为( ) A 、90° B 、110° C 、108° D 、100°答案:D考点:两直线平行的性质。
解析:如下图,因为l 1∥l 2, 所以,∠3=∠1=50°, ∠3+∠2+30°=180°,∠2=180°-50°-30°=100°5.买1本笔记本和3支水笔共需14元,买3本笔记本和1支水笔共需18元,则购买1本笔记本和1支水笔共需( )A 、3元B 、5元C 、8元D 、13元 答案:C考点:二元一次方程组。
解析:购买1本笔记本和1支水笔分别需x 、y 元,则有314318x y x y ⎧⎨+=⎩+=,解得:53x y =⎧⎨=⎩, x +y =5+3=86.将点A (2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B ,则点B 的坐标是( )A 、(-1,3)B 、(5,3)C 、(﹣1,﹣5)D 、(5,﹣5) 答案:A考点:平移。
2015-2016学年某某省某某市七年级(下)期末数学试卷一、选择题1.下列实数是负数的是()A.B.3 C.0 D.﹣12.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20° B.30° C.40° D.50°3.2的平方根是()A.±B.±4 C.D.44.如图,数轴上的点P表示的数可能是()A.﹣2.3 B.﹣C.D.﹣5.﹣是的()A.绝对值B.相反数C.倒数 D.算术平方根6.如图,与∠5是同旁内角的是()A.∠1 B.∠2 C.∠3 D.∠47.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.88.下列生活现象中,不是平移现象的是()A.站在运行着的电梯上的人B.左右推动推拉窗C.躺在火车上睡觉的旅客 D.正在荡秋千的小明9.下列语句中,是真命题的是()A.若ab>0,则a>0,b>0 B.内错角相等C.若ab=0,则a=0或b=0 D.相等的角是对顶角10.如图,AB∥CD,若∠C=30°,则∠B的度数是()A.30° B.40° C.50° D.60°11.若|a+b+5|+(2a﹣b+1)2=0,则(a﹣b)2016的值等于()A.﹣1 B.1 C.52016D.﹣5201612.在下列各式中,正确的是()A. =±2 B. =﹣0.2 C. =﹣2 D.(﹣)2+()3=013.不等式x<2的解集在数轴上表示为()A.B.C.D.14.若关于x的一元一次的不等式组有解,则m的取值X围是()A.m>B.m C.m>1 D.m≤115.在平面直角坐标系下,若点M(a,b)在第二象限,则点N(b,a﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限16.下列调查中,适宜采用全面调查方式的是()A.调查市场上某灯泡的质量情况B.调查某市市民对伦敦奥运会吉祥物的知晓率C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了违禁物品二、填空题(共4小题,每小题3分,满分12分)17.不等式4﹣3x>2x﹣6的非负整数解是.18.如果把点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,那么得到的对应点是.19.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是.20.一个样本含有下面10个数据:51,52,49,50,54,48,50,51,53,48.其中最大的值是,最小的值是.在画频数分布直方图时,如果设组距为1.5,则应分成组.三、解答题21.(10分)计算题.(1)|﹣6|+(﹣3)2;(2)﹣.22.(10分)解方程组或不等式组①;②.23.(10分)将一副三角尺拼图,并标点描线如图所示,然后过点C作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.24.(12分)为绿化城市,我县绿化改造工程正如火如荼的进行.某施工队计划购买甲、乙两种树苗共400棵,对光明路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为85000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不多于购买乙种树苗的金额,至多应购买甲种树苗多少棵?25.(12分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过12.85万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,而且每年新增电动车数量相同,(1)设从今年年初起,每年新增电动车数量是x万辆,则今年年底电动车的数量是,明年年底电动车的数量是万辆.(用含x的式子填空)如果到明年年底电动车的拥有量不超过12.85万辆,请求出每年新增电动车的数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)26.(12分)体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:次数60≤x<90 90≤x<120 120≤x<150 150≤x<180 180≤x<210 频数16 25 9 7 3(1)全班有多少同学?(2)组距是多少?组数是多少?(3)跳绳次数x在120≤x<180X围的同学有多少?占全班同学的百分之几?(4)画出适当的统计图表示上面的信息.2015-2016学年某某省某某市七年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列实数是负数的是()A.B.3 C.0 D.﹣1【考点】实数.【分析】根据小于零的数是负数,可得答案.【解答】解:由于﹣1<0,所以﹣1为负数.故选D.【点评】本题考查了实数,小于零的数是负数.2.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20° B.30° C.40° D.50°【考点】垂线.【分析】根据OA⊥OB,可知∠BOC和∠AOC互余,即可求出∠BOC的度数.【解答】解:∵AO⊥OB,∴∠AOB=90°.又∵∠AOC=50°,∴∠BOC=90°﹣∠AOC=40°.故选C.【点评】本题考查了垂线,余角的知识.要注意领会由垂直得直角这一要点.3.2的平方根是()A.±B.±4 C.D.4【考点】平方根.【分析】依据平方根的性质求解即可.【解答】解:2的平方根是±.故选:A.【点评】本题主要考查的是平方根的性质,掌握平方根的性质是解题的关键.4.如图,数轴上的点P表示的数可能是()A.﹣2.3 B.﹣C.D.﹣【考点】实数与数轴.【分析】根据数轴得:点P表示的数大于﹣1且小于﹣2,<﹣2,B、﹣2<﹣<﹣1,C、>1,D、﹣<﹣2.【解答】解:由数轴可知:点P在﹣2和﹣1之间,即点P表示的数大于﹣1且小于﹣2,故选B.【点评】本题考查了实数和数轴,实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大.5.﹣是的()A.绝对值B.相反数C.倒数 D.算术平方根【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣是的相反数,故选:B.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.如图,与∠5是同旁内角的是()A.∠1 B.∠2 C.∠3 D.∠4【考点】同位角、内错角、同旁内角.【分析】根据图象可以得到各个角与∠1分别是什么关系,从而可以解答本题.【解答】解:由图可知,∠1与∠5是同旁内角、∠2与∠5没有直接关系,∠3与∠5是内错角、∠4与∠5是邻补角,故选A.【点评】本题考查同位角、内错角、同旁内角,解题的关键是明确题意,利用数形结合的思想解答.7.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.8【考点】估算无理数的大小.【分析】先找出与60最为接近的两个完全平方数,然后分别求得它们的算术平方根,从而可求得n的值.【解答】解:∵49<60<64,∴7<<8.∴n=7.故选:C.【点评】本题主要考查的是估算无理数的大小,明确被开放数越大,对应的算术平方根也越大是解题的关键.8.下列生活现象中,不是平移现象的是()A.站在运行着的电梯上的人B.左右推动推拉窗C.躺在火车上睡觉的旅客 D.正在荡秋千的小明【考点】生活中的平移现象.【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,可得答案.【解答】解:根据平移的性质,D正在荡秋千的小明,荡秋千的运动过程中,方向不断的发生变化,不是平移运动.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻折.9.下列语句中,是真命题的是()A.若ab>0,则a>0,b>0 B.内错角相等C.若ab=0,则a=0或b=0 D.相等的角是对顶角【考点】命题与定理.【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.【解答】解:A,不是,因为可以判定这是个假命题;B,不是,因为可以判定其是假命题;C,是,因为可以判定其是真命题;D,不是,因为可以判定其是假命题;故选C.【点评】此题主要考查学生对命题的理解及运用,难度较小,属于基础题.10.如图,AB∥CD,若∠C=30°,则∠B的度数是()A.30° B.40° C.50° D.60°【考点】平行线的性质.【分析】两直线平行,内错角相等.根据平行线的性质进行计算.【解答】解:∵AB∥CD,∴∠B=∠C,又∵∠C=30°,∴∠B的度数是30°,故选(A).【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.11.若|a+b+5|+(2a﹣b+1)2=0,则(a﹣b)2016的值等于()A.﹣1 B.1 C.52016D.﹣52016【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【解答】解:∵|a+b+5|+(2a﹣b+1)2=0,∴,解得,∴(a﹣b)2016=1.故选B.【点评】本题考查的是非负数的性质,熟知几个非负数的和为0时,每一项必为0是解答此题的关键.12.在下列各式中,正确的是()A. =±2 B. =﹣0.2 C. =﹣2 D.(﹣)2+()3=0【考点】立方根;算术平方根.【分析】分别利用立方根以及算术平方根的定义分析得出答案.【解答】解:A、=2,故此选项错误;B、无法化简,故此选项错误;C、=﹣2,正确;D、(﹣)2+()3=4,故此选项错误.故选:C.【点评】此题主要考查了立方根以及算术平方根,正确把握定义是解题关键.13.不等式x<2的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示方法可画出图形.【解答】解:不等式x<2的解集在数轴上表示方法应该是:2处是空心的圆点,向左画线.故应选B.【点评】本题考查在数轴上表示不等式的解集,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.14.若关于x的一元一次的不等式组有解,则m的取值X围是()A.m>B.m C.m>1 D.m≤1【考点】不等式的解集.【分析】根据不等式有解,可得关于m的不等式,根据解不等式,可得答案.【解答】解:解不等式组,得3﹣m<x<2m.由题意,得3﹣m<2m,解得m>1,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.在平面直角坐标系下,若点M(a,b)在第二象限,则点N(b,a﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数判断出a、b的正负情况,然后解答即可.【解答】解:∵点M(a,b)在第二象限,∴a<0,b>0,∴a﹣2<0,∴点N(b,a﹣2)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).16.下列调查中,适宜采用全面调查方式的是()A.调查市场上某灯泡的质量情况B.调查某市市民对伦敦奥运会吉祥物的知晓率C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了违禁物品【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:调查市场上某灯泡的质量情况适宜采用抽样调查方式;调查某市市民对伦敦奥运会吉祥物的知晓率适宜采用抽样调查方式;调查某品牌圆珠笔的使用寿命适宜采用抽样调查方式;调查乘坐飞机的旅客是否携带了违禁物品适宜采用全面调查方式,故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题(共4小题,每小题3分,满分12分)17.不等式4﹣3x>2x﹣6的非负整数解是0,1 .【考点】一元一次不等式的整数解.【分析】求出不等式2x+1>3x﹣2的解集,再求其非负整数解.【解答】解:移项得,﹣2x﹣3x>﹣6﹣4,合并同类项得,﹣5x>﹣10,系数化为1得,x<2.故其非负整数解为:0,1.【点评】本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.18.如果把点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,那么得到的对应点是(4,2).【考点】坐标与图形变化-平移.【分析】根据点的坐标平移规律求解.【解答】解:点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,则所得到的对应点的坐标为(4,2)故答案为(4,2).【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.19.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是同位角相等,两直线平行.【考点】作图—复杂作图;平行线的判定.【分析】关键题意得出∠1=∠2;∠1和∠2是同位角;由平行线的判定定理即可得出结论.