机械系统建模和仿真
- 格式:doc
- 大小:43.00 KB
- 文档页数:4
基于人工智能的机械系统建模与仿真在当今科技飞速发展的时代,机械系统的设计和优化变得越来越复杂,而人工智能(AI)的出现为机械系统的建模与仿真带来了全新的思路和方法。
机械系统建模与仿真旨在通过数学模型和计算机模拟来预测机械系统的性能、行为和响应,从而帮助工程师在设计阶段就能够发现潜在的问题,并进行优化和改进。
机械系统通常由多个部件组成,这些部件之间相互作用,共同实现特定的功能。
例如,汽车发动机就是一个复杂的机械系统,其中包括气缸、活塞、曲轴、连杆等部件,它们的运动和相互关系决定了发动机的性能。
传统的机械系统建模方法往往基于物理定律和数学方程,通过手工推导和计算来建立模型。
这种方法虽然在一定程度上能够准确地描述机械系统的行为,但对于复杂的系统,建模过程往往非常繁琐,而且计算量巨大。
人工智能技术的引入为解决这些问题提供了新的途径。
AI 可以通过学习大量的数据来自动发现机械系统中的规律和模式,从而建立更加准确和高效的模型。
例如,利用机器学习算法可以对机械系统的运行数据进行分析,预测系统的故障和维护需求;通过深度学习算法可以对机械系统的图像或视频数据进行处理,实现对系统状态的实时监测和诊断。
在机械系统建模方面,人工智能技术可以用于建立系统的动态模型。
传统的动态建模方法通常基于牛顿定律、拉格朗日方程等,需要对系统的物理结构和力学特性有深入的了解。
而利用AI 技术,如神经网络,可以直接从系统的输入输出数据中学习系统的动态特性,无需对系统的物理原理进行详细的分析。
这种基于数据驱动的建模方法在处理复杂的非线性系统时具有很大的优势。
此外,AI 还可以用于机械系统的参数优化。
在机械设计中,往往需要确定一系列的参数,如零件的尺寸、材料的性能等,以实现系统的最优性能。
通过建立优化模型,并利用智能优化算法,如遗传算法、粒子群优化算法等,可以在庞大的参数空间中快速找到最优的参数组合。
为了更好地理解基于人工智能的机械系统建模与仿真,我们以一个简单的机械系统为例。
机械系统的动力学建模与仿真分析一、引言机械系统是由多个相互作用的部件组成的复杂系统,其动力学行为是研究的核心问题之一。
动力学建模与仿真分析可以帮助工程师深入理解机械系统的运动规律,预测系统的性能,并优化设计。
本文将介绍机械系统的动力学建模方法以及仿真分析技术。
二、动力学建模1. 基本原理机械系统的动力学建模是基于牛顿力学的基本原理进行的。
通过分析受力、受力矩以及质量、惯性等因素,可以建立机械系统的运动方程。
在建立方程时,需要考虑系统的自由度、刚体或者弹性体的运动特性以及约束条件等因素。
2. 运动学建模运动学建模是机械系统动力学建模的前提。
通过研究机械系统的几何结构和运动规律,可以得到系统的等效长度、转动角度等信息。
基于运动学建模,可以计算系统的速度、加速度以及运动的轨迹等。
3. 动力学建模动力学建模是机械系统分析的核心部分。
基于受力和受力矩的平衡条件,可以建立机械系统的运动方程。
通常采用牛顿第二定律和力矩平衡条件,可以得到刚体的平动和旋转方程。
对于复杂的非线性系统,也可以采用拉格朗日方程或者哈密顿原理进行建模。
三、仿真分析1. 数值解算方法为了求解机械系统的运动方程,需要采用适当的数值解算方法。
常见的方法包括欧拉法、龙格-库塔法、变步长积分法等。
这些方法可以将微分方程离散化,然后通过迭代计算求解系统的状态变量。
2. 动力学仿真动力学仿真是建立在动力学模型的基础上。
通过将模型转化成计算机程序,可以在计算机上模拟机械系统的运动行为。
通过仿真分析,可以研究系统的稳定性、动态响应以及力学性能等。
3. 优化设计动力学仿真还可以应用于优化设计。
通过改变系统参数、构型和控制策略等,可以研究不同设计方案的性能差异,并选择最佳方案。
通过仿真分析,可以避免实际试验的成本和时间消耗。
四、案例分析以汽车悬挂系统为例,进行动力学建模与仿真分析。
汽车悬挂系统是一个典型的机械系统,包含减震器、弹簧、悬挂臂等部件。
首先进行运动学建模,分析车轮的运动状态和轨迹。
机械系统建模与仿真在机器人领域的应用在当今科技飞速发展的时代,机器人已经成为了我们生活和生产中不可或缺的一部分。
从工业生产线上的自动化机械臂,到家庭服务中的智能机器人,再到医疗领域的手术机器人,机器人的应用范围越来越广泛。
而机械系统建模与仿真技术在机器人的设计、开发和优化过程中发挥着至关重要的作用。
机械系统建模是对机器人的机械结构、运动学和动力学特性进行数学描述的过程。
通过建立准确的数学模型,我们可以更好地理解机器人的运动规律和力学特性,为后续的仿真和优化提供基础。
例如,对于一个六自由度的工业机器人,我们可以通过建立其连杆坐标系和运动学方程,来描述各个关节的运动与末端执行器位置和姿态之间的关系。
运动学建模主要关注机器人的位置、速度和加速度等运动特性,而动力学建模则考虑了机器人所受到的力和力矩以及它们对运动的影响。
动力学建模对于机器人的控制和性能优化尤为重要,因为它能够帮助我们预测机器人在不同工作条件下的动态响应,从而为控制器的设计提供依据。
仿真技术则是在建立的数学模型基础上,通过计算机模拟来重现机器人的运动和工作过程。
它可以让我们在实际制造机器人之前,就对其性能进行评估和预测,从而大大降低了研发成本和风险。
在机器人领域,常见的仿真软件有 MATLAB/Simulink、ADAMS、SolidWorks 等。
在机器人的设计阶段,建模与仿真可以帮助我们选择合适的结构参数和驱动方式。
比如,通过仿真不同结构尺寸和材料的机器人模型,我们可以比较它们的运动范围、承载能力和精度等性能指标,从而确定最优的设计方案。
同时,还可以对机器人的驱动系统进行仿真,选择合适的电机类型、功率和减速器参数,以满足机器人的动力需求和运动要求。
