第7章 毫米波卫星通信系统
- 格式:ppt
- 大小:2.91 MB
- 文档页数:77
卫星通信系统概述
卫星通信系统是指利用卫星进行通信的一种系统。
卫星通信系统利用
地球上的通信站与卫星进行通信,再通过卫星之间的通信连接实现全球范
围内的通信。
它具有广泛的覆盖范围、高可靠性和持续连接的特点,是现
代通信领域的重要组成部分。
卫星通信系统由地面控制站、卫星及通信设备组成。
地面控制站负责
管理整个系统,并通过射频系统与卫星进行通信。
卫星作为通信中继器,
负责接收、放大和转发信号。
通信设备包括地球站、航天器和卫星地面站,用于连接用户和卫星。
1.广域覆盖能力:卫星通信系统通过卫星之间的通信连接,可以实现
全球范围内的通信覆盖,即使在边远地区也能进行通信。
2.高可靠性:由于卫星通信系统具有多点接入的特点,即使一些通信
节点故障,通信仍然可以通过其他节点进行。
3.持续连接:卫星通信系统可以提供持续的通信连接,不受地理位置
和时间的限制,方便用户进行长时间的通信。
4.大容量传输:卫星通信系统具有较大的带宽和传输速率,可以同时
传输多个通道和大量的数据。
5.灵活性:卫星通信系统可以根据需求进行调整和扩展,适用于不同
规模和需求的通信应用。
然而,卫星通信系统也存在一些挑战和限制:
1.高成本:卫星通信系统的建设和运营成本较高,包括卫星的制造和
发射、地面控制站的建设和维护等。
2.延迟问题:由于信号需要经过地面站、卫星和地面站的传输,卫星通信系统存在一定的信号传输延迟,不适用于实时性要求较高的应用。
3.天气影响:卫星通信系统受天气条件的影响较大,特别是在恶劣天气下,如暴风雨或大雪,信号传输可能会受到干扰或中断。
通信工程师:卫星通信考点(题库版)1、单选传输卫星电话时通常是采用在链路中加()来克服回波的干扰。
A.DCMEB.回波抑制器C.扰码器D.均衡器正确答案:B2、名词解释频分多址联接正确答案:各地球站使用不同频率的(江南博哥)载波实现多址联接的通信方式。
3、单选星温控制分消极温度控制和积极温度控制,下面消极的温控方法是()A.卫星表现采用涂层B.利用双金属簧电应力的变化来开关隔离册C.利用垫敏元件来开关加垫或制冷器.正确答案:A4、单选国际卫星组织要求的14/11GHz频段标准地球站工作仰角不小于()°。
A.3B.5C.8D.10正确答案:D5、问答题宽带VSAT系统端站具有何种工作方式?正确答案:宽带VSAT系统端站具有S-TDMA和SCPC方式两种工作方式,平时工作于S-TDMA方式,需要传输电视会议、IP电话、大文件传输等需要较宽的带宽或实时性要求较高的业务时,系统自动将相关端站的工作方式转换为SCPC。
6、多选宽带VSAT车载站视频会议系统中,常用故障诊断方法为()?A.声音测试B.色条测试C.网络测试D.回环测试正确答案:A, B, C, D7、单选卫星通信TDMA方式中,系统同步信号发自()A.各地球站B.地球基准站C.卫星转发器正确答案:B8、单选CDMA卫星中继应急入网系统应用中,卫星频段资源一般由()进行统一调度和管理。
A.卫星公司B.系统主控站端C.系统基站端D.随机正确答案:B9、单选全国公用应急宽带VSAT网在有应急业务传输时,采用()多址方式。
A.STDMA/TDMB.TDM/SCPCC.TDM/STDMAD.FDM/STDMA正确答案:B10、单选进行调制特性测试时,一般用QPSK、FEC=3/4、S/R=8.448MB/s的调制载波,所以频谱仪设置中,RBW=30kHz,SPAN=()。
A.5MB.10MC.20MD.50M正确答案:B11、单选宽带VSAT系统应急业务传输时采用()方式。
毫米波点对点通信频段毫米波是指波长在1毫米到10毫米之间的电磁波。
毫米波通信是一种利用毫米波频段进行无线通信的技术。
毫米波通信具有大带宽、高传输速率和低延迟等优点,因此被广泛应用于点对点通信。
一、毫米波通信频段毫米波通信频段主要包括以下几个频段:1. 30~300GHz频段:这个频段是毫米波通信的主要应用频段,也是最常用的频段之一。