【解答】解:如图所示:根据题意得出:∠1=∠2;∠1和∠2是同位角;∵∠1=∠2,∴a∥b(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.【点评】本题考查了复杂作图以及平行线的判定方法;熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.20.一个样本含有下面10个数据:51,52,49,50,54,48,50,51,53,48.其中最大的值是54 ,最小的值是48 .在画频数分布直方图时,如果设组距为1.5,则应分成4 组.【考点】频数(率)分布直方图.【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在51,52,49,50,54,48,50,51,53,48中最大的值是54,最下的值是48,在画频数分布直方图时,如果设组距为1.5,则应分成=4,故答案为:54,48,4.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.三、解答题21.(10分)(2016春•某某期末)计算题.(1)|﹣6|+(﹣3)2;(2)﹣.【考点】实数的运算.【分析】(1)原式利用绝对值的代数意义,以及乘方的意义计算即可得到结果;(2)原式利用平方根、立方根定义计算即可得到结果.【解答】解:(1)原式=6+9=15;(2)原式=7﹣(﹣4)=7+4=11.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(10分)(2016春•某某期末)解方程组或不等式组①;②.【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)①×﹣②得出7y=14,求出y,把y的值代入②求出x即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:①①×2﹣②得:7y=14,解得:y=2,把y=2代入②得:2x﹣6=6,解得:x=6,所以原方程组的解为:;②∵解不等式①得:x>2,解不等式②得:x≤4,∴不等式组的解集是2<x≤4.【点评】本题考查了解一元一次不等式组和解二元一次方程组的应用,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.23.(10分)(2016春•某某期末)将一副三角尺拼图,并标点描线如图所示,然后过点C 作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.【考点】平行线的判定.【分析】(1)根据内错角相等,两直线平行进行判定即可;(2)根据三角形EFC的内角和为180°,求得∠EFC的度数.【解答】解:(1)∵CF平分∠DCE,且∠DCE=90°,∴∠ECF=45°,∵∠BAC=45°,∴∠BAC=∠ECF,∴CF∥AB;(2)在△FCE中,∵∠FCE+∠E+∠EFC=180°,∴∠EFC=180°﹣∠FCE﹣∠E,=180°﹣45°﹣30°=105°.【点评】本题主要考查了平行线的判定以及三角形内角和定理的运用,解题时注意:内错角相等,两直线平行.解题的关键是熟知三角板的各角度数.24.(12分)(2016春•某某期末)为绿化城市,我县绿化改造工程正如火如荼的进行.某施工队计划购买甲、乙两种树苗共400棵,对光明路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为85000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不多于购买乙种树苗的金额,至多应购买甲种树苗多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设需购买甲种树苗x棵,需购买乙种树苗y棵,根据“购买两种树苗的总金额为85000”列二元一次方程组求解即可得;(2)设购买甲种树苗a棵,则需购买乙种树苗(400﹣a)棵,根据“购买甲种树苗的金额≥购买乙种树苗的金额”列不等式求解可得.【解答】(1)解:设需购买甲种树苗x棵,需购买乙种树苗y棵,根据题意得:,解得:,答:需购买甲种树苗350棵,需购买乙种树苗50棵;(2)解:设购买甲、乙树苗的棵数分别是x,y.根据题意得:,解得:x≤240.答:至多应购买甲种树苗240棵.【点评】本题主要考查二元一次方程组与一元一次不等式的应用,根据题意抓住相等关系与不等关系列出方程或不等式是解题的关键.25.(12分)(2016春•某某期末)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过12.85万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,而且每年新增电动车数量相同,(1)设从今年年初起,每年新增电动车数量是x万辆,则今年年底电动车的数量是10(1﹣10%)+x ,明年年底电动车的数量是[10(1﹣10%+x)](1﹣10%)+x 万辆.(用含x 的式子填空)如果到明年年底电动车的拥有量不超过12.85万辆,请求出每年新增电动车的数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)【考点】一元二次方程的应用;近似数和有效数字.【分析】(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.【解答】解:(1)今年年底电动车数量是10(1﹣10%)+x万辆,明年年底电动车的数量是[10(1﹣10%+x)](1﹣10%)+x万辆;根据题意得:[10(1﹣10%+x)](1﹣10%)+x≤12.85,解得:x≤2.5,答:每年新增电动车的数量最多是2.5万辆;(2)今年年底电动车的拥有量是10(1﹣10%)+设今年年底到明年年底电动车拥有量的年增长率是y,则11.5(1+y)=12.85,解得:y≈11.7%,答:今年年底到明年年底电动车拥有量的年增长率是11.7%.【点评】此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数量是解题关键.26.(12分)(2016春•某某期末)体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:次数60≤x<90 90≤x<120 120≤x<150 150≤x<180 180≤x<210 频数16 25 9 7 3(1)全班有多少同学?(2)组距是多少?组数是多少?(3)跳绳次数x在120≤x<180X围的同学有多少?占全班同学的百分之几?(4)画出适当的统计图表示上面的信息.【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)将各组频数相加即可得;(2)由频率分布表即可知组数和组距;(3)将120≤x<180X围的两分组频数相减可得,再将其人数除以总人数即可得百分比;(4)根据各分组频数可制成条形图.【解答】解:(1)全班有同学16+25+9+7+3=60(人);(2)组距是30,组数是5;(3)跳绳次数x在120≤x<180X围的同学有9+7=16人,占全班同学的×100%≈26.7%;(4)如下图所示:【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.。
2020-2021学年山东省菏泽市东明县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.经过多边形一个顶点共有5条对角线,则这个多边形的边数是()A.5 B.6 C.7 D.8【分析】根据从n边形的一个顶点可以作对角线的条数公式(n﹣3)求出边数即可得解.【解答】解:∵从一个多边形的一个顶点出发可以引5条对角线,设多边形边数为n,∴n﹣3=5,解得:n=8.故选:D.【点评】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n边形从一个顶点出发可引出(n﹣3)条对角线是解题的关键.2.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选:C.【点评】本题考查了三角形内角和定理,平行线的性质的应用,注意:两直线平行,同旁内角互补,题目比较好,难度适中.3.下列运算正确的是()A.x6÷x3=x2B.(a+1)0=1 C.2a2﹣3a2=﹣a2D.(a﹣2)2=a2﹣4【分析】直接利用零指数幂的性质以及同底数幂的除法运算法则、完全平方公式分别判断得出答案.【解答】解:A、x6÷x3=x3,故此选项错误;B、(a+1)0=1(a≠﹣1),故此选项错误;C、2a2﹣3a2=﹣a2,正确;D、(a﹣2)2=a2﹣4a+4,故此选项错误;故选:C.【点评】此题主要考查了零指数幂的性质以及同底数幂的除法运算、完全平方公式,正确把握相关性质是解题关键.4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.1,2,3 B.2,5,2 C.2,3,6 D.7,1,7【分析】根据三角形的三边关系,看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、1+2=3,不能构成三角形,故本选项错误;B、2+2<5,不能构成三角形,故本选项错误;C、2+3<6,不能构成三角形,故本选项错误;D、1+7>7,能构成三角形,故本选项正确.故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,比较简单.5.若a+b=6,a﹣b=2,则a2+b2的值为()A.40 B.2021.36 D.12【分析】联立已知两等式求出a与b的值,代入原式计算即可求出值.【解答】解:联立得:解得:则原式=16+4=2021故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是()【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.故选:C.【点评】此题考查的知识点是函数的图象,图象分析题一定要注意图象的横、纵坐标表示的物理量,分析出图象蕴含的物理信息,考查学生的图象分析和归纳能力.7.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是()【分析】让向上一面的数字是大于4的情况数除以总情况数6即为所求的概率.【解答】解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,大于4为5,6,则向上一面的数字是大于4的概率为=.故选:C.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.8.如图1,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下的部分剪开后拼成一个平行四边形(如图2),根据两个图形阴影部分面积的关系,可以得到一个关于a,b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.a2+ab=a(a+b)【分析】分别计算这两个图形阴影部分面积,根据面积相等即可得到.【解答】解:第一个图形的阴影部分的面积=a2﹣b2,第二个图形面积=(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故选:C.【点评】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.二、填空题(本大题共6小题,每小题3分,共18分)9.已知10a=15,10a﹣b=30,则10b=.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:∵10a=15,10a﹣b=30,∴10a÷10b=15÷10b=30,则10b=.故答案为:.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为100°【分析】过C作CQ∥AB,得出AB∥DE∥CQ,根据平行线的性质推出∠A=∠QCA=30°,∠E+∠ECQ=180°,求出∠ECQ,即可求出.【解答】解:过C作CQ∥AB,∵AB∥DE,∴AB∥DE∥CQ,∵∠A=30°,∴∠A=∠QCA=30°,∠E+∠ECQ=180°,∵∠ACE=110°,∴∠ECQ=110°﹣30°=80°,∴∠E=180°﹣80°=100°,故答案为:100°【点评】本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能正确作辅助线并灵活运用性质进行推理是解此题的关键.11.用两根同样长的铁丝分别围成一个长方形和一个正方形.若长方形的长为xcm、宽为ycm,用含有x、y的代数式表示正方形的面积为.【分析】求出长方形的周长,求出正方形的边长,即可求出答案.【解答】解:∵长方形的周长为2(x+y)cm,【点评】本题考查了列代数式,解决问题的关键是读懂题意,掌握长方形的周长与正方形的周长、面积公式.12.如图所示,A、B、C、D在同一直线上,AB=CD,DE∥AF,若要使△ACF≌△DBE,则还需要补充一个条件:∠E=∠F.【分析】要使△ACF≌△DBE,已知DE∥AF,可以得到∠A=∠D,因为AB=CD,则再添加∠E=∠F,或AF=DE从而利用AAS或SAS判定其全等,也可添加BE∥CF或∠EBD=∠FCA 利用AAS可判定全等.【解答】解:∵AB=CD,DE∥AF∴AC=DB,∠A=∠D∵∠E=∠F∴△ACF≌△DBE(AAS)∴此处添加∠E=∠F.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.13.古人云:“入门须正,立志须高”,人生目标选择非常重要哈佛大学对一群智力、学历相似的人进行的“25年跟踪”发现:有清晰且长期目标的人占3%,大都成了顶尖成功人士;有清晰短期目标的人占10%,大都成了顶尖专业人士:目标模糊者占60%,他们能安稳工作生活,无特别成绩:其余是无目标的人,经常失业,生活动荡.这一结果用扇形统计图表示如图所示:其中无目标的人所对应的扇形的圆心角为97.2°【分析】根据圆心角=360°×百分比计算即可;【解答】解:无目标的人所对应的扇形的圆心角为360°×(1﹣60%﹣3%﹣10%)=97.2°,故答案为97.2°.