在控制算法的开发中,建模与仿真也是不可或缺的工具。
我们可以在仿真环境中对各种控制算法进行测试和优化,观察机器人在不同控制策略下的运动轨迹和响应速度,从而找到最适合的控制方法。
例如,对于一个需要进行轨迹跟踪的机器人,我们可以通过仿真比较 PID 控制、模糊控制和自适应控制等算法的效果,选择能够实现高精度轨迹跟踪的控制策略。
机械工程中的复杂系统建模与仿真导言:机械工程是一门应用科学,它研究物体的运动、力学和能量转化等问题。
在机械系统中,我们常常需要对复杂的系统进行建模与仿真,以便更好地理解和控制系统的行为。
本文将从机械工程的角度出发,探讨复杂系统建模与仿真的方法和应用。
一、复杂系统的定义与特征在机械工程中,我们常常面对各种复杂系统。
复杂系统是由多个相互作用的组成部分组成的系统,它们之间的关系错综复杂,难以准确描述。
典型的机械工程复杂系统包括机械装配线、机械加工工艺以及机械自动化等。
复杂系统具有以下几个特征:1. 非线性性:复杂系统的行为往往不是线性的,它们的输出与输入之间存在非线性关系。
2. 高度耦合性:复杂系统中的不同组成部分之间相互依赖,彼此之间的关系相互影响。
3. 动态性:复杂系统的状态随时间而变化,它们的行为是动态的。
4. 不确定性:复杂系统中存在多种不确定因素,如参数变化、外部干扰等。
二、复杂系统建模的方法为了更好地理解和分析复杂系统的行为,我们需要对其进行建模。
在机械工程中,有多种建模方法可以应用于复杂系统。
1. 数学建模法:数学建模法是一种定量的建模方法,可以通过数学方程来描述系统的行为。
例如,我们可以使用微分方程来描述系统的动力学行为,使用代数方程来描述系统的静态行为。
数学建模法可以提供精确的系统行为预测,但对系统行为的理解要求较高,并且对模型的参数辨识和求解也具有较高的要求。
2. 物理建模法:物理建模法是一种基于物理规律的建模方法,它通过建立系统的物理模型来描述系统的行为。
物理建模法可以提供对系统行为的直观理解,并且对模型的参数辨识和求解的要求相对较低。
例如,在机械工程中,我们常常使用质点、弹簧、阻尼器等基本物理元件来建立机械系统的物理模型。
3. 系统辨识法:系统辨识法是一种通过实验数据来推断系统行为的建模方法。
它通过对系统的输入和输出数据进行统计和分析,建立系统的数学模型。
系统辨识法可以不依赖于系统的具体物理模型,适用于各种类型的复杂系统。
机械系统控制问题的数学建模及仿真分析在工程领域中,机械系统的控制问题一直是一个重要的研究方向。
为了实现机械系统的高效运行和精确控制,数学建模和仿真分析是不可或缺的工具。
本文将介绍机械系统控制问题的数学建模方法,以及通过仿真分析来评估和优化控制策略的过程。
一、机械系统的数学建模1.1 动力学模型机械系统通常由质点、刚体和弹簧等组成。
为了描述其运动状态,可以根据牛顿定律建立动力学方程。
例如,对于质点,其动力学方程可以表示为:\[m\frac{{d^2x}}{{dt^2}}=F\]式中,m表示质点的质量,\(x\)表示质点的位移,\(F\)表示作用在质点上的合外力。
对于刚体,可以利用转动惯量和角动量原理建立动力学方程。
1.2 控制系统模型机械系统的控制往往包括输入、输出和控制器。
输入可以是力、力矩或电压等信号,输出可以是位移、角度或速度等物理量,控制器通常通过比例、积分和微分等操作来调整输出。
为了描述控制系统的动态特性,可以建立控制系统模型。
常见的控制系统模型包括传递函数、状态空间模型和时序图。
二、机械系统仿真分析在得到机械系统的数学模型之后,可以利用仿真软件进行系统行为的分析。
仿真分析可以帮助我们预测系统的响应、优化控制策略以及评估系统性能。
2.1 仿真软件目前市场上有许多专业的仿真软件可以用于机械系统的仿真分析,如MATLAB、Simulink、ADAMS等。
这些软件提供了丰富的库和工具箱,可以方便地进行系统建模和仿真操作。
2.2 系统响应分析仿真分析可以模拟机械系统在不同输入条件下的响应情况。
通过改变输入信号的幅值、频率和相位等参数,可以观察到系统的频率响应、阻尼比等特性。
这有助于我们了解系统的动态特性,并调整控制策略以满足要求。
2.3 控制策略优化仿真分析还可以通过比较不同控制策略的性能来优化系统的控制方案。
通过引入不同的控制器参数或算法,可以评估系统的稳定性、响应时间和控制精度等指标。
优化控制策略可以使机械系统更加稳定可靠,提高工作效率。
机械控制系统的建模与仿真1.引言机械控制系统的建模和仿真是现代工程领域中的重要研究内容之一。
通过建立数学模型和进行仿真分析,可以帮助我们更好地理解和优化机械控制系统的性能。
2.机械控制系统的基本原理机械控制系统通常由传感器、控制器、执行器和反馈回路组成。
传感器用于感知环境中的参数,控制器根据传感器提供的反馈信息进行决策,执行器执行控制指令,而反馈回路则用于监测执行器的输出,并将信息反馈给控制器,形成闭环控制。
3.建立机械控制系统的数学模型建立机械控制系统的数学模型是进行仿真分析的关键步骤。
常用的建模方法包括物理建模、数学建模和系统辨识等。
3.1物理建模物理建模是根据系统的物理特性和运动原理建立数学模型的方法。
以机械振动系统为例,可以使用牛顿第二定律和杆件挠曲理论等基本原理,建立其运动方程。
通过对运动方程进行求解,可以得到系统的响应和频率特性等信息。
3.2数学建模数学建模是根据信号与系统理论和数学工具,将机械控制系统抽象为数学模型的过程。
例如,可以使用传递函数描述控制系统的输入输出关系,利用状态空间模型分析系统的稳定性和响应特性。
3.3系统辨识系统辨识是一种通过实验数据分析系统动态特性并确定系统数学模型的方法。
利用现代系统辨识理论和算法,可以从实测数据中提取系统的参数和结构信息,进而建立准确的数学模型。