在这个频段中,波长在1毫米到10毫米之间。
这个频段的特点是带宽非常宽,可以实现大容量的数据传输。
2. 57~64GHz频段:这个频段是用于无线局域网(WLAN)的频段之一。
在这个频段中,波长在4.6毫米到5.3毫米之间。
这个频段的特点是传输速率高,可以实现几个Gbps的数据传输。
3. 71~76GHz和81~86GHz频段:这两个频段是用于无线电链路的频段之一。
在这两个频段中,波长在3.9毫米到4.2毫米之间。
这两个频段的特点是传输距离远,可以实现几十公里的长距离通信。
二、毫米波通信技术毫米波通信技术主要包括以下几个方面:1. 天线技术:天线是毫米波通信系统中非常重要的组成部分,可以决定通信系统的性能。
毫米波通信系统中常用的天线技术有波束成形技术、多天线技术和自适应调制技术等。
2. 调制技术:调制技术是毫米波通信系统中实现高速数据传输的关键技术。
毫米波通信系统中常用的调制技术有相位调制、频率调制和振幅调制等。
3. 多径传播技术:多径传播是毫米波通信系统中的一种信号传播方式。
由于毫米波的波长很短,容易受到障碍物的影响,导致信号传播路径多样化。
多径传播技术可以有效地抑制多径效应,提高通信系统的性能。
三、毫米波通信应用毫米波通信在许多领域都有广泛的应用,主要包括以下几个方面:1. 无线通信:毫米波通信可以实现高速的无线数据传输,适用于无线宽带接入、无线局域网和无线传感器网络等应用。
2. 无线电链路:毫米波通信可以实现远距离的无线电链路通信,适用于城市间的长距离通信和卫星通信等应用。
电子质量2020年第12期(总第405期)基金项目:江苏省研究生科研实践创新计划项目(KYCX20_0814,KYCX20_0815,KYCX19_0950)资助课题作者简介:王子宁(1997-),男,南京邮电大学硕士研究生,主要研究方向为无线通信、智能信号处理。
E-mail:毫米波高通量卫星通信系统:机遇,应用及挑战Millimeter Wave High Throughput Satellite Communication Systems:Opportunities,Applicationsand Challenges王子宁1,赵柏1,郭雨晴1,孔槐聪1,黄硕2(1.南京邮电大学通信与信息工程学院,江苏南京210003;2.上海航天电子通讯设备研究所,上海201109)Wang Zi-ning 1,Zhao Bai 1,Guo Yu-qing 1,Kong Huai-cong 1,Huang Shuo 2(1.College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecom-munications,Jiangsu Nanjing 210003;2.Shanghai Aerospace Electronic Technology Institute,Shanghai 201109)摘要:高通量卫星(High Throughput Satellite,HTS)是指相同带宽条件下,数据吞吐量达到传统通信卫星数倍甚至几十倍的通信卫星。
由于它能提供数百吉比特(Gbps)甚至太比特(Tbps)量级的容量,被认为是通信卫星领域发展速度最快、关注程度最高、潜力最大的一类卫星系统。
近年来,利用毫米波频段来提升高通量卫星通信系统的频谱效率和传输速率已经成为一个新的研究热点,受到了世界各国学术界和工业界的广泛关注。
卫星通信系统与卫星通信技术分析随着科技的不断发展,卫星通信系统在现代社会中扮演着越来越重要的角色。
它通过卫星与地面站之间的通信,实现了全球范围内的信息传输和通信服务。
卫星通信系统的普及不仅带来了便利和高效的通讯服务,也在地面通信无法覆盖的区域提供了重要的通讯支持。
本文将对卫星通信系统及其相关技术进行深入分析。
一、卫星通信系统卫星通信系统是通过卫星与地面站之间的通信连接,实现信息传输和通信服务的系统。
通常包括卫星、地面站和用户终端等部分。