【点评】本题考查扇形统计图,解题的关键是熟练掌握基本知识,属于中考常考题型.14.规定:十进制数2378记作2378(10),2378(10)=2×103+3×102+7×101+8×100,二进制数1001记作1001(2),1001(2)=1×23+0×22+0×21+1×2021(k是大于2的整数)进制数132记作132(k),132(k)=k2+3k1+2k0=k2+3k+2.计算2021(k)+30(k)=2k3+8k+1(用含k的代数式表示)【分析】根据题意可以写用代数式表示出所求式子,本题得以解决.【解答】解:2021(k)+30(k)=2×k3+0×k2+5k+1×k0+3k+0×k0=2k3+8k+1,故答案为:2k3+8k+1.【点评】本题考查有理数的混合运算,解答本题的关键是明确题意,用相应的代数式表示出所求的式子.三、解答题(本大题共9小题,共78分)15.(8分)实数a、b在数轴上的对应位置如图所示,化简|2a﹣b|﹣|b﹣1|+|a+b|.【分析】根据数轴上a,b的值得出a,b的符号,a<﹣2,b>1,以及2a﹣b<0,b﹣1>0,a+b<0,即可化简求值.【解答】解:∵a<﹣2,b>1,∴2a﹣b<0,b﹣1>0,a+b<0,∴|2a﹣b|﹣|b﹣1|+|a+b|,=﹣(2a﹣b)﹣(b﹣1)﹣(a+b),(6分)=﹣2a+b﹣b+1﹣a﹣b,=﹣3a﹣b+1.(8分)【点评】此题主要考查了整式的化简以及实数与数轴,根据数轴得出a,b的符号是解决问题的关键.16.(8分)先化简,再求值:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣1.【分析】先算乘法和除法,再合并同类项,最后代入求出即可;【解答】解:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),=a2﹣2ab﹣b2﹣a2+b2,=﹣2ab,当a=,b=﹣1时,原式=﹣2××(﹣1)=1;【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.17.(8分)如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM.试说明射线ON平分∠BOC.【分析】根据垂直定义得出∠NOM=90°,求出∠COM+∠CON=90°,∠AOM+∠BON=90°,根据角平分线定义得出∠AOM=∠COM,即可得出∠CON=∠BON,根据角平分线定义得出即可.【解答】解:∵ON⊥OM,∴∠NOM=90°,∴∠COM+∠CON=90°,∠AOM+∠BON=180°﹣90°=90°,∵OM平分∠AOC,∴∠AOM=∠COM,∴∠CON=∠BON,即射线ON平分∠BOC.【点评】本题考查了角平分线定义和对顶角、邻补角等知识点,能够求出∠COM+∠CON=90°、∠AOM+∠BON=90°、∠AOM=∠COM是解此题的关键.18.(9分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=EF,AE=CE.请判断AB与CF是否平行?并说明理由.【分析】由△AED≌△CEF,推出∠A=∠ECF,推出AB∥CF.【解答】解:结论:AB∥CF.理由:在△AED和△△CEF中,,∴△AED≌△CEF.∴∠A=∠ECF,∴AB∥CF.【点评】本题考查全等三角形的判定和性质,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.19.(10分)如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.【分析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.【解答】解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.20219分)一位农民带上若干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)求出降价前每千克的土豆价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?【分析】(1)由图象可知,当x=0时,y=5,所以农民自带的零钱是5元.(2)可设降价前每千克土豆价格为k元,则可列出农民手中钱y与所售土豆千克数x之间的函数关系式,由图象知,当x=30时,y的值,从而求出这个函数式.(3)可设降价后农民手中钱y与所售土豆千克数x之间的函数关系式,因为当x=a时,y=26,当x=30时,y=2021此列出方程求解.【解答】解:(1)由图象可知,当x=0时,y=5.答:农民自带的零钱是5元.(2)设降价前每千克土豆价格为k元,则农民手中钱y与所售土豆千克数x之间的函数关系式为:y=kx+5,∵当x=30时,y=2021∴20210k+5,解得k=0.5.答:降价前每千克土豆价格为0.5元.(3)设降价后农民手中钱y与所售土豆千克数x之间的函数关系式为y=0.4x+b.∵当x=30时,y=2021∴b=8,当x=a时,y=26,即0.4a+8=26,解得:a=45.答:农民一共带了45千克土豆.【点评】此类题目的解决需仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.21.(10分)如图所示的正三角形区域内投针(区域中每个小正三角形除颜色外完全相同),针随机落在某个正三角形内(边线忽略不计)(1)投针一次,针落在图中阴影区域的概率是多少?(2)要使针落在图中阴影区域和空白区域的概率均为,还要涂黑几个小正三角形?请在图中画出.【分析】(1)求出阴影部分的面积与三角形的面积的比值即可解答;(2)利用(1)中求法得出答案即可.【解答】解:(1)因为阴影部分的面积与三角形的面积的比值是=,所以投针一次击中阴影区域的概率等于.(2)如图所示:要使针落在图中阴影区域和空白区域的概率均为,还要涂黑2个小正三角形.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.22.(8分)两个全等的三角形,可以拼出各种不同的图形,下面4个图中已画出其中一个三角形,请你利用尺规作图(不写画法,保留作图痕迹)分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画的三角形可与原三角形有重叠的部分)【分析】根据轴对称图形的性质即可解决问题;【解答】解:如图所示.(答案不唯一)【点评】本题考查利用轴对称设计图案,全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(8分)“化归与转化的思想”是指在研究解决数学问题时采用某种手段将问题通过变换进行转化,进而使问题得到解决我们知道m2+n2=0可以得到m=0,n=0.如果a2+b2+2a ﹣4b+5=0,求a、b的值.【分析】根据题意,可以将题目中的式子化为材料中的形式,从而可以得到a、b的值.【解答】解:由a2+b2+2a﹣4b+5=0,得到:(a2+2a+1)+(b2﹣4b+4)=0,(a+1)2+(b﹣2)2=0,所以有a+1=0,b﹣2=0,解得a=﹣1,b=2.【点评】本题考查配方法的应用、非负数的性质﹣偶次方,解题的关键是明确题目中的材料,可以将问题中方程转化为材料中的形式.。
山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
某某省某某市孝南区2015-2016学年七年级数学下学期期末考试试题一、选择题(每题3分)1.如图,∠1与∠2互为邻补角的是()A.B.C.D.2.下列实数﹣5,2,,﹣,,3.14159,无理数有()A.1个B.2个C.3个D.4个3.下列调查中,适合普查的是()A.了解全市中学生的上网时间B.检测一批灯管的使用寿命C.了解神舟飞船的设备零件的质量状况D.了解某品牌食品的色素添加情况4.点M在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若是二元一次方程3x﹣ay=24的一组解,则a的值是()A.1 B.2 C.3 D.46.若a>b,则下列式子中错误的是()A.a﹣5>b﹣5 B.5﹣a>5﹣b C.5a>5b D.>7.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.8.用统计图来描述某班同学的身高情况,最合适的是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图9.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每题3分)11.把点P(﹣6,7)向左平移5个单位,再向上平移2个单位,所得点P′的坐标是.12.﹣2的相反数是,绝对值是.13.已知实数a、b满足+|b﹣2|=0,则ab=.14.不等式组无解,则a的取值X围是.15.如图,已知AB∥CD∥EF,∠1=80°,∠2=130°,则∠3=.16.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.三、解答题17.计算:+﹣.18.计算:5(﹣)×﹣|2﹣|19.解方程组.20.解不等式组.21.已知方程组的解为非负数,求整数a的值.22.已知命题“如果两条平行线被第三条直线所截,那么一对同位角的平分线互相平行”(1)如图为符合该命题的示意图,请你把该命题用几何符号语言补充完整:已知ABCD,EM、FN分别平分和,则(2)试判断这个命题的真假,并说明理由.23.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)△ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1、C1的坐标.24.某市共有45000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成扇形图和统计表:等级成绩(分)频数(人数)频率A 90~100 19B 75~89 m xC 60~74 n yD 60以下 3合计50请你根据以上图表提供的信息,解答下列问题:(1)m=,n=,x=,y=;(2)在扇形图中,C等级所对应的圆心角是度;(3)如果该校九年级共有500名男生,则其中成绩等级达到优秀和良好的共有多少人?25.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)9 3B产品(每件) 4 10(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?26.如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(1)如图(2),当动点P落在第②部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(3)如图(3),当动点P落在第③部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(4)选择以上一种结论加以证明.2015-2016学年某某省某某市孝南区七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分)1.如图,∠1与∠2互为邻补角的是()A.B.C.D.【考点】对顶角、邻补角.【分析】根据邻补角定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角可直接得到答案.【解答】解:根据邻补角定义可得D是邻补角,故选:D.2.下列实数﹣5,2,,﹣,,3.14159,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数的三种常见类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解:﹣5是有理数;2是有数;=3是有理数,﹣是无理数,是一个分数,是有理数,3.14159是有限小数,是有理数.故选:A.3.下列调查中,适合普查的是()A.了解全市中学生的上网时间B.检测一批灯管的使用寿命C.了解神舟飞船的设备零件的质量状况D.了解某品牌食品的色素添加情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全市中学生的上网时间,人数较多,应采用抽样调查,故此选项错误;B、检测一批灯管的使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;C、了解神舟飞船的设备零件的质量状况,意义特别重大,应采用普查,故此选项正确;D、了解某品牌食品的色素添加情况,普查具有破坏性,应采用抽样调查,故此选项错误;故选:C.4.点M在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据非负数的性质判断出点M的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,∴2016+a2≥2016,∴点M在第一象限.故选A.5.若是二元一次方程3x﹣ay=24的一组解,则a的值是()A.1 B.2 C.3 D.4【考点】二元一次方程的解.【分析】根据是二元一次方程3x﹣ay=24的一组解,可以求求得a的值,本题得以解决.【解答】解;∵是二元一次方程3x﹣ay=24的一组解,∴3×3﹣a×(﹣5)=24,解得,a=3,故选C.6.若a>b,则下列式子中错误的是()A.a﹣5>b﹣5 B.5﹣a>5﹣b C.5a>5b D.>【考点】不等式的性质.【分析】依据不等式的性质求解即可.【解答】解:A、已知a>b,由不等式的性质1可知A正确,与要求不符;B、由a>b,可知﹣a<﹣b,则5﹣a<5﹣b,故B错误,与要求相符;C、已知a>b,由不等式的性质2可知C正确,与要求不符;D、已知a>b,由不等式的性质2可知C正确,与要求不符.故选:B.7.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.【考点】不等式的解集.