4.基于数学模型进行仿真分析建立了机械控制系统的数学模型之后,我们可以利用仿真工具进行仿真分析。
仿真分析可以帮助我们理解系统的工作原理、预测系统的性能以及进行系统优化。
4.1仿真平台与工具目前,有许多专门用于建模和仿真分析的软件平台和工具可供选择。
例如,MATLAB/Simulink是一套被广泛应用于系统建模和仿真的工具,提供了丰富的建模组件和仿真功能;ADAMS是一款用于多体动力学仿真的商业软件,适用于机械系统的多体建模和仿真。
4.2仿真分析的应用通过仿真分析,我们可以评估机械控制系统的性能指标,如响应时间、稳态误差以及抗干扰能力等。
机械系统的建模与仿真研究在现代工程领域中,机械系统的建模与仿真研究作为一种重要的方法论,被广泛应用于各个领域,包括机械工程、自动化、航空航天等。
机械系统的建模与仿真研究通过建立系统的数学模型,利用计算机技术进行仿真分析,可以辅助工程师们了解和预测系统的动力学行为,优化设计方案,提高系统性能,并降低实验成本。
本文将围绕机械系统的建模方法和仿真研究的应用领域进行论述。
一、建模方法机械系统的建模是模拟、描述和预测机械系统运行行为的过程。
建模的关键在于准确地描述系统的结构和动力学特性。
常用的建模方法包括质点法、刚体法、有限元法等。
质点法是一种简化的建模方法,将机械系统中的实际物体当作质点处理,忽略其尺寸和形状,仅考虑质量和位置信息。
这种方法适用于分析质点受力和运动的场景,例如弹簧振子和重力摆等。
刚体法是一种更为复杂的建模方法,将机械系统中的实际物体当作刚体处理,考虑其形状和尺寸,但忽略其变形。
刚体的运动可以用欧拉角或四元数等方式描述。
刚体法适用于分析刚性连接和运动的场景,例如机械臂和机械车等。
有限元法是一种广泛应用于工程领域的建模方法,它将实际物体离散成多个小单元,利用微分方程或矩阵方程描述每个小单元的运动,并通过组装这些方程求解整个系统的运动。
有限元法可以用于分析复杂结构的应力、振动和热传导等问题,例如汽车车身和建筑物的结构强度优化。
二、仿真研究的应用领域机械系统的仿真研究在许多领域都有广泛的应用。
以下将介绍几个典型的应用领域,包括机械工程、自动化和航空航天等。
在机械工程领域,仿真研究可以用于优化机械设备的设计和制造。
例如,在汽车制造中,可以使用仿真软件对零部件的运动学和动力学进行模拟,以评估其性能和可靠性。
在船舶工程中,可以通过仿真研究系统的稳定性和航行性能。
这些仿真研究可以帮助工程师们设计更高效、更安全的机械系统。
在自动化领域,仿真研究可以用于控制系统的设计和优化。
例如,在工业机器人领域,可以利用仿真软件对机器人的运动轨迹和物料搬运进行仿真分析,以提高生产效率和质量。
机械设计基础中的机械系统建模与仿真机械系统建模与仿真在机械设计的过程中起着关键的作用。
通过建立适当的数学模型和使用仿真工具,我们可以评估机械系统的性能、优化设计方案,并预测其在实际运行中的表现。
本文将介绍机械系统建模与仿真的基本概念和方法,并探讨其在机械设计中的应用。
一、机械系统建模机械系统建模是指将机械系统的几何、结构、运动等特征以数学形式表达出来,从而能够对其进行分析和仿真。
机械系统建模的关键是确定合适的数学模型,可以采用多种方法进行建模,例如基于物理原理的方程建模、基于统计学的概率模型等。
在建立机械系统的数学模型时,需要考虑系统的结构、参数和约束条件等因素。
结构包括机械元件的连接方式、布局等信息;参数指的是机械元件的物理特性,如质量、弹性系数等;约束条件是指机械系统在运动过程中受到的限制,如刚体运动时的约束、连杆机构的几何条件等。
通过准确地描述这些因素,可以建立起机械系统的数学模型。
二、机械系统仿真机械系统仿真是指利用计算机程序对机械系统进行模拟和分析。
仿真可以帮助我们在设计阶段预测系统的性能,从而在实际制造之前做出优化和调整。
常用的机械系统仿真软件有ANSYS、Pro/E等,它们提供了强大的分析工具和可视化界面,方便工程师对机械系统进行仿真分析。
机械系统仿真可以从多个方面对系统进行评估,如结构强度、运动轨迹、动力学特性等。
通过仿真分析,我们可以发现系统中存在的问题,并提出相应的改进措施。
例如,在设计汽车发动机时,可以利用仿真软件对其工作过程进行模拟,评估其燃烧效率、振动特性等,以及在不同工况下的性能表现。
三、机械系统建模与仿真在机械设计中的应用机械系统建模与仿真在机械设计中的应用非常广泛。
下面以几个具体的例子来说明:1. 汽车悬挂系统设计:通过建立汽车悬挂系统的数学模型,可以评估系统的动态特性和舒适性,优化悬挂系统的参数和结构,提高汽车的操控性和乘坐舒适性。
2. 机械机构设计:机械机构是指由多个运动副相互连接而成的系统,通过建立机械机构的数学模型,可以分析系统的运动学特性、动力学特性等,为机构设计提供理论基础。
机械系统建模与仿真在机械制造中的应用在当今的机械制造领域,机械系统建模与仿真技术正发挥着日益重要的作用。
这项技术不仅能够帮助工程师在设计阶段就发现潜在的问题,从而减少后期的修改和返工,还能优化生产流程,提高生产效率,降低成本。
机械系统建模,简单来说,就是将实际的机械系统通过数学模型、物理模型或两者结合的方式进行描述。
而仿真则是基于这些模型,利用计算机技术对机械系统的运行过程进行模拟和分析。
通过建模与仿真,我们可以在虚拟环境中对机械系统的性能、可靠性、稳定性等进行评估和预测,从而为实际的制造提供有力的指导。
在机械产品的设计过程中,建模与仿真技术能够大大缩短研发周期。
传统的设计方法往往需要通过多次的物理样机试验来验证设计的合理性,这不仅耗费时间和成本,而且在发现问题后进行修改也较为困难。
而利用建模与仿真技术,工程师可以在计算机上快速构建机械系统的模型,并对其在各种工况下的性能进行模拟分析。