卫星通信系统的关键技术包括发射、传输、接收和处理等环节,每一个环节都需要高精度的技术支持。
1. 卫星卫星是卫星通信系统的核心组成部分,一般由发射天线、载荷、动力系统、存储系统等部分组成。
载荷是卫星传输信息的关键部分,它包括了信号的发射和接收器、天线等设备。
通过载荷系统,卫星能够实现信息的接收和发送,并将其传输到地面站或用户终端。
2. 地面站地面站是卫星通信系统的另一个重要组成部分,它用于与卫星进行双向通信。
地面站由天线、发射接收设备、信号处理设备等部分组成。
当地面用户需要进行通信时,地面站通过发射天线向卫星发送信号,并通过接收天线接收卫星传输的信号,完成信息交换的过程。
3. 用户终端用户终端是卫星通信系统中的最终用户设备,它通过卫星进行通信和信息传输。
用户终端通常包括卫星电话、卫星电视接收器、卫星定位接收器等设备。
用户终端设备通过接收卫星传输的信号,实现了通信、定位、导航和信息接收等功能。
卫星通信技术是支撑卫星通信系统实现通信和信息传输的关键技术。
它主要涉及到卫星发射接收、信号处理、频谱管理等方面的技术。
1. 频率与频率复用在卫星通信系统中,频率是信息传输的关键要素。
卫星通信用户使用的频率是有限的,为了提高频谱资源的利用率,需要采用频率复用技术。
频率复用技术能够实现多个用户共享同一频谱资源,通过不同的调制方案或多址接入技术,使得不同用户之间的信号不会互相干扰,从而实现了频谱资源的有效利用。
第七章微波通信和卫星通信(习题与参考答案)一、填空题1、微波通信分为通信和通信两类。
2、数字已成为一种重要的手段,并与,一起作为当今三大传输手段。
3、电磁频谱,包含从到的各种波、光和射线的。
4、电磁波的频率非常高,故微波又称为。
电磁波的传播速度υ与其频率f 、波长λ之间的固定关系是。
若微波是在真空中传播,则速度为。
5、微波频段的波长范围为,频率范围为。
6、微波中继通信是利用微波作为并采用方式在地面上进行的通信。
7、微波中继通信主要用来传送、、、基地站与交换中心之间的信号。
8、微波频段占用的频带约,而全部长波、中波和短波频段占有的频带总和不足。
9、当通信频率高于时,、及的活动对其影响小。
10、当天线面积给定时,与的平方成反比。
11、微波通信的工作波长,天线尺寸可做得,通常做成,的面式天线。
12、数字微波通信系统设备由、、、等组成。
13、在民用数字微波通信中数字微波通信系统的终端复用设备是时分复用设备。
14、微波站的基本功能是传输来自设备的信号。
15、微波站分为、、和。
16、数字微波站的主要设备包括、、、、等。
17、目前的微波中继系统中大多数采用方式,勤务信号经常采用方式。
18、微波中继范围很宽,工作频率,愈容易获得较宽的和的通信容量。
19、输出功率是指处功率的大小。
输出功率的确定与设备的、、及方式等因素有关。
20、微波通信对频率的要求取决于所采用的以及对的要求。
发信机的工作频率的取决于发信的频率。
21、数字微波通信系统多采用调制方式,若发信机不稳,有,将使解调的幅度下降,增加。
22、要求1⨯10-6~5⨯10-6时,则必须采用石英晶体控制的或。
23、微波收信设备包括、和三部分。
24、对于一个中继段而言,前一个微波站的发信频率就是同一波道的。
频段使用。
25、噪声系数是的重要指标。
数字微波收信机的噪声系数一般为。
26、收信机本身产生的热噪声功率,值就越大,也就是说值是衡量收信机热噪声性能的一项指标。
27、收信机要使接收的已调信号地通过,就要具有足够的工作,即。
卫星通信系统的基本原理和通信过程Satellite communication is a crucial technology that enables people around the world to stay connected through various forms of communication. 卫星通信是一项至关重要的技术,它使全世界的人们能够通过各种形式的通信保持联系。