【分析】由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x ≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,即:.故选:C.8.用统计图来描述某班同学的身高情况,最合适的是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:用统计图来描述某班同学的身高情况,最合适的是频数分布直方图.故选D.9.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.两直线平行,同位角相等【考点】平行线的判定;作图—基本作图.【分析】判定两条直线是平行线的方法有:可以由内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补两直线平行等,应结合题意,具体情况,具体分析.【解答】解:图中所示过直线外一点作已知直线的平行线,则利用了同位角相等,两直线平行的判定方法.故选A.10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【考点】平行线的性质;余角和补角.【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.二、填空题(每题3分)11.把点P(﹣6,7)向左平移5个单位,再向上平移2个单位,所得点P′的坐标是(﹣11,9).【考点】坐标与图形变化-平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.【解答】解:由题意可得,平移后点的横坐标为﹣6﹣5=﹣11;纵坐标为7+2=9,所以所得点P′的坐标是(﹣11,9).故答案为(﹣11,9).12.﹣2的相反数是2﹣,绝对值是2﹣.【考点】实数的性质.【分析】根据“互为相反数的两个数的和为0,负数的绝对值是其相反数”即可得出答案.【解答】解:﹣2的相反数是﹣(﹣2)=2﹣;绝对值是|﹣2|=2﹣.故本题的答案是2﹣,2﹣.13.已知实数a、b满足+|b﹣2|=0,则ab= 8 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出方程,求出a、b的值,计算即可.【解答】解:由题意得,a﹣2b=0,b﹣2=0,解得,a=4,b=2,则ab=8,故答案为:8.14.不等式组无解,则a的取值X围是a≤2 .【考点】不等式的解集.【分析】根据不等式组无解,可得出a≤2,即可得出答案.【解答】解:∵不等式组无解,∴a的取值X围是a≤2;故答案为a≤2.15.如图,已知AB∥CD∥EF,∠1=80°,∠2=130°,则∠3= 30°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等求出∠GFE=80°,再根据两直线平行,同旁内角互补,求出∠DFE=50°,再根据∠3=∠GFE﹣∠DFE,即可得出答案.【解答】解:∵AB∥EF,∴∠1=∠GFE,∵∠1=80°,∴∠GFE=80°,∵CD∥EF,∴∠2+∠DFE=180°,∵∠2=130°,∴∠DFE=50°,∵∠3=∠GFE﹣∠DFE=80°﹣50°=30°;故答案为:30°.16.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是(5,0).【考点】点的坐标.【分析】由题目中所给的质点运动的特点找出规律,即可解答.【解答】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).三、解答题17.计算:+﹣.【考点】实数的运算.【分析】原式利用算术平方根,立方根定义计算即可得到结果.【解答】解:原式=8﹣4﹣=.18.计算:5(﹣)×﹣|2﹣|【考点】二次根式的混合运算.【分析】先化简二次根式,然后关键乘法的分配律和绝对值的性质得出12﹣4+2﹣,最后合并同类二次根式即可.【解答】解:原式=5(3﹣)×+2﹣=12﹣4+2﹣=14﹣5.19.解方程组.【考点】解二元一次方程组.【分析】利用加减消元法,即可解答.【解答】解:①×2+②得:5x=30,解得:x=6,把x=6代入①得:12+y=13,解得:y=1,∴方程组的解为.20.解不等式组.【考点】解一元一次不等式组.【分析】首先解每个不等式,然后把每个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x≥﹣3.则不等式组的解集是﹣3≤x<.21.已知方程组的解为非负数,求整数a的值.【考点】解一元一次不等式;二元一次方程组的解.【分析】用加减消元法解方程组,求出x和y(x和y均为含有a的代数式),再根据x、y 的取值即可列出关于a的不等式组,即可求出a的取值X围,进一步即可求解.【解答】解:,①×3+②得:5x=6a+5﹣a,即x=a+1≥0,解得a≥﹣1;②﹣①×2得:5y=5﹣a﹣4a,即y=1﹣a≥0,解得a≤1;则﹣1≤a≤1,即a的整数值为:﹣1,0,1.22.已知命题“如果两条平行线被第三条直线所截,那么一对同位角的平分线互相平行”(1)如图为符合该命题的示意图,请你把该命题用几何符号语言补充完整:已知AB∥CD,EM、FN分别平分∠GEB 和∠EFD ,则EM∥FD(2)试判断这个命题的真假,并说明理由.【考点】平行线的性质.【分析】(1)根据题意写出已知,求证即可;(2)此命题为真命题,根据平行线的性质得到∠GEB=∠EFD,由角平分线的定义得到∠GEM=∠GEB,∠EFN=∠EFD,等量代换得到∠GEM=∠EFN,于是得到结论.【解答】解:(1)已知AB∥CD,EM、FN分别平分∠GEB和∠EFD,则EM∥FD;故答案为:∥,∠GEB,∠EFD,EM∥FD;(2)此命题为真命题,证明:∵AB∥CD,∴∠GEB=∠EFD,∵EM、FN分别平分∠GEB和∠EFD,∴∠GEM=∠GEB,∠EFN=∠EFD,∴∠GEM=∠EFN,∴EM∥FD.23.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)△ABC的顶点A、C的坐标分别为(﹣4,5)、(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1,并分别写出点A1、B1、C1的坐标.【考点】作图-轴对称变换.【分析】(1)直接利用A,C点坐标得出原点位置进而作出平面直角坐标系;(2)直接利用关于y轴对称点的性质得出各点位置进而得出答案.【解答】解:(1)如图所示:;(2)如图所示:A1(4,5),B1(2,1),C1(1,3).24.某市共有45000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成扇形图和统计表:等级成绩(分)频数(人数)频率A 90~100 19B 75~89 m xC 60~74 n yD 60以下 3合计50请你根据以上图表提供的信息,解答下列问题:(1)m= 20 ,n= 8 ,x= 0.4 ,y= 0.16 ;(2)在扇形图中,C等级所对应的圆心角是57.6 度;(3)如果该校九年级共有500名男生,则其中成绩等级达到优秀和良好的共有多少人?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据扇形统计图中良好的人数占40%求出m的值,进而可得出x的值;由频率的和为1求出y的值,进而可得出n的值;(2)根据y的值可得出C等级所对应的圆心角的度数;(3)求出成绩达到优秀和良好的频率的和与总人数的积即可得出结论.【解答】解:(1)∵良好的人数占40%,∴m=50×40%=20,∴x==0.4;∴y=1﹣0.38﹣0.4﹣0.06=0.16,n=50×0.16=8;故答案分别为:20,8,0.4,0.16;(2)∵y=0.16,∴C等级所对应的圆心角=360×0.16=57.6°.故答案为:57.6;(3)∵+0.4=0.78,∴成绩等级达到优秀和良好的人数=500×0.78=390(人).答:成绩等级达到优秀和良好的共有390人.25.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)9 3B产品(每件) 4 10(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【考点】一元一次不等式组的应用.【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;(2)根据(1)中求得的方案,可以求出获得的利润,从而可以解答本题.【解答】解:(1)设生产A种产品x件,则B种产品(50﹣x)件,则,解得,30≤x≤32,∴生产A种、B种的方案有三种,分别是:方案一:生产A种产品30件,B种产品20件;方案二:生产A种产品31件,B种产品19件;方案三:生产A种产品32件,B种产品18件;(2)方案一获利:30×80+120×20=4800元,方案二获利:31×80+120×19=4760元,方案三获利:32×80+120×18=4720元,即:生产A种产品30件,B种产品20件,获得的利润最大,最大利润为4800元.26.如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC+∠APB+∠PBD=360°(1)如图(2),当动点P落在第②部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC+∠PBD=∠APB(3)如图(3),当动点P落在第③部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC=∠APB+∠PBD(4)选择以上一种结论加以证明.【考点】平行线的性质.【分析】(1)过点P作PE∥AC,根据平行线的性质即可得出结论;(2)过点P作PE∥AC,根据AC∥PE可得出∠APE=∠CAP,再由PE∥BD可得出∠EPB=∠PBD,故可得出结论;(3)延长BA,由三角形外角的性质可得出∠PBD=∠PBA+∠ABD,∠PAC=∠PAF+∠CAF,再由平行线的性质得出∠ABD=∠CAF,进而可得出结论;(4)证明(1)即可.【解答】解:(1)如图(1),过点P作PE∥AC,则∠PAC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠PAC+∠APB+∠PBD=360°.故答案为:∠PAC+∠APB+∠PBD=360°;(2)如图(2),过点P作PE∥AC,则∠APE=∠CAP,∵AC∥BD,PE∥AC,∴PE∥BD,∴∠EPB=∠PBD,∴∠PAC+∠PBD=∠APB.故答案为:∠PAC+∠PBD=∠APB;(3)如图(3),延长BA,则∠PBD=∠PBA+∠ABD,∠PAC=∠PAF+∠CAF,∵AB∥CD,word∴∠ABD=∠CAF,∴∠PAC﹣∠PBD=∠PAF﹣∠PBA,而∠PBA+∠APB=∠PAF,∴∠APB=∠PAC﹣∠PBD,∴∠PAC=∠APB+∠PBD.故答案为:∠PAC=∠APB+∠PBD;(4)例如(1),过点P作PE∥AC,则∠PAC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠PAC+∠APB+∠PBD=360°.21 / 21。
七年级下册期中模拟测试(二)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.的算术平方根为()A.B.C.D.﹣【答案】C【解答】解:的算术平方根为.故选:C.2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.3.下列坐标中,是第二象限的坐标是()A.(1,﹣5)B.(﹣2,4)C.(﹣1,﹣5)D.(5,7)【答案】B【解答】解:A、(1,﹣5)在第四象限,故本选项不合题意;B、(﹣2,4)在第二象限,故本选项符合题意;C、(﹣1,﹣5)在第三象限,故本选项不合题意;D、(5,7)在第一象限,故本选项不合题意;故选:B.4.下列图形中,∠1与∠2是同位角的是()A.B.C.D.【答案】B【解答】解:A选项,∠1与∠2是对顶角,不是同位角,故该选项不符合题意;B选项,∠1与∠2是同位角,故该选项符合题意;C选项,∠1与∠2是内错角,不是同位角,故该选项不符合题意;D选项,∠1与∠2是同旁内角,不是同位角,故该选项不符合题意;故选:B.5.若点P在x轴的下方,y轴的左方,且到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)【答案】C【解答】解:∵点P在x轴的下方y轴的左方,∴点P在第三象限,∵点P到每条坐标轴的距离都是4,∴点P的坐标为(﹣4,﹣4).故选:C.6.如图,把河AB中的水引到C,拟修水渠中最短的是()A.CM B.CN C.CP D.CQ【答案】C【解答】解:如图,CP⊥AB,垂足为P,在P处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.故选:C.7.如图,下列条件:①∠1=∠3;②∠DAB=∠BCD;③∠ADC+∠BCD=180°;④∠2=∠4,其中能判定AB∥CD的有()A.1个B.2个C.4个D.3个【答案】A【解答】解:①由∠1=∠3可判定AD∥BC,不符合题意;②由∠DAB=∠BCD不能判定AB∥CD,不符合题意;③由∠ADC+∠BCD=180°可判定AD∥BC,不符合题意;④由∠2=∠4可判定AB∥CD,符合题意.故选:A.8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【答案】B【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.9.下列说法中,正确的是()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.①②B.①③C.①④D.②③【答案】B【解答】解:①两点之间的所有连线中,线段最短,说法正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;③平行于同一直线的两条直线互相平行,说法正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠ABC+∠ACB=120°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【答案】D【解答】解:在△ABC中,∠ABC+∠ACB=120°,在△DBC中,∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=120°﹣90°=30°.