例如,在设计一款新型发动机时,可以通过建模与仿真来研究其内部的燃烧过程、气体流动、零部件的受力情况等,从而优化发动机的结构和性能,在设计阶段就能够避免一些潜在的问题,减少物理样机试验的次数,显著缩短研发周期。
同时,建模与仿真技术在机械制造的工艺规划方面也具有重要价值。
在制定加工工艺时,需要考虑刀具路径、切削参数、工装夹具等多个因素。
通过对加工过程进行建模与仿真,可以预测加工过程中可能出现的变形、振动、刀具磨损等问题,从而优化工艺参数,提高加工质量和效率。
比如,在数控加工中,通过仿真可以提前发现刀具与工件之间的干涉,避免在实际加工中出现碰撞事故,保证加工的安全性。
在机械系统的性能分析和优化方面,建模与仿真更是发挥着不可替代的作用。
对于复杂的机械系统,如汽车的底盘系统、飞机的起落架系统等,其性能受到多个因素的相互影响。
通过建立精确的模型,并进行仿真分析,可以深入了解系统的动态特性,找出影响性能的关键因素,进而采取针对性的优化措施。
基于虚拟现实技术的机械系统建模与仿真在当今科技飞速发展的时代,虚拟现实技术(Virtual Reality Technology,简称 VR 技术)正逐渐渗透到各个领域,其中机械系统的建模与仿真也因其而发生了深刻的变革。
虚拟现实技术为机械系统的设计、分析和优化提供了一种全新的、直观的和高效的手段,使得工程师和研究人员能够在虚拟环境中对机械系统进行深入的研究和测试。
机械系统建模是对机械系统的物理结构、运动特性和力学行为进行数学描述的过程。
传统的机械系统建模方法通常基于理论分析和数值计算,虽然能够提供较为准确的结果,但存在着一些局限性。
例如,对于复杂的机械系统,建模过程往往十分繁琐,而且难以直观地展示系统的运动和工作过程。
而虚拟现实技术的引入则为机械系统建模带来了新的思路和方法。
通过利用虚拟现实技术,我们可以创建一个逼真的三维虚拟环境,将机械系统的各个部件以可视化的形式呈现出来。
在这个虚拟环境中,我们可以更加直观地观察机械系统的结构和运动,从而更好地理解其工作原理。
在机械系统建模中,首先需要对机械系统的几何形状进行建模。
这包括对各个零部件的形状、尺寸和位置关系进行精确的描述。
利用三维建模软件,如 SolidWorks、ProE 等,可以方便地创建机械系统的三维模型。
这些模型不仅可以准确地反映机械系统的外观,还可以包含零部件的材料属性、质量特性等信息。
在完成几何建模后,还需要对机械系统的运动学和动力学特性进行建模。
运动学建模主要涉及到机械系统中各个部件的运动轨迹、速度和加速度等参数的计算。
动力学建模则更加复杂,需要考虑力、力矩、能量等因素对机械系统运动的影响。
通过建立数学模型,并结合计算机仿真技术,可以对机械系统的运动学和动力学特性进行分析和预测。
虚拟现实技术在机械系统建模中的另一个重要应用是人机交互。
在虚拟环境中,用户可以通过手柄、头盔等设备与机械系统进行交互操作。
例如,用户可以手动装配机械零部件,观察不同装配顺序和方法对装配过程的影响。
机械系统动力学建模与仿真分析引言机械系统是现代工业中的重要组成部分,其动力学行为的建模和仿真分析对于系统设计、性能优化以及故障诊断起着关键作用。
本文将介绍机械系统动力学建模与仿真分析的基本概念和方法,并讨论其在实际工程中的应用。
一、机械系统的动力学建模机械系统的动力学建模是将复杂的物理过程抽象为数学模型的过程。
在建模过程中,我们需要考虑系统的结构、力学特性和工作条件等因素。
一般而言,机械系统的动力学建模可以分为两个层次:单体建模和系统建模。
1. 单体建模单体建模是将机械系统划分为若干个简化的单元,并对每个单元进行建模。
这些单元可以是机械元件(如齿轮、轴承)、机构(如齿轮传动、减速器)或者整个机器人等。
在建立单体模型时,我们需要考虑物体的质量、惯性、刚度和阻尼等因素,并利用牛顿运动定律和能量守恒原理进行建模。
2. 系统建模系统建模是将单体模型组合起来,构建整个机械系统的数学模型。
在系统建模中,我们需要考虑各个单体之间的相互作用,并确保整个系统的动力学特性的一致性。
此外,还需要考虑外部激励(如传感器反馈、控制器输入等)对系统的影响。
二、机械系统的动力学仿真机械系统的动力学仿真是在建立完整的数学模型之后,利用计算机软件对系统进行模拟的过程。
通过仿真分析,我们可以预测系统的运动轨迹、力学响应和能量传递等动力学行为。
常用的机械系统仿真方法包括基于方程求解的解析仿真和基于数值计算的数值仿真。
1. 解析仿真解析仿真是通过求解系统的动力学方程,得到系统在各个时刻的状态变量。
这种方法的优点是能够获得系统的精确解,但在复杂系统中,由于方程求解的复杂性,可能会出现求解困难的情况。
因此,解析仿真一般适用于简单的机械系统或者特定的研究问题。
2. 数值仿真数值仿真是通过将系统的动力学方程转化为差分或者微分方程的形式,并利用计算机进行数值求解。
这种方法的优点是能够处理复杂的非线性和时变系统,并能够模拟系统的长时间行为。
目前,常用的数值仿真软件有MATLAB/Simulink、ADAMS和ANSYS等。
机械工程中的系统建模与仿真分析机械工程是一门广泛应用于工业制造和生产中的学科,而系统建模与仿真分析是机械工程中一个非常重要的领域。
系统建模与仿真分析可以帮助工程师们更好地理解和优化机械系统的设计和运行过程。
本文将从基本概念、建模方法和分析技术等方面来探讨机械工程中的系统建模与仿真分析。
首先,了解系统建模与仿真分析的基本概念十分重要。
系统建模是将一个实际存在的机械系统抽象为数学模型的过程,以便对其进行仿真分析。
而仿真分析则是利用计算机模拟系统行为,以便预测和分析系统的性能和行为。
系统建模与仿真分析能够帮助工程师们更好地理解机械系统的运行原理和行为特性,为系统的设计优化和问题排除提供指导。