At its core, satellite communication involves the use of artificial satellites in Earth's orbit to relay signals from one point on the Earth to another. 在其核心,卫星通信涉及利用地球轨道上的人造卫星将信号从地球上的一点传递到另一点。
The basic principle of satellite communication revolves around the concept of line-of-sight communication, where the transmitter on Earth sends signals to the satellite, which then relays them back down to the receiver on Earth. 卫星通信的基本原理围绕着视距通信的概念,地球上的发射机将信号发送到卫星,然后卫星将其转发回地球上的接收机。
The communication process begins with the transmitter on Earth sending radio signals containing information to a specific satellite ina geostationary or low Earth orbit. 通信过程始于地球上的发射机向地球同步或低地球轨道的特定卫星发送包含信息的无线电信号。
卫星通信系统课程设计一、教学目标通过本章的学习,学生将掌握卫星通信系统的基本原理、组成部分和工作机制。
知识目标包括了解卫星通信的历史发展、掌握卫星通信系统的组成和工作原理、了解不同类型的卫星通信系统及其应用。
技能目标包括培养学生分析问题和解决问题的能力,能够运用所学知识对卫星通信系统进行分析和设计。
情感态度价值观目标包括培养学生对科技发展的兴趣和热情,提高学生对卫星通信技术的认识,培养学生关注社会热点问题的意识。
二、教学内容本章的教学内容主要包括卫星通信系统的基本原理、组成部分和工作机制。
首先,介绍卫星通信的历史发展,包括卫星通信的起源、发展阶段和重要事件。
其次,讲解卫星通信系统的组成部分,包括卫星、地面站、传输链路等,并阐述各部分的作用和功能。
然后,详细介绍卫星通信系统的工作原理,包括信号的发射、传输、接收和处理过程。
最后,介绍不同类型的卫星通信系统及其应用,如全球定位系统(GPS)、移动通信卫星系统、卫星互联网等。
三、教学方法为了提高学生的学习兴趣和主动性,本章将采用多种教学方法。
首先,采用讲授法,以讲解卫星通信的基本原理和概念为主,帮助学生建立基础知识框架。
其次,采用案例分析法,通过分析具体的卫星通信系统应用案例,使学生更好地理解和掌握所学知识。
同时,学生进行小组讨论,鼓励学生提出问题、分享观点,培养学生的思考能力和团队合作精神。
最后,安排实验环节,让学生亲自动手操作卫星通信设备,加深对卫星通信系统的理解和认识。
四、教学资源为了支持教学内容和教学方法的实施,本章将选择和准备适当的教学资源。
教材方面,将选用《卫星通信原理与应用》作为主教材,辅助以《卫星通信技术》等参考书籍。
多媒体资料方面,将收集相关的卫星通信系统动画演示、视频资料等,以丰富学生的学习体验。
实验设备方面,将安排实验室内的卫星通信设备,供学生进行实验操作和实践。
此外,还将提供网络资源,如学术论文、新闻报道等,供学生进行拓展学习和研究。
现代通信技术辅导7第七章微波通信和卫星通信一、知识点∙微波通信。
∙卫星通信。
二、重点难点内容微波通信是在20 世纪40 年代至50 年代开始使用的无线电通信技术,经过多年的发展己经获得广泛的应用。
微波通信分为模拟微波通信和数字微波通信两类。
模拟微波通信早已发展成熟,并逐渐被数字微波通信所取代,数字微波通信已成为一种重要的传输手段,并与卫星通信,光纤通信一起作为当今三大传输手段。
卫星通信可看作微波通信的一个具体应用,所以把微波通信和卫星通信放在同一章中。