故选:D.11.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①、②的边线都平行C.纸带①的边线不平行,纸带②的边线平行D.纸带①、②的边线都不平行【答案】C【解答】解:如图①所示:∵∠1=∠2=50°,∴∠3=∠2=50°,∴∠4=∠5=180°﹣50°﹣50°=80°,∴∠2≠∠4,∴纸带①的边线不平行;如图②所示:∵GD与GC重合,HF与HE重合,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH+∠EHG=180°,∴纸带②的边线平行.故选:C.12.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是()A.(50,51)B.(51,50)C.(49,50)D.(50,49)【答案】B【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选:B二、填空题(本大题共6小题,每小题3分,共18分)13.5的平方根是.【答案】±【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.14.如图,AB、CD相交于点O,OE是∠AOC的平分线,∠BOD=70°,∠EOF=65°,则∠AOF的度数为°.【答案】30【解答】解:∵∠BOD=70°,∴∠AOC=∠BOD=70°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=70°=35°,∵∠EOF=65°,∴∠AOF=65°﹣35°=30°,故答案为:30.15.已知≈4.496,≈14.22,则≈.【答案】44.96【解答】解:==10≈10×4.496=44.96,故答案为:44.96.16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2=.【答案】45°【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+∠2=∠3+∠4=45°.故答案是:45°.17.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.【答案】540【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=20﹣2=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.18.在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010)三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算:+﹣(﹣1).【答案】1﹣【解答】解:+﹣(﹣1)=3﹣3﹣+1=1﹣20.已知正数m的两个不同平方根分别是2a﹣7和a+4,又b﹣7的立方根为﹣2.(1)求a和正数m及b的值;(2)求3a+2b的算术平方根.【答案】(1)a=1,m=25,b=﹣1 (2)1【解答】解:(1)∵正数m的两个不同平方根分别是2a﹣7和a+4,∴(2a﹣7)+(a+4)=0,∴a=1,2a﹣7=﹣5,∴m=25,∵b﹣7的立方根为﹣2,∴b﹣7=﹣8,∴b=﹣1,∴a=1,m=25,b=﹣1;(2)由(1)有a=1,b=﹣1,∴3a+2b=3×1+2×(﹣1)=1,∴3a+2b的算术平方根为1.21.补全下列题目的解题过程.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(),∴∠3=∠4(等量代换),∴DB∥(),∴∠C=∠ABD(),∵∠C=∠D(已知),∴∠D=∠ABD(),∴DF∥AC().【答案】对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【解答】证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(对顶角相等),∴∠3=∠4(等量代换),∴DB∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴DF∥A C(内错角相等,两直线平行),故答案为:对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.22.如图,在平面直角坐标系中,三角形ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)点A的坐标是点B的坐标是.(2)画出将三角形ABC先向左平移2个单位长度,再向上平移1个单位长度所得到的三角形A'B'C'.请写出三角形A'B'C'的三个顶点坐标;(3)求三角形ABC的面积.【答案】(1)(2,﹣1);(4,3)(2)略(3)5【解答】解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1);(4,3);(2)如图,三角形A'B'C'为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)三角形ABC的面积=3×4﹣×3×1﹣×3×1﹣×2×4=5.23.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2) (﹣2,5)(3)8【解答】解:(1)令2m﹣4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)令m+4﹣(2m﹣4)=7,解得m=1,所以P点的坐标为(﹣2,5);(3)∵点P在过A(2,3)点且与x轴平行的直线上,∴m+4=3,解得m=﹣1.∴P点的坐标为(﹣6,3),∴AP=2+6=8.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.25如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.【答案】(1) 12(2)存在(3)当点F在线段BD上,∠OFC=∠FOB+∠FCD;;当点F在线段BD的延长线上,∠OFC=∠FOB﹣∠FCD.【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4﹣x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC﹣∠NFO=∠FCD﹣∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB﹣∠FCD.。
人教版七年级数学下册期末综合复习试卷(及答案)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点M (1,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )A .2B .3C .2D .37.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)九、填空题9.169=___.十、填空题10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 十一、填空题11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.十三、填空题13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.十七、解答题17.计算(131252724-(2)221|十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF//BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB//CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED//FB()二十、解答题20.如图,已知ABC在平面直角坐标系中的位置如图所示.(1)写出ABC三个顶点的坐标;(2)求出ABC的面积;'''.(3)在图中画出把ABC先向左平移5个单位,再向上平移2个单位后所得的A B C二十一、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值. 二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据计算程序图计算即可.【详解】解:∵当x=648=,2是有理数,=2∴当x=2是无理数,∴y故选:A.【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】a=求解即可.【详解】1313==,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.十、填空题10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.十三、填空题13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3===解析:12,201721【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD ∴(内错角相等,两直线平行),3180CAB (两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.二十一、解答题21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)4214;(2)1【分析】(121(2)求出a,b然后代入代数式即可.【详解】解:(1)∵16212521∴214214.(2)3114,∴113a.∵4175<,∴4b=,∴341a b+=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
最新人教版数学七年级下册期末考试试题(答案)一、选择题(本大题共6个小题;每小题3分,共18分.)1.(3分)在3,0,﹣2,﹣四个数中,最小的数是()A.3B.0C.﹣2D.﹣2.(3分)为了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本容量是()A.抽取的100台电视机B.100C.抽取的100台电视机的使用寿命D.这批电视机的使用寿命3.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°4.(3分)实数a,b在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0B.a﹣b>0C.a•b>0D.>05.(3分)小强到体育用品商店购买羽毛球球拍和乒乓球球拍,已知购买1副羽毛球球拍和1副乒乓球球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,根据题意,下面所列方程组正确的是()A.B.C.D.6.(3分)在同一平面内有100条直线,若a1⊥a2,a2⊥a3,a3⊥a4,a4⊥a5,…,a99⊥a100,则下列结论正确的是()A.a1∥a100B.a2⊥a98C.a1∥a99D.a49∥a50二、填空题(本大题共6个小题,每小题3分,共18分.)7.(3分)平面直角坐标系中的点P(﹣4,6)在第象限.8.(3分)已知x2a+y b﹣1=5是关于x,y的二元一次方程,则ab=.9.(3分)若关于x的不等式﹣x>a+2的解集是x<3,则a=.10.(3分)如图直线a∥b,直线c分别交直线a,b于点A、B两点,CB⊥b于B,若∠1=40°,则∠2=.11.(3分)某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在60分以上.12.(3分)已知OA⊥OC于O,∠AOB:∠AOC=3:2,则∠BOC的度数为度.三、解答题(本大题共5个小题,每小题6分,共30分)13.(6分)计算:(1)+2﹣(﹣);(2)|1﹣|+(﹣3)2.14.(6分)解不等式4x+3≤3(2x﹣1),并把解集表示在数轴上.15.(6分)解方程组:16.(6分)如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,FH平分∠EFD,若∠FEH=110°,求∠EHF的度数.17.(6分)已知点A(0,a)(其中a<0)和B(5,0)两点,且直线AB与坐标轴围成的三角形面积等于15,求A点坐标.四、解答题(本大题共3个小题,每小题8分,共24分)18.(8分)(1)在平面直角坐标系中,作出下列各点,A(﹣3,4),B(﹣3,﹣2),O(0,0),并把各点连起来.(2)画出△ABO先向下平移2个单位,再向右平移4个单位得到的图形△A1B1O1.(3)求△ABO的面积.19.(8分)为了了解某校九年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人?请你将条形统计图补充完整;(2)本次抽测成绩的众数是;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中,估计有多少人体能达标?20.(8分)已知关于x,y二元一次方程组.(1)如果该方程组的解互为相反数,求n的值及方程组的解;(2)若方程组解的解为正数,求n的取值范围.五、解答题(本大题共2个小题,每小题9分,共18分)21.(9分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?22.(9分)(1)如图1已知:∠B=25°,∠BED=80°,∠D=55°.探究AB与CD有怎样的位置关系.(2)如图2已知AB∥EF,试猜想∠B,∠F,∠BCF之间的关系,写出这种关系,并加以证明.