其次,机械工程中的系统建模方法有多种多样。
常见的建模方法包括物理建模、数学建模和仿真建模等。
物理建模是根据机械系统的物理特性和原理来建立数学模型。
例如,一台发动机可以通过建立其压力、温度和流量等物理量之间的关系来进行物理建模。
数学建模则是利用数学方法来描述机械系统的行为特性,例如基于微分方程的建模方法。
而仿真建模则是利用计算机仿真技术来模拟机械系统的行为,例如通过使用 Matlab 或 Simulink 等仿真软件进行建模和分析。
这些建模方法各有特点,可以根据具体情况选择适用的方法。
此外,机械工程中的系统仿真分析技术也是非常丰富多样的。
常见的仿真分析技术包括静态分析、动态分析和优化分析等。
静态分析主要是研究机械系统在静止状态下的应力、位移和变形等;动态分析则是研究机械系统在动态载荷和振动等条件下的响应;而优化分析则是通过对系统设计参数进行调整,以获得最优的性能和效果。
这些仿真分析技术可以帮助工程师们更好地评估机械系统的可靠性、稳定性和安全性等关键指标,并进行相应的改进。
此外,系统建模与仿真分析在机械工程中的应用也非常广泛。
首先,在机械系统的设计阶段,工程师们可以通过建立系统模型和进行仿真分析,评估不同设计方案的性能和可行性,从而优化系统的设计。
机械工程中的系统建模与仿真研究1. 引言机械工程作为一门学科,研究的是机械装置的设计、制造、运行和维护。
其中,系统建模与仿真是机械工程中的重要研究方法之一。
本文将从系统建模的概念、方法和应用等方面展开论述,并通过实例分析,阐述系统建模与仿真在机械工程领域的实际应用。
2. 系统建模的概念系统建模是指将实际的物理系统或过程抽象为数学模型的过程,以便对系统进行分析、预测和优化。
在机械工程中,系统建模通常包括机械结构、动力学、热传输、流体力学等方面。
建立数学模型可以帮助工程师更好地理解和掌握系统的行为规律,为后续的仿真分析提供基础。
3. 系统建模的方法系统建模的方法多种多样,根据具体问题的性质和要求选择适合的方法进行建模。
常用的建模方法包括物理模型、统计模型、数学模型和仿真模型等。
物理模型通过实验和观察,引入物理规律和实测数据进行建模。
统计模型则通过数据分析和概率统计方法,对系统的行为进行建模。
数学模型是指基于数学原理和方程来描述系统的模型。
而仿真模型则是利用计算机技术,将数学模型转化为计算机程序,以模拟系统的运行和行为。
4. 系统建模的应用系统建模与仿真在机械工程领域有着广泛的应用。
首先,系统建模可以在产品设计阶段进行优化。
通过建立产品的数学模型,可以模拟产品的运行状况,评估产品的性能,找出潜在的问题并进行改进。
其次,系统建模也可以用于机械装置的故障诊断与预测。
通过建立机械装置的数学模型,可以对机械系统的运行状态进行监测和预测,早期发现问题并采取措施,避免故障造成的损失。
此外,系统建模还可以用于机械结构的优化设计、运动控制的研究以及新技术的集成与应用等方面。
5. 实例分析为了更好地理解系统建模与仿真在机械工程中的应用,我们以某航天器的姿态控制系统为例进行分析。
姿态控制系统是航天器上一项重要的功能,用于保持航天器稳定的姿态。
在该例子中,我们可以建立航天器的动力学模型,以描述航天器在各种外部干扰下的运动行为。
机械系统建模与仿真在工程设计中的应用在当今的工程设计领域,机械系统建模与仿真已经成为一项不可或缺的重要技术手段。
它为工程师们提供了一种高效、准确且经济的方法,用于在产品实际制造之前,对其性能、可靠性和可行性进行评估和优化。
机械系统建模,简单来说,就是通过数学公式、物理定律和经验数据等,将真实的机械系统转化为可以在计算机中处理和分析的数学模型。
这个模型能够描述机械系统的结构、运动、力学特性以及各种物理过程。
而仿真则是基于这个模型,在计算机上模拟系统在不同条件下的运行情况。
想象一下,在设计一款新型汽车发动机时,如果没有建模与仿真技术,工程师们可能需要制造出多个物理样机,并进行大量的实地测试,这不仅耗时费力,成本高昂,而且在发现问题后进行修改也极为困难。
然而,有了建模与仿真,工程师们可以在计算机上快速构建发动机的模型,模拟其燃烧过程、热力学循环、零部件的运动和受力情况等。
通过调整设计参数,如气缸形状、气门正时、喷油策略等,能够迅速评估不同设计方案的优劣,从而找到最优的设计方案。
在航空航天领域,机械系统建模与仿真的应用更是至关重要。
飞机的机翼设计、飞行控制系统的性能优化、发动机的喘振分析等,都离不开建模与仿真技术。
例如,在设计机翼时,通过建模可以准确地描述机翼的几何形状和结构特性,而仿真则可以模拟在不同飞行速度、高度和姿态下,机翼所受到的空气动力载荷和流场分布。
这有助于优化机翼的外形,提高升力、降低阻力,同时确保机翼在各种复杂工况下的结构强度和稳定性。
机械系统建模与仿真在机器人设计中也发挥着重要作用。
机器人的运动学和动力学分析是设计过程中的关键环节。
通过建模,可以确定机器人各个关节的运动范围、速度和加速度限制,以及所需的驱动力矩。
仿真则能够模拟机器人在不同工作环境下的运动轨迹和姿态,验证其是否能够完成预定的任务,同时还可以评估机器人与周围环境的交互作用,避免碰撞和干涉。
除了在产品设计阶段,机械系统建模与仿真在生产制造过程中也具有重要意义。
机械设计中的机械系统建模与仿真机械设计是一门综合性强、涉及面广的学科,它的发展与机械系统的建模与仿真密不可分。
机械系统建模与仿真是指通过数学模型和计算机仿真技术来描述、分析和预测机械系统的运动行为以及性能表现。
本文将从机械系统建模和机械系统仿真两个方面进行讨论。
一、机械系统建模机械系统建模是指将机械系统的结构、零部件以及它们之间的相互作用关系用数学模型来表示的过程。
机械系统建模的步骤可分为以下几个方面:1. 系统边界的确定:首先需要明确所研究机械系统的范围和边界。