学习中注意比较卫星通信和地面微波通信的异同点。
(一)微波通信本节主要讲述微波通信的概念和特点,微波通信系统的基本组成,微波站的设备组成及微波的传输特性和抗衰落技术。
1. 微波通信的概念和特点(1)微波的频段划分无线电波波段的划分如表1 所示。
表(一)无线电波波段的划分整个电磁频谱,包含从电波到宇宙射线的各种波、光和射线的集合。
不同频率段落分别γ射线和宇宙命名为无线电波(3kHz~3000GHz)、红外线、可见光、紫外线、x 射线、射线。
微波是超高频率的无线电波。
由于这种电磁波的频率非常高,故微波又称为超高频电磁波。
电磁波的传播速度υ与其频率f 、波长又有下列固定关系:若微波是在真空中传播,则速度为微波频段的波长范围为lm~lmm,频率范围为300MHz~300GHz,可细分为特高频(UHF) 频段/分米波频段、超高频(SHF)频段/厘米波频段、极高频(EHF)频段/毫米波频段和至高频频段/亚毫米波频段。
实际工程中常用拉丁字母代表微波小段的名称,例如S , C , X 分别代表10厘米波段、5 厘米波段和3厘米波段;Ka,U,F分别代表8毫米波段和3毫米波段等等,详见表2。
表(二)微波频段的划分(2)微波中继通信的概念微波中继通信是利用微波作为载波并采用中继(接力)方式在地面上进行的无线电通信。
A ,B 两地间的远距离地面微波中继通信系统的中继示意如图1 所示。
卫星通信系统现代社会处处离不开通信,通信系统与我们的生活紧密相关,随处可见。
例如:我们每天离不开的手机,当我们用它和亲人朋友打电话时,在使用移动通信系统;我们在使用百度地图时对用GPS定位时,使用卫星通信系统;当我们链接WiFi 在浏览器搜索时,我们使用着网络系统,这时如果发挥一下你的想象力,想象着从你所在的某个方位在你看不见的地下和空气中有着光纤和微波编织着相互交错的大网,而就是这张大网将你和世界联系在一起了,是一件多么神奇而又美妙的事情。
一、卫星通信系统的历史、现状、未来趋势1。
1卫星通信系统的历史卫星通信自二十世纪五、六十年代以来的发展过程大致经历了以下五个阶段:1.第一阶段1945年—1964年,1945年英国人Arthur C. Clarke最早对利用卫星建立全球通信提出了科学设想以来,美国和前苏联先后研制出低轨道无源、有源及准同步实验卫星.2.第二阶段1965年—1972年,国际卫星通信组织开始通过静止卫星向全球提供商业服务。
3.第三阶段1973年-1982年,卫星系统为陆地、空中、海上用户提供固定和移动卫星通信业务.4.第四阶段1983年—1990年,卫星通信被逐步应用于专用数据网、数话兼容网和卫星直播业务。
在这个时期,用户端的VSAT网络得到迅猛的发展,被广泛应用于公众服务、医疗、商业、军事和教育等领域。
5.第五阶段1990年—现在,卫星通信领域进入发展的重要时期,LED、MEO和混合式轨道卫星通信系统开始广泛应用于全球电信网,以满足宽带和移动用户的各种需求。
1.2卫星通信系统的现状近年来,世界上的许多国家相继建立了国内卫星通信系统,最早建立国内卫星通信系统的是加拿大.目前美国拥有的国内卫星通信系统数量最多,日本正在发展30/ZOGHz的国内卫星通信系统,澳大利亚、巴西、墨西哥也都准备建立国内卫星通信系统。
而我国卫星通信的一个严重问题是依赖国外卫星,巨大的市场被国外卫星占领。
1.3卫星通信系统的未来趋势未来卫星通信将沿着数字化、网络化、以及信息化方向前进,针对卫星通信的未来发展趋势而言,由于C、K波段的使用趋于饱和我们应该在现有的基础上提高频段频谱的利用率,同时将IP与ATM技术相结合去建立卫星宽带综合业务数字通信网-—国家信息高速公路;要进一步去实现建立小型化、智能化、经济化未来的卫星通信网,实现移动用户间可以利用卫星进行通信,而不再需要基站;如果将卫星与 Internet 网络相连,实现卫星互联网技术,这样就可以利用宽带卫星进行双向传输,并且下载和地面网络反馈的速度也得到了大幅提升,同时也大大减轻了频谱拥挤现象以及抗干扰能力。