(3)如图3已知AB∥CD,试猜想∠1,∠2,∠3,∠4,∠5之间的关系,请直接写出这种关系,不用证明.六、解答题(本大题共12分)23.(12分)如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(2)在y轴上是否存在一点P,连接P A,PB,使S△P AB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.2018-2019学年江西省赣州市全南县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6个小题;每小题3分,共18分.)1.【解答】解:∵﹣2<﹣<0<3,∴四个数中,最小的数是﹣2,故选:C.2.【解答】解:为了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本容量是100,故选:B.3.【解答】解:∵∠ADE=125°,∴∠ADB=180°﹣∠ADE=55°,∵AD∥BC,∴∠DBC=∠ADB=55°.故选:A.4.【解答】解:依题意得:﹣1<a<0,b>1∴a、b异号,且|a|<|b|.∴a+b>0;a﹣b=﹣|a+b|<0;a•b<0;<0.故选:A.5.【解答】解:设每副羽毛球拍为x元,每副乒乓球拍为y元,由题意得.故选:B.6.【解答】解:如图,A、a1⊥a100,故A错误;B、a2∥a98,故B错误;C、正确;D、a49⊥a50,故D错误;故选:C.二、填空题(本大题共6个小题,每小题3分,共18分.)7.【解答】解:平面直角坐标系中的点P(﹣4,6)在第二象限;故答案为:二8.【解答】解:∵x2a+y b﹣1=5是关于x,y的二元一次方程,∴2a=1,b﹣1=1,解得a=,b=2,ab=×2=1,故答案为:1.9.【解答】解:∵关于x的不等式﹣x>a+2的解集是x<3,∴﹣a﹣2=3,解得a=﹣5.故答案为:a=﹣5.10.【解答】解:如图,∵∠1=40°,∴∠3=∠1=40°,∵a∥b,∴∠4=∠3=40°,∵CB⊥b于B,∴∠2=90°﹣∠4=90°﹣40°=50°.11.【解答】解:设答对x道.故6x﹣2(15﹣x)>60解得:x>所以至少要答对12道题,成绩才能在60分以上.12.【解答】解:如图:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=3:2,∴∠AOB=135°.因为∠AOB的位置有两种:一种是∠BOC是锐角,一种是∠BOC是钝角.①当∠BOC是锐角时,∠BOC=135°﹣90°=45°;②当∠BOC是钝角时,∠BOC=360°﹣90°﹣135°=135°.故答案为:45度或135.三、解答题(本大题共5个小题,每小题6分,共30分)13.【解答】解:(1)原式=+2﹣+=3;(2)原式=﹣1+9=+8.14.【解答】解:4x+3≤3(2x﹣1),4x+3≤6x﹣3,4x﹣6x≤﹣3﹣3,﹣2x≤﹣6,x≥3;.15.【解答】解:原方程组可化为:,由①得:y=4x﹣5③,把③代入②得:x=2,把x=2代入①得:y=3,则原方程组的解为.16.【解答】解:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∵∠FEH=110°,∴∠EHF=35°.17.【解答】解:∵点A(0,a)且a<0,∴OA=﹣a,∵B(5,0),∴OB=5,∵S=×OA•OB=15,∴×(﹣a)×5=15,∴a=﹣6A(0,﹣6)因此点A的坐标为:(0,﹣6)四、解答题(本大题共3个小题,每小题8分,共24分)18.【解答】解:(1)如图所示;(2)△A1B1O1如图所示;(3)△ABO的面积=×(4+2)×3=9.19.【解答】解:(1)本次抽测的男生有6÷12%=50(人),引体向上测试成绩为5次的是:50﹣4﹣10﹣14﹣6=16人.条形图补充如图:(2)抽测的成绩中,5出现了16次,次数最多,所以众数是5.故答案为5;(3)350×=252人.答:该校350名九年级男生中,有252人体能达标.20.【解答】解:(1)依题意得x+y=0,所以n=0,,解得:,由,解得:;(2)由题意得:,解得:n>1.五、解答题(本大题共2个小题,每小题9分,共18分)21.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.22.【解答】解:(1)过点E作EF∥AB∵∠B=25°∴∠BEF=∠B=25°∵∠BED=80°∴∠DEF=∠BED﹣∠BEF=55°∵∠D=55°∴∠D=∠DEF∴EF∥CD∴AB∥CD(2)过点C作CD∥AB∴∠B=∠BCD∵AB∥EF∴CD∥EF∴∠F=∠DCF∵∠BCF=∠BCD+∠DCF∴∠BCF=∠B+∠F(3)∠1+∠3+∠5=∠2+∠4.由(1)(2)可得:∠1+∠3+∠5=∠2+∠4六、解答题(本大题共12分)23.【解答】解:(1)由题意得,3﹣b≥0且b﹣3≥0,解得b≤3且b≥3,∴b=3,a=﹣1,∴A(﹣1,0),B(3,0),∵点A,B分别向上平移2个单位,再向右平移1个单位,∴点C(0,2),D(4,2);∵AB=3﹣(﹣1)=3+1=4,∴S四边形ABDC=4×2=8;(2)∵S△P AB=S四边形ABDC,∴×4•OP=8,解得OP=4,∴点P的坐标为(0,4)或(0,﹣4);(3)=1,比值不变.理由如下:由平移的性质可得AB ∥CD ,如图,过点P 作PE ∥AB ,则PE ∥CD ,∴∠DCP =∠CPE ,∠BOP =∠OPE ,∴∠CPO =∠CPE +∠OPE =∠DCP +∠BOP ,∴=1,比值不变.最新七年级(下)期末考试数学试题(含答案)人教版七年级下学期期末考试数学试题初一数学(一)一、选择题(每小题3分,共30分)1、如图,∠ 1 和∠ 2 是对顶角的是( )A B C D2、在平面直角坐标系中,点P (-2,3)在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、下列实数中最小的是( )A 、1B 、17-C 、-4D 、04、下列各式计算正确的是( )A 、416=±B 、416±=C 、-327-3=D 、-44-2=)(5、若a<b,则下列各式不一定成立的是( )A 、a-1<b-1B 、33b a < C 、-a>-b D 、ac<bc6、将点M 向左平移3个单位长度后的坐标是(-2,1),则点M 的坐标是( )A 、(-2,4)B 、(-5,1)C (1,1)D 、(-2,-4)7、已知⎩⎨⎧-==11y x 是方程2x-ay=3的一个解,那么a 的值为( )A.-1B.1C.2D.-28、如图,下列能判断AB//CD 的条件个数是( )(1)BCD B ∠+∠=180° (2)21∠=∠(2)43∠=∠ (5)5∠=∠B9、如图,10相同的长方形墙砖拼成一个矩形,设长方形砖墙的长和宽分别为x cm 和y cm ,依题意列方程组正确的是( )⎩⎨⎧==+x y y x A 3752、 ⎩⎨⎧==+y x y x B 3752、 ⎩⎨⎧==-y x y x C 3752、 ⎩⎨⎧==+y x y x D 3752、 10、解关于x 的不等式组⎩⎨⎧≤-<-1270x a x 的整数解有5个,则a 的取值范围是( ) A 、7<a<8 B 、7≤a<8 C 、7<a ≤8 D 、7≤a ≤8二、填空题(每小题3分,共12分)11、计算:=+23-2_________12、请把命题“对顶角相等”改为“如果...那么...”的形式__________________13、如图,将直角三角形ABC 沿着BC 方向平移3cm 得到直角三角形DEF ,AB=5cm ,DH=2cm ,那么图中阴影部分的面积为________cm 2。
人教版数学七年级下册 专项测试卷(二)新定义数学问题一、按要求做题1.用“※”定义一种新运算:对于任意有理数a 和b .规定a ※b =ab ²+2ab+a ,如1※2=1x2²+2x1x2+1=9.(1)求(-4)※3;(2)若21+a ※3=-16,求a 的值.2.定义新运算:对于任意实数a 、b 都有a ▲b=ab -a -b+1,等式右边是通常的加法、减法及乘法运算,例如:2▲4= 2x4-2-4+1=3.试根据上述知识解决下列问题.(1)若3▲x =6,求x 的值;(2)若▲x 5的值不大于9,求x 的取值范围.3.对于实数a ,我们规定:用符号[a ]表示不大于a 的最大整数,称为a 的根整数,例如:[9]=3,[10]_3.(1)仿照以上方法计算:[4]=____,[37]=____.(2)若[x ]=1,写出满足题意的x 的整数值:____;如果我们对a 连续求根整数,直到结果为1.例如:对10连续求根整数2次,[10]=3→[3]=1,这时的结果为1.(3)对120连续求根整数,____次之后结果为1;(4)只需进行3次连续求根整数运算,最后结果为1的所有正整数中,最大的是____.4.对于实数a 、b ,定义两种新运算“※”和“*”:a ※b=a+kb ,a*b=ka+b(其中k 为常数,且k ≠0).若对于平面直角坐标系xOy 中的点P(a ,b),有点P'(a ※b ,a*b)与之对应,则称点P 的“k 衍生点”为点P',例如:P(1,3)的“2衍生点”为P'(1+2x3,2x1+3),即P'(7,5).(1)点P( -1,5)的“3衍生点”的坐标为____;(2)若点P 的“5衍生点”的坐标为(9,-3),求点P 的坐标;(3)若点P 的“k 衍生点”为点P',且直线PP'平行于y 轴,线段PP'的长度为线段OP 长度的3倍,求k 的值.5.在平面直角坐标系xOy 中,对于任意两点P ₁(x ₁,y ₁)与P ₂(x ₂,y ₂)的“识别距离”,给出如下定义: 若y y x x 2121-≥-,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为x x 21-;若y y x x 2121--<,则点P ₁(x ₁,y ₁)与点P ₂(x ₂,y ₂)的“识别距离”为y y 21-.(1)已知点A(-1,0),点B 为y 轴上的动点.①若点A 与点B 的“识别距离”为2,则写出满足条件的点B 的坐标为____;②直接写出点A 与点B 的“识别距离”的最小值为____;(2)已知点C 的坐标为⎪⎭⎫ ⎝⎛+343m m ,点D 的坐标为(0,1),求点C 与点D 的“识别距离”的最小值及相应的点C 的坐标.6.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义,“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2)、B(-3,1)、C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”D=ah=20.根据所给定义解决下列问题:(1)已知点D(1,2)、E(-2,1)、F(0,6),则这三点的“矩面积”S=____;(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”S 为18,求点F 的坐标.7.[阅读材料,获取新知]在航空、航海等领域我们经常用距离和角度来确定点的位置,规定如下:在平面内取一个定点O .叫做极点,引一条射线O x ,叫做极轴,再选定单位长度和角度的正方向(通常取逆时针方向).对于平面内任意一点M ,用p 表示线段OM 的长度(有时也用r 表示),p 表示从O x 到OM 的角度,p 叫做点M 的极径,ρ叫做点M 的极角,有序数对(p ,θ)就叫做点M 的极坐标,这样建立的坐标系叫做极坐标系.通常情况下,M 的极径坐标单位为1(长度单位),极角坐标单位为rad(或°).例如:如图①所示,点M 到点O 的距离为5个单位长度,OM 与O x 的夹角为70°(O x 的逆时针方向).则点M 的极坐标为(5,70°);点N 到点O 的距离为3个单位长度,ON 与O x 的夹角为50°(O x 的顺时针方向),则点N 的极坐标为(3,-500).[利用新知,解答问题]如图②所示,已知过点O 的所有射线等分圆周且相邻两射线的夹角为15°,且极径坐标单位为1.(1)点A 的极坐标是____,点D 的极坐标是____.(2)请在图②中标出点B(5,45°),点E(2,-90°);(3)怎样从点B 运动到点C?小明设计的一条路线为点B →(4,45°)→(3,45°)→(3,30°)→点C .请你设计一条与小明不同的路线,也可以从点B 运动到点C .8.定义:可化为其中一个未知数的系数都为1,另一个未知数的系数互为倒数,并且常数项互为相反数的二元一次方程组,称为“相关线性方程组”,如所示,其中k 、b 称为该方程组的“相关系数”.(1)若关于x 、y 的方程组可化为“相关线性方程组”,则该方程组的解为____,(2)若某“相关线性方程组”有无数组解,求该方程组的两个“相关系数”之和.9.阅读下列材料:我们给出如下定义:数轴上给定不重合的两点A 、B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.解答下列问题:(1)若点A 表示的数为-3。