系统边界的确定有助于界定需要建模和仿真的目标。
2. 系统结构的分析:对机械系统的结构进行分析,了解各个部件之间的连接方式以及作用关系。
这一步骤有助于理清系统的整体结构,并为后续的建模工作提供基础数据。
3. 动力学模型的建立:根据机械系统的结构和原理,通过牛顿定律等原理建立机械系统的动力学模型。
动力学模型描述了机械系统中各个部件之间的力学关系,是建模的核心。
4. 状态方程的确定:在建立动力学模型的基础上,确定系统的状态方程。
状态方程描述了系统中各个变量之间的关系,通过求解状态方程可以得到系统的运动规律。
5. 参数的估计与校正:在建立动力学模型和状态方程的过程中,需要对系统的参数进行估计和校正。
参数的准确性对于模型的准确性和仿真结果的可靠性至关重要。
二、机械系统仿真机械系统仿真是指利用计算机对机械系统的动力学行为进行模拟和预测的过程。
它可以帮助设计人员直观地了解机械系统的运动行为、性能指标以及随时间的变化规律。
机械系统仿真一般包括以下几个方面:1. 初始条件的设定:在进行机械系统仿真之前,需要确定模拟的起始状态,即初始条件。
初始条件的设定对于仿真结果的准确性和系统行为的真实性有重要影响。
2. 动力学仿真:使用数值计算方法对机械系统的动力学行为进行仿真。
通过求解动力学方程,可以得到系统在不同时间点上的状态。
3. 功能仿真:对机械系统的功能进行仿真,包括系统的运动轨迹、速度、加速度以及力学性能等方面。
机械系统建模与仿真机械工程是一门广泛涉及设计、制造、分析和维护机械系统的工程学科。
在机械工程中,机械系统建模与仿真是一项重要的技术,它可以帮助工程师们更好地理解和预测机械系统的行为。
本文将介绍机械系统建模与仿真的基本概念、方法和应用。
一、机械系统建模机械系统建模是指将机械系统的结构和行为抽象为数学模型的过程。
通过建立数学模型,工程师可以对机械系统进行分析和优化。
机械系统建模的核心是建立系统的动力学方程,即描述系统运动和相互作用的方程。
这些方程可以是基于物理原理的,也可以是基于经验的。
在机械系统建模中,常用的方法包括拉格朗日法和牛顿-欧拉法。
拉格朗日法通过定义系统的广义坐标和广义力,将系统的动力学方程转化为拉格朗日方程。
牛顿-欧拉法则基于牛顿定律和欧拉定理,将系统的动力学方程表示为力和力矩的平衡方程。
这些方法可以根据具体的系统特点选择使用。
二、机械系统仿真机械系统仿真是指利用计算机模拟机械系统的运动和行为。
通过仿真,工程师可以在计算机上模拟机械系统的运行过程,观察系统的动态行为和性能指标。
机械系统仿真可以帮助工程师们快速评估不同设计方案的优劣,并进行系统性能优化。
在机械系统仿真中,常用的方法包括离散事件仿真和连续系统仿真。
离散事件仿真适用于描述系统中离散事件的发生和相互作用,如机械系统中的传感器触发、开关切换等。
连续系统仿真适用于描述系统中连续的物理过程,如机械系统中的运动、振动等。
这些方法可以根据仿真的目的和需求选择使用。
三、机械系统建模与仿真的应用机械系统建模与仿真在工程实践中有着广泛的应用。
它可以用于机械系统设计阶段的概念验证和优化。
通过建立数学模型和进行仿真,工程师可以评估不同设计方案的性能,找到最优的设计方案。
此外,机械系统建模与仿真还可以用于系统故障诊断和故障排除。
通过仿真模拟系统的故障行为,工程师可以快速定位和修复故障。
机械系统建模与仿真还可以用于机械系统的控制和优化。
通过建立系统的控制模型和进行仿真,工程师可以设计和优化控制策略,提高系统的性能和稳定性。
基于深度学习的机械系统建模与仿真在当今科技飞速发展的时代,机械系统的设计、分析和优化变得日益复杂和关键。
为了更准确地理解和预测机械系统的性能,基于深度学习的建模与仿真技术应运而生,并逐渐成为研究的热点。
机械系统,从简单的齿轮传动到复杂的航空发动机,其运行和性能受到多种因素的影响。
传统的建模方法往往依赖于简化的物理模型和经验公式,虽然在一定程度上能够解决问题,但在处理复杂的非线性关系和多因素交互作用时,往往显得力不从心。
而深度学习作为一种强大的人工智能技术,具有从大量数据中自动提取特征和学习复杂模式的能力,为机械系统的建模与仿真提供了全新的思路和方法。
深度学习在机械系统建模中的应用,首先体现在数据的采集和预处理上。
为了训练深度学习模型,需要收集大量的机械系统运行数据,包括传感器测量的各种物理量,如温度、压力、转速、振动等。
这些数据可能来自于实际的机械系统运行监测,也可能通过数值模拟获得。
然而,原始数据往往存在噪声、缺失值和异常值等问题,需要进行清洗、归一化和特征工程等预处理操作,以便模型能够更好地学习和理解数据中的模式。
在模型架构的选择上,常见的深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短时记忆网络(LSTM)和门控循环单元(GRU)等,都在机械系统建模中得到了广泛的应用。
例如,对于图像数据,如机械零件的表面缺陷检测,CNN 能够有效地提取图像的特征;而对于时间序列数据,如机械系统的振动信号分析,RNN 及其变体则更适合捕捉时间上的依赖关系。
以旋转机械的故障诊断为例,我们可以使用传感器采集到的振动信号作为输入数据。
通过将振动信号转换为时域、频域或时频域的特征图,并将其输入到 CNN 模型中,模型能够自动学习不同故障类型对应的特征模式,从而实现对故障的准确诊断。
而对于具有长时间依赖关系的机械系统性能预测问题,如发动机的磨损预测,LSTM 或 GRU 模型能够更好地记忆历史信息,从而提高预测的准确性。
机械系统建模与仿真技术综述在现代工程领域,机械系统的设计、优化和性能评估离不开建模与仿真技术。
这一技术手段为工程师提供了强大的工具,能够在实际制造和测试之前,对机械系统的行为和性能进行预测和分析。