人教版七年级数学下学期期末学业水平质量监测试题卷一、精心选一选(每小题3分,共30分)1.(3分)下列计算正确的是()A.x5•x5=2x5B.a3+a2=a5C.(a2b)3=a8b3D.(﹣bc)4÷(﹣bc)2=b2c22.(3分)中国国旗上的一个五角星的对称轴的条数是()A.1条B.2条C.5条D.10条3.(3分)人体中成熟红细胞的平均直径为0.0000077m,用科学记数法表示为()A.7.7×10﹣5m B.77×10﹣6m C.77×10﹣5m D.7.7×10﹣6m4.(3分)下列成语所描述的事件概率为0的是()A.水中捞月B.守株待兔C.瓮中捉鳖D.十拿九稳5.(3分)汽车开始行使时,油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q(升)与行驶时间t(时)的关系式为()A.Q=5t B.Q=5t+40C.Q=40﹣5t(0≤t≤8)D.以上答案都不对6.(3分)如图已知△ABD≌△ABC,则图中还有()对全等三角形.A.1 B.2 C.3 D.47.(3分)如图,△ABC与△A′B′C′关于直线L成轴对称,则下列结论中错误的是()A.AB=A′B′B.∠B=∠B′C.AB∥A′C′D.直线L垂直平分线段AA′8.(3分)已知a,b,c是△ABC的三条边长,且a>b>c,若b=8,c=3,则a可能是()A.9 B.8 C.7 D.69.(3分)如图,若AB∥CD,AD=CD,∠1=70°,则∠2的度数是()A.70°B.40°C.35°D.20°10.(3分)“和谐号”列车从北京站缓缓驶出,加速行驶一段时间后又匀速行驶.因车站调度需要,该次列车路经西安站时停靠了一段时间之后,又开始加速、匀速行驶.下列图中可以近似刻画该列车在这段时间内速度变化情况的是()A.B.C.D.二、耐心填一填(每小题3分,共18分)11.(3分)大家知道,冰层越厚,所承受的压力越大,这其中自变量是,因变量是.12.(3分)人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的.13.(3分)在线段、角、圆、等腰三角形、平行四边形、正方形中不是轴对称图形的是.14.(3分)观察下列各式:1×3=22﹣12×4=32﹣13×5=42﹣1…用含有n(n为正整数)的式子表示其规律为.15.(3分)在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为11cm,AC=5cm,则△ABC的周长是.16.(3分)如图是由边长为2a和a的两个正方形组成,小颖闭上眼睛随意用针扎这个图形,小孔出现在阴影部分的概率是.三、解答题(本题包括9个小题,共72分,要求写出必要的解答过程)17.(12分)计算(1)5x(2x2﹣3x+4)(2)(2a+b)(﹣2a﹣b)(3)(3x2y﹣xy2+xy)÷(﹣xy)18.(6分)先化简,再求值.已知|m﹣1|+(n+)2=0,求(﹣m2n+1)(﹣1﹣m2n)的值.19.(6分)如图,在一条河的同岸有两个村庄A和B,两村要在河上合修一座便民桥,桥修在什么地方可以使桥到两村的距离之和最短?20.(7分)如图,AB∥EF,∠1=60°,∠2=120°,试说明CD∥EF.21.(7分)如图,点D、E在△ABC的边BC上,AB=AC,AD=AE,AH⊥BC,垂足为H,试猜想BD与CE的数量关系,并说明理由.22.(8分)已知△ABC.(1)请用尺规作图法作BC的垂直平分线.(2)过点A作一条直线,使其将三角形ABC分成面积相等的两部分.(保留作图痕迹,不写作法)23.(8分)一个不透明的袋中装有4个红球和5个白球,每个球除颜色外,其余特征均相同.(1)任意摸出1个球,摸出红球的概率是多少?(2)任意摸出1个球,摸到红球小明胜,摸出白球小刚胜,这个游戏公平吗?如果不公平,请你在此基础上设计一个公平的游戏,并说明你的设计理由.24.(8分)秦华公司生产A型产品,每件产品的出厂价为48元,成本价为23元.因为在生产过程中平均每生产1件产品将排出0.5立方米污水,为了保护环境,造福民众需对污水进行处理.为此公司设计了两种污水处理方案,并准备实施.方案一:公司对污水先净化再排出,每处理1立方米污水需原料费2元,并且每月排污设备损耗为35000元.方案二:公司委托污水处理厂同一处理,每处理1立方米污水需付费16元.(1)设秦华公司每月生产A型产品x件,每月利润y元,请你分别求出方案一和方案二处理污水时,y与x之间的函数关系式;(设方案一,方案二每月利润分别为y1,y2.又利润=总收入﹣总支出)(2)把下列表格补充完整.x3000400050006000y137********y25100068000102000(3)观察上面表格请你为秦华公司领导提出分析建议.25.(10分)已知CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上的两点,且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题.①如图1若∠BCA=90°,∠α=90°,则BE CF,EF|BE﹣AF|(填“>”、“<”、“=”);②如图2,若∠α+∠BCA=180°,则①BE与CF的关系还成立吗?请说明理由.(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求说明理由).人教版七年级数学下学期期末学业水平质量监测试题卷(附答案解析)一、精心选一选(每小题3分,共30分)1.(3分)下列计算正确的是()A.x5•x5=2x5B.a3+a2=a5C.(a2b)3=a8b3 D.(﹣bc)4÷(﹣bc)2=b2c2【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】分别运用同底数幂的乘法,合并同类项法则,幂的乘方和同底数幂的除法运算即可.【解答】解:A.x5•x5=x10,所以此选项错误;B.a3+a2,不能运算,所以此选项错误;C.(a2b)3=a6b3,所以此选项错误;D.(﹣bc)4÷(﹣bc)2=(﹣bc)2=b2c2,所以此选项正确,故选:D.2.(3分)中国国旗上的一个五角星的对称轴的条数是()A.1条 B.2条 C.5条 D.10条【考点】P2:轴对称的性质.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可解决问题.【解答】解:根据轴对称图形的定义可知:五角星有5条对称轴,故选:C.3.(3分)人体中成熟红细胞的平均直径为0.0000077m,用科学记数法表示为()A.7.7×10﹣5m B.77×10﹣6m C.77×10﹣5m D.7.7×10﹣6m【考点】1J:科学记数法—表示较小的数.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题n<0,n=﹣6.【解答】解:0.000 007 7=7.7×10﹣6.故选:D.4.(3分)下列成语所描述的事件概率为0的是()A.水中捞月B.守株待兔C.瓮中捉鳖D.十拿九稳【考点】X3:概率的意义.【分析】根据发生的概率是0的事件即不可能事件就是一定不能发生的事件,依次判定即可得出答案.【解答】解:A、水中捞月为不可能事件,故符合题意;B、守株待兔为可能性较小的事件,是随机事件,故不符合题意;C、瓮中捉鳖为必然事件,故不符合题意;D、十拿九稳为可能性较大的事件,是随机事件,故不符合题意.故选:A.5.(3分)汽车开始行使时,油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量Q(升)与行驶时间t(时)的关系式为()A.Q=5t B.Q=5t+40C.Q=40﹣5t(0≤t≤8)D.以上答案都不对【考点】FG:根据实际问题列一次函数关系式.【分析】根据油箱内余油量=原有的油量﹣x小时消耗的油量,可列出函数关系式.【解答】解:依题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40﹣5t(0≤t ≤8),故选:C.6.(3分)如图已知△ABD≌△ABC,则图中还有()对全等三角形.A.1 B.2 C.3 D.4【考点】KD:全等三角形的判定与性质.【分析】由全等三角形的性质得出AD=AC,BD=BC,∠BAD=∠BAC,∠ABD=∠ABC,由SAS证明ADE ≌△ACE,同理:△BDE≌△BCE.【解答】解:∵△ABD≌△ABC,∴AD=AC,BD=BC,∠BAD=∠BAC,∠ABD=∠ABC,在△ADE和△ACE中,,∴△ADE≌△ACE(SAS),同理:△BDE≌△BCE.故选:B.7.(3分)如图,△ABC与△A′B′C′关于直线L成轴对称,则下列结论中错误的是()A.AB=A′B′B.∠B=∠B′C.AB∥A′C′D.直线L垂直平分线段AA′【考点】P2:轴对称的性质;KG:线段垂直平分线的性质.【分析】利用轴对称的性质对各选项进行判断.【解答】解:∵△ABC与△A′B′C′关于直线L成轴对称,∴AB=A′B′,∠B=∠B′,直线l垂直平分AA′.故选:C.8.(3分)已知a,b,c是△ABC的三条边长,且a>b>c,若b=8,c=3,则a可能是()A.9 B.8 C.7 D.6【考点】K6:三角形三边关系.【分析】首先根据三角形的三边关系确定第三边的取值范围,然后根据a>b>c确定a的可能值即可.【解答】解:∵b=8,c=3,∴8﹣3<a<8+3即:5<a<11,∵a>b>c,∴8<a<11,故选:A.9.(3分)如图,若AB∥CD,AD=CD,∠1=70°,则∠2的度数是()A.70°B.40°C.35°D.20°【考点】JA:平行线的性质.【分析】先根据平行线的性质求出∠ACD的度数,再由AC=CD得出∠CAD的度数,根据三角形内角和定理即可得出结论.【解答】解:∵AB∥CD,∠1=70°,∴∠ACD=∠1=70°.∵AD=CD,∴∠CAD=∠ACD=70°,∴∠2=180°﹣∠ACD﹣∠CAD=180°﹣70°﹣70°=40°.故选:B.10.(3分)“和谐号”列车从北京站缓缓驶出,加速行驶一段时间后又匀速行驶.因车站调度需要,该次列车路经西安站时停靠了一段时间之后,又开始加速、匀速行驶.下列图中可以近似刻画该列车在这段时间内速度变化情况的是()A.B.C.D.【考点】E6:函数的图象.【分析】根据加速则速度变大,图象升高,减速则图象降低,停止速度为0,匀速速度不变,图象为平行x轴的直线,则可得出答案.【解答】解:先加速,则开始时速度逐渐增大,图象上升,再匀速,则图象平行x轴,因车站调度需要,该次列车路经西安站时停靠了一段时间,则需要先减速,则图象下降,再停止,则速度为0,又加速,图象上升,最后匀速,则图象平行x轴故选:B.二、耐心填一填(每小题3分,共18分)11.(3分)大家知道,冰层越厚,所承受的压力越大,这其中自变量是冰层的厚度,因变量是冰层所承受的压力.【考点】E1:常量与变量.【分析】根据常量与变量,即可解答.【解答】解:大家知道,冰层越厚,所承受的压力越大,这其中自变量是冰层的厚度,因变量是冰层所承受的压力;故答案为:冰层的厚度,冰层所承受的压力.12.(3分)人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的稳定性.【考点】K4:三角形的稳定性.【分析】三角形的三边一旦确定,则形状大小完全确定,即三角形具有稳定性.【解答】解:人字架、起重机的底座,输电线路支架等,在日常生活中,很多物体都采用三角形结构,这是利用了三角形的稳定性.故答案为:稳定性.13.(3分)在线段、角、圆、等腰三角形、平行四边形、正方形中不是轴对称图形的是平行四边形.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:线段是轴对称图形;角是轴对称图形;等腰三角形是轴对称图形;平行四边形不是轴对称图形;正方形是轴对称图形.故答案为:平行四边形.14.(3分)观察下列各式:1×3=22﹣12×4=32﹣13×5=42﹣1…用含有n(n为正整数)的式子表示其规律为n•(n+2)=(n+1)2﹣1(n为正整数).【考点】37:规律型:数字的变化类.【分析】根据所给的各式,每个等式的左边是两个数的乘积的形式,第二个因数比第一个因数多2,每个等式的右边是一个数的平方与1的差的形式,这个数比左边的第一个因数多1,据此判断即可.【解答】解:1×3=22﹣12×4=32﹣13×5=42﹣1…用含有n(n为正整数)的式子表示其规律为:n•(n+2)=(n+1)2﹣1(n为正整数).故答案为:n•(n+2)=(n+1)2﹣1(n为正整数).15.(3分)在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为11cm,AC=5cm,则△ABC的周长是16.【考点】KG:线段垂直平分线的性质.【分析】由DE是AC的垂直平分线,可得出AD=DC,结合,△ABD的周长为11cm,AC=5cm,即可算出△ABC的周长.【解答】解:依照题意画出图形,如图所示.∵DE是AC的垂直平分线,∴AD=DC,=AB+BD+AD=AB+BD+DC=AB+BC=11,∴C△ABD∵AC=5,=AB+BC+AC=11+5=16.∴C△ABC故答案为:16.16.(3分)如图是由边长为2a和a的两个正方形组成,小颖闭上眼睛随意用针扎这个图形,小孔出现在阴影部分的概率是.【考点】X5:几何概率.【分析】根据几何概率的求法:小孔出现在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵图形的总面积为a2+(2a)2=5a2,阴影部分面积为5a2﹣(2a+a)×2a÷2=2a2,∴小孔出现在阴影部分的概率是=.故答案为.三、解答题(本题包括9个小题,共72分,要求写出必要的解答过程)17.(12分)计算(1)5x(2x2﹣3x+4)(2)(2a+b)(﹣2a﹣b)(3)(3x2y﹣xy2+xy)÷(﹣xy)【考点】4I:整式的混合运算.【分析】(1)利用乘法分配律用5x分别乘以括号里的每一项即可;(2)利用多项式乘以多项的方法,用第一个括号里的每一项分别乘以第二个括号里的每一项,再合并同类项即可;(3)利用括号里的每一项去除以﹣xy即可.【解答】解:(1)原式=10x3﹣15x2+20x;(2)原式=﹣4a2﹣2ab﹣2ab﹣b2=﹣4a2﹣4ab﹣b2;(3)原式=﹣6x+2y﹣1.18.(6分)先化简,再求值.已知|m﹣1|+(n+)2=0,求(﹣m2n+1)(﹣1﹣m2n)的值.【考点】4B:多项式乘多项式;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【分析】先根据非负数的性质,求出m,n的值,再根据多项式乘以多项式,即可解答.【解答】解:∵|m﹣1|+(n+)2=0,∴m﹣1=0,n+=0,∴m=1,n=﹣,∴(﹣m2n+1)(﹣1﹣m2n)=m2n+m4n2﹣1﹣m2n=m4n2﹣1==1×﹣1==﹣.19.(6分)如图,在一条河的同岸有两个村庄A和B,两村要在河上合修一座便民桥,桥修在什么地方可以使桥到两村的距离之和最短?【考点】PA:轴对称﹣最短路线问题.【分析】如图作点A关于河岸的对称点C,连接BC交河岸于点P,点P就是桥的位置.【解答】解:如图作点A关于河岸的对称点C,连接BC交河岸于点P,点P就是桥的位置.理由:两点之间线段最短.20.(7分)如图,AB∥EF,∠1=60°,∠2=120°,试说明CD∥EF.【考点】JB:平行线的判定与性质.【分析】由AB∥EF,利用平行线的性质可得∠E=60°,又∠1=60°,由平行线的判定定理可得CD∥EF.