机械系统建模,简单来说,就是用数学语言或物理模型来描述机械系统的组成、结构和运动规律。
其目的是将复杂的实际机械系统转化为可以计算和分析的形式。
建模过程中,需要对机械系统的各个部分进行详细的研究和理解,包括零部件的几何形状、材料特性、运动副的类型和约束条件等。
常见的机械系统建模方法有多种。
基于物理定律的建模方法,例如牛顿力学、拉格朗日方程和哈密顿原理等,通过对系统的受力分析和能量转换关系进行描述,建立系统的动态方程。
这种方法理论基础坚实,但对于复杂系统的建模往往较为繁琐。
还有基于数据驱动的建模方法。
通过收集大量的实验数据或实际运行数据,利用机器学习、统计分析等技术,建立输入输出之间的关系模型。
这种方法在处理复杂的非线性系统时具有一定的优势,但需要足够数量和质量的数据支持。
仿真技术则是基于建立好的模型,通过计算机模拟来重现机械系统的运行过程。
在仿真过程中,可以改变系统的参数、输入条件和边界条件,观察系统的响应和性能变化。
仿真技术的应用领域十分广泛。
在机械设计阶段,通过对不同设计方案进行仿真,可以快速评估其性能,从而选择最优的设计方案。
例如,在汽车设计中,可以对发动机的燃烧过程、车辆的空气动力学性能进行仿真,优化发动机的燃烧效率和降低车辆的风阻。
在制造工艺方面,仿真可以用于预测加工过程中的应力分布、温度变化等,从而优化工艺参数,提高加工质量和效率。
比如在金属切削加工中,通过仿真可以确定最佳的切削速度、进给量和切削深度,减少刀具磨损和提高零件表面质量。
对于机械系统的故障诊断和预测维护,仿真技术也能发挥重要作用。
通过建立系统的正常运行模型和故障模型,可以对比实际运行数据与仿真结果,及时发现潜在的故障隐患,并预测故障发生的时间和部位,提前进行维护和修理,降低设备停机时间和维修成本。
机械系统的动态建模与仿真机械系统的动态建模与仿真是现代工程领域中非常重要的一项技术。
通过建立数学模型,工程师们能够在计算机上进行仿真,预测和评估机械系统的性能。
这种技术广泛应用于机械设计、控制系统优化以及故障分析等领域。
本文将探讨机械系统动态建模与仿真的原理、方法以及在实际工程中的应用。
一、建模方法机械系统的动态建模是指将实际物理系统转化为数学模型的过程。
常用的建模方法有基于物理原理的方法和基于数据的方法。
基于物理原理的建模方法是根据机械系统的力学原理和几何关系来推导数学模型。
例如,对于一个弹簧-质量系统,可以利用胡克定律推导出弹簧的力学方程,并结合牛顿第二定律得到质点的运动方程。
这种方法的优点是模型参数具有明确的物理意义,对系统的分析更加直观,但是推导的过程相对复杂。
基于数据的建模方法是通过实验数据来建立数学模型。
在现实工程中,往往会通过传感器采集到机械系统的状态数据,例如位移、速度和加速度等。
利用这些数据,可以采用系统辨识的方法,如最小二乘法或者神经网络等,来拟合得到数学模型。
这种方法的优点是建模过程相对简单,适用于大型复杂系统,但是对实验数据的质量要求较高。
二、仿真技术机械系统的仿真是指在计算机上模拟机械系统的运行过程,以预测系统的响应和评估系统性能。
常用的仿真技术包括数值计算方法和离散事件仿真方法。
数值计算方法是基于微积分和数值解方法来求解微分方程,得到系统的状态随时间的演变。
最常用的数值解方法有欧拉法和龙格-库塔法等。
这些方法可以精确地模拟机械系统的动态特性,但是计算量较大,对计算机性能要求较高。
离散事件仿真方法是将连续时间的系统状态离散化为一系列事件,通过事件模拟系统的运行过程。
这种方法在仿真过程中只模拟系统状态发生变化的时刻,减少了计算量。
常用的离散事件仿真软件有MATLAB/Simulink和Arena等。
三、应用案例机械系统的动态建模与仿真在实际工程中有广泛的应用。
以下是一些常见的应用案例:1. 机械设计优化:在设计机械系统时,可以通过仿真对不同参数的组合进行评估,找到最优的设计方案。
基于动态模态分析的机械系统建模与仿真在现代工程领域中,机械系统的性能和可靠性对于各种设备的正常运行至关重要。
为了更好地理解和优化机械系统的行为,动态模态分析成为了一种强大的工具。
通过对机械系统进行建模和仿真,可以在设计阶段就预测系统的动态特性,从而减少试验次数、缩短研发周期、降低成本并提高产品质量。
动态模态分析是一种用于确定结构固有频率、振型和阻尼比等动态特性的技术。
它基于系统的振动响应来识别这些模态参数,为机械系统的设计和优化提供了关键的信息。
在进行动态模态分析之前,首先需要建立机械系统的数学模型。
机械系统的建模可以采用多种方法,其中常见的有有限元法(Finite Element Method,FEM)和多体动力学法(Multibody Dynamics Method)。
有限元法将机械结构离散化为许多小的单元,通过对每个单元的力学特性进行分析,然后组合得到整个结构的力学响应。
这种方法适用于复杂形状和结构的建模,但计算量较大。
多体动力学法则侧重于研究多个物体之间的相互作用和运动关系,通过建立物体的运动方程来描述系统的动态行为。
它在处理机械系统中的关节、约束和运动传递等方面具有优势。
在建立模型时,需要准确地确定系统的物理参数,如质量、刚度、阻尼等。
这些参数的准确性直接影响到模型的可靠性和仿真结果的精度。
为了获取这些参数,可以通过实验测量、理论计算或者参考相关的技术资料。
此外,还需要对模型进行合理的简化和假设,以降低计算复杂度,同时又能保证模型能够反映系统的主要动态特性。
一旦建立了机械系统的模型,就可以进行仿真分析。
仿真过程通常使用专门的软件工具,如 ANSYS、ABAQUS 等。
在仿真中,可以施加各种激励,如力、位移、速度等,来模拟系统在实际工作条件下的响应。
通过对仿真结果的分析,可以得到系统的振动频率、振型、位移、应力等信息。