【解答】证明:∵AB∥EF,∴∠E+∠2=180°,∴∠E=180°﹣∠2=180°﹣120°=60°,又∵∠1=60°,∴∠1=∠E,∴CD∥EF.21.(7分)如图,点D、E在△ABC的边BC上,AB=AC,AD=AE,AH⊥BC,垂足为H,试猜想BD与CE的数量关系,并说明理由.【考点】KD:全等三角形的判定与性质.【分析】由AB=AC,利用等边对等角得到一对角相等,同理由AD=AE得到一对角相等,再利用外角性质及等量代换可得出一对角相等,利用ASA得出三角形ABD与三角形AEC全等,利用全等三角形的对应边相等可得证.【解答】证明:∵AB=AC,∴∠B=∠C(等边对等角),∵AD=AE,∴∠ADE=∠AED(等边对等角),又∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,∴∠BAD=∠CAE(等量代换),在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴BD=CE(全等三角形的对应边相等).22.(8分)已知△ABC.(1)请用尺规作图法作BC的垂直平分线.(2)过点A作一条直线,使其将三角形ABC分成面积相等的两部分.(保留作图痕迹,不写作法)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)直接利用线段垂直平分线的作法得出答案;(2)利用三角形中线的性质进而得出答案.【解答】解:(1)如图所示:直线MN即为所求;(2)如图所示:线段AD所在直线即为所求.23.(8分)一个不透明的袋中装有4个红球和5个白球,每个球除颜色外,其余特征均相同.(1)任意摸出1个球,摸出红球的概率是多少?(2)任意摸出1个球,摸到红球小明胜,摸出白球小刚胜,这个游戏公平吗?如果不公平,请你在此基础上设计一个公平的游戏,并说明你的设计理由.【考点】X7:游戏公平性;X4:概率公式.【分析】(1)根据概率公式求解;(2)通过比较摸出红球的概率和摸出白球的概率可判断这个游戏不公平;然后加上摸到红球得4分,摸到白球得5分可使游戏公平.【解答】解:(1)任意摸出1个球,摸出红球的概率==;(2)小明胜的概率=,小刚胜的概率=,因为<,所以这个游戏不公平.一个公平的游戏可为:任意摸出1个球,摸到红球得4分,摸到白球得5分,摸到红球小明胜,摸出白球小刚胜.此时每摸一次小明的得分为5×=,小明的得分为4×=,所以这个游戏是公平的.24.(8分)秦华公司生产A型产品,每件产品的出厂价为48元,成本价为23元.因为在生产过程中平均每生产1件产品将排出0.5立方米污水,为了保护环境,造福民众需对污水进行处理.为此公司设计了两种污水处理方案,并准备实施.方案一:公司对污水先净化再排出,每处理1立方米污水需原料费2元,并且每月排污设备损耗为35000元.方案二:公司委托污水处理厂同一处理,每处理1立方米污水需付费16元.(1)设秦华公司每月生产A型产品x件,每月利润y元,请你分别求出方案一和方案二处理污水时,y与x之间的函数关系式;(设方案一,方案二每月利润分别为y1,y2.又利润=总收入﹣总支出)(2)把下列表格补充完整.x3000400050006000y137********y25100068000102000(3)观察上面表格请你为秦华公司领导提出分析建议.【考点】FH:一次函数的应用.【分析】(1)每件产品出厂价为48元,共x件,则总收入为:48x,成本费为23x,产生的污水总量2x,按方案一处理污水应花费:2x×0.5+35000,按方案二处理应花费:16x×0.5.根据利润=总收入﹣总支出即可得到y与x的关系;(2)根据(1)中得到的x与y的关系,即可得答案;(3)根据(2)表格中的数据,提出分析建议.【解答】解:(1)由已知得:y1=48x﹣23x﹣(2x×+35000)=24x﹣35000;y2=48x﹣23x﹣16x×0.5=17x.(2)当x=4000时,y1=24×4000﹣35000=61000;当x=5000时,y2=17×5000=85000;当x=6000时,y1=24×6000﹣35000=109000.补充完整表格,如图所示.(3)观察表格数据发现:当每月的产量少于5000件时,选方案二公司获得的利润多一些;当每月的产量等于5000件时,两种方案下公司获得的利润一样多;当每月的产量多于5000件时,选方案一公司获得的利润多一些.25.(10分)已知CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上的两点,且∠BEC=∠CFA=∠a(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面两个问题.①如图1若∠BCA=90°,∠α=90°,则BE=CF,EF=|BE﹣AF|(填“>”、“<”、“=”);②如图2,若∠α+∠BCA=180°,则①BE与CF的关系还成立吗?请说明理由.(2)如图3,若直线CD经过∠BCA的外部,∠a=∠BCA,请写出EF、BE、AF三条线段数量关系(不要求说明理由).【考点】KY:三角形综合题.【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF 即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.【解答】解:(1)①如图1中,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;故答案为=,=.②∠α+∠ACB=180°时,①中两个结论仍然成立;证明:如图2中,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,,∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,当E在F的右侧时,如图4,同理可证EF=AF﹣BE,∴EF=|BE﹣AF|;(2)EF=BE+AF.理由是:如图3中,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.。
PO
y
x
cba21
BA
21EF
A
BCD
OE
DCB
A
七年级下学期期末教学质量检测数学 本试卷包括六道大题,共26小题,共6页,全卷满分120分,考试时间为120分钟. 一.单项选择题(每小题2分,共12分) 1.16的算术平方根为( ) A. B. C. D. 2.不等式的解集在数轴上表示为( )
-202-202-20220-2
A. B. C . D. 3.如右图,在平面直角坐标系中,将点P(2,1)向下平移个单位长度,再向左平移个单位长度得到点Q,则点Q的坐标为( ) A. B.( C. D. 4.下列调查最适合用全面调查的是( ) A.调查某批汽车的抗撞击能力 B.鞋厂检测生产的鞋底能承受的弯折次数 C.了解全班学生的视力情况 D.检测吉林市某天的空气质量 5. 如右图,直线与直线交于点A,与直线交于点,,若使直线行,则可以将直逆时针旋转( ) A.10° B.20° C.70° D.60° 6.点(,)在第一象限,则的取值范围是( ) A. B. C. D.≤≤ 二.填空题(每小题3分,共24分) 7.比较大小:______(填:“>”或“<”或“=”) 8.如图,直线AB和CD交于点O,EO⊥AB,垂足为O,∠AOD=125°,则∠COE=______°.
(第3题) (第5题) 9.将一块直角三角板的直角顶点放在长方形直尺的一边上,如的度数为 _________°. 10. 点P . 11.已知,请写出一个满足条件的x的值_________.(写出一个即可) 12.如下图,为某年参加国家教育评估的15个国家学生的数学平均成绩()的统计图 . 则图________(填“甲”,或“乙”)能更好的说明一半以上国家学生的数学成绩在60≤之间.
图甲 图乙 53.3%13.3%26.7%
6.7%70≤x≤80
60≤x≤70
50≤x≤6040≤x≤50频数(国家个数)
成绩/分8
642
80706050400
13.小明参加学校组织的知识竞赛,共有道题,答对一题记分,答错(或不答)一题记分,小明参加本次竞赛要超过分,他至少要答对 ________道题. 14. 如图,将边长为的等边三角形沿边BC方向向右平移,得到三角形DEF, 则四边形ADFB的周长为_______________. 三. 解答题(每小题5分,共20分) 15.计算:
16.解方程组
51332yxyx
(第14题) (第8题) (第9题)
40≤x<50 50≤x<60 60≤x<70 70≤x<80 17.解不等式组202131.xxx,≥ 18.解不等式≥,并写出它的正整数...解 四. 解答题(每小题7分,共28分) 19. 二元一次方程组的解满足
20.如图, AD∥BC , AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说明理由。 1D
2
A
E
CB
21.某班组织学生去看中国大型古典舞剧“红楼梦”,甲种票每张120元,乙种票每张80元,如果35名学生购票恰好用去3200元,甲、乙两种票各买了多少张?
22. 如图, 已知将三角形ABC沿AD方向平移,点A平移到点D,点B的对应点为点E,点C的对应点为点F,请完成下列问题: (1)请在图中作出三角形DEF;点E的坐标为 ______,点F的坐标为_______; 20%
_____%
_____%
10%不了解
比较了解了解一点非常了解
非常了解了解一点比较了解不了解0了解程度
人数20
15105
(2)若连接AD、BE ,则线段AD与线段BE的关系为______________________________; (3)求三角形ABC的面积.
Dy
xOCB
A
五.解答题(每小题8分,共16分) 23.我校七年级一共有600名学生,团委准备调查他们对“吉林市国际马拉松赛”活动的了解程度. (1)在确定调查方式时,团委设计了以下三种方案: 方案一:调查七年级部分女生; 方案二:调查七年级部分男生; 方案三:到七年级每个班去随机调查一定数量的学生. 请问其中最具代表性的一个方案是__________ ; (2)团委采用了最具代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图,请你根据图中信息,将其补充完整; (3)请你估计七年级约有多少学生不了解“吉林市国际马拉松赛”活动 . 321GEFD
B
C
A
24. 如图,EF//AD,∠1=∠2,说明:∠DGA+∠BAC=180°.请将说明过程填写完成. 解:∵EF//AD,(已知)
∴2=_____.(_____________________________) 又∵∠1=∠2,(已知) ∴∠1=∠3,(等量代换). ∴AB//______,(____________________________) ∴∠DGA+∠BAC=180°(_____________________________)
六.解答题(每小题10分,共20分) 25.某校为了丰富学生的业余生活,组织了一次棋类比赛,准备一次性购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和1副军棋共需40元. (1)求购买一副跳棋和一副军棋各需多少元? (2)学校准备购买跳棋和军棋共80副作为奖品,根据规定购买的总费用不超过600元,则学校最多可以购买多少副军棋?
26.问题情境: 在平面直角坐标系中有不重合的两点和点,),小明在学习中发现,若,则∥轴,且线段的长度为; 若,则∥轴,且线段的长度为; 应用: (1)若点,则∥轴,的长度为________. (2)若点∥________________. 拓展: 我们规定:平面直角坐标系中任意不重合的两点,之间的折线距离为=+;例如:图1中,点与点之间的折线距离为. 解决下列问题: 图3图1 图2
Px
yEOy
xNMOO
yx
(1)如图2,已知=________. (2)如图2,已知=_____________. (3)如图3,已知(3,3),点在轴上,且三角形的面积为3,则=______.
吉化九中2015---2016学年度七年级下学期期末数学 教学质量检测答案 一.单项选择题
二.填空题 题号 7 8 9 10 11 12 13 14 答案 < 145 47 (1,2) 略 乙 14 19 三.解答题(每小题5分,酌情给步骤分)
15. 2 16. 17. 18.,正整数解为x=1 四. 解答题
19.,····························5分
将得, 2-2k=1·························6分 k=0.5······················7分 20.证明: ∵AD∥BC ∴∠1=∠B , ∠2=∠C······················4分 又∵AD平分∠EAC ∴∠1=∠2······················5分 ∴∠B=∠C······················7分 21.解:设甲种票买了x张,乙种票买了y张,根据题意,得
题号 1 2 3 4 5 6 答案 C D C C A C 解得······················6分 答:甲种票买了10张,乙种票买了25张. ············7分 22.图略······················1分 (1) (2) AD∥BE,且AD=BE······················5分
(3) ×1×4×1×4=7.5(7分) 五.解答题 23.(1)方案三······················2分 (2)······················5分
403020%_____%_____%10%不了解比较了解了解一点非常了解非常了解了解一点比较了解不了解0了解程度人数2015105 (3)600×10%=60(人)······················7分 24.∵EF//AD,(已知)
∴2=∠3 (两直线平行,同位角相等). ············1分+2分 又∵1=2,(已知) ∴1=3(等量代换) ∴AB//DG,(内错角相等,两直线平行) ···········1分+2分 ∴∠DGA+∠BAC=180°.(两直线平行,同旁内角互补) ·····2分 五.解答题 25.(1)设购买一副跳棋需要x元,一副军棋需要y元·····1分
·····3分 解得·····5分 购买一副跳棋需要6元,一副军棋需要10元