例如,对于一个旋转机械系统,通过动态模态分析可以发现其在特定转速下可能出现共振现象。
中国矿业大学
2010 级博士研究生课程考试试卷
考试科目机械系统建模及仿真
考试时间2011年1月
学生姓名阮文苏
学号ZB
所在院系机电工程学院
任课教师江晓红
中国矿业大学研究生院培养管理处印制
含间隙接触的机构接触碰撞系统建模及仿真
图1 冲击自振筛
1-筛杆座;2-筛杆
冲击自振筛是一种利用物料筛分装置,其机构如图1所示。
其工作原理为:待筛分物料以一定速度冲击筛杆1,引起筛杆的振动,进而对物料起到筛分的效果。
该系统中,筛杆装在筛杆座的孔中,杆与孔为间隙配合,为一含间隙接触的机构,该间隙的大小直接影响自振筛的动态性能,进而影响筛分效果,因而对该间隙接触机构进行接触碰撞分析,研究其动态性能,对于合理选取间隙,改善自振筛性能具有很重要的意义。
在该研究中,我们主要研究单颗物料与含间隙接触的筛杆机构进行碰撞的动态特性分析,主要研究筛杆与筛杆座间的间隙大小、筛杆与筛杆座间的刚度及阻尼大小对碰撞动态特性的影响。
⒈三维模型的建立
图2 含间隙接触的机构三维图
三维设计软件Pro/e具有很强的三维造型能力,并且拥有和ADAMS的无缝连接接口。
因此在Pro/e中对仿真系统进行三维建模,建立的筛杆和杆座装配模型如图2所示。
把该文件保存成X_T格式以便ADAMS调用。
2.DDAMS仿真分析
(1)启动ADAMS
双击桌面上ADAMS/View的快捷图标,打开ADAMS/View。
在欢迎对话框中选择“Create a new model”,在模型名称(Model name)栏中输入:jxg;在重力名称(Gravity)栏中选择“Earth Normal (-Global Y)”;在单位名称(Units)栏中选择“MMKS –mm,kg,N,s,deg”。
如图3所示。
图3 ADAMS欢迎对话框
(⒉)设置工作环境
对于这个模型,网格间距需要设置成更高的精度以满足要求。
在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网格(Working Grid)命令。
系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成200mm和200mm,间距(Spacing)中的X和Y都设置成10mm。
然后点击“OK”确定。
如图4所表示。
图4 工作网格设置图5 模型导入对话框
(3).导入模型
在ADAMS/View菜单栏中,点击file菜单下的import命令,出现图5所示对话框,在对话框中输入Pro/e中保存的文件。
(4)创建下落小球
在ADAMS/View零件库中选择图标,参数选择为“New Part”,半径(Radius)选择25mm 。
按F4快捷键,打开栅格捕捉窗口,当坐标显示为(0,200,0)时,单击鼠标左键,建立小球模型。
调整小球到筛杆质心正上方,双击小球模型,在弹出的对话框中,将Category选项设为Name and Position,将Location栏的值0.0, 0.0, 0.0改为0.0, 0.0, 60.0(位置移动),点击对话框下面的OK键进行确定,如图7所示。
建立好的球体如图8。
图6 球体参数设置
图7 球体修改
图8 建立好的球体
(5)添加约束副
选择ADAMS/View约束库中的固定副图标,参数选择2 Bod-1 Loc和Normal To Grid。
在
ADAMS/View工作窗口中先用鼠标左键选择筛杆座(PART_2),然后选择机架(ground),接着选择筛杆座上的PART_2.cm,如图9所示,图中显亮的部分就是所创建的固定副(JOINT_1),同理对另一个杆座也建立一个固定副。
图9 固定副的建立
由于筛杆与筛杆座之间有接触关系,因此创建完筛杆座的固定副约束后,还要创建筛杆与筛杆座间的接触。
先点选力库中的,出现图10所示对话框。
图10 接触设置对话框
在I Solid里单击右键,选PART_2,在J Solid里点右键选PART_4,相关系数设置如图11。
图11 筛杆与筛杆座间接触相关系数设置
同理在杆与小球之间建立接触,相关参数设置如图12.
图12筛杆与小球间接触相关系数设置
图13 建立后的仿真模型
最终建立好的仿真模型如图13所示。
(6)模型仿真
点击仿真按钮,设置仿真终止时间(End Time)为1.5,仿真工作步长(Step Size)为300,然后点击开始仿真按钮,进行仿真。
仿真结束后,单击进入后处理设置过
滤器,如图14
图14 过滤器设置
(7)仿真结果及分析
①筛杆与筛杆座无间隙与有间隙的仿真结果比较分析
图15 a 无间隙时球体与筛杆间的作用力
图15 b 无间隙时筛杆与筛杆座间的作用力
图16 a 有间隙时球体与筛杆间的作用力
图16b 有间隙时筛杆与筛杆座间的作用力
对比图15 a与图16 a,图15 b与图16 b可看出,筛杆与筛杆座之间间隙的存在可增加物料与筛杆的接触时间,从而有效减小冲击力,但是间隙配合使得筛杆与筛杆座接触处出现较大的冲击力。
②间隙大小的影响
图17 a 较小间隙时球体与筛杆间的作用力
图17 b 较小间隙时筛杆与筛杆座间的作用力
图18 a较大间隙时球体与筛杆间的作用力
图18 b 较大间隙时筛杆与筛杆座间的作用力
对比图17与图18可看出,间隙值过大时,间隙元素之间的碰撞力骤增,合理选取间隙大小可控制冲击力的大小,又可增加筛杆的振动。
③杆座刚度不同的影响
图19 a 杆座刚度较小时球体与筛杆间的作用力
图19 b杆座刚度较小时筛杆与筛杆座间的作用力
图20 a 杆座刚度较小时球体与筛杆间的作用力
图20 b杆座刚度较小时筛杆与筛杆座间的作用力
对比图19与图20可以看出,间隙元素之间的碰撞力对筛杆与筛杆座刚度系数的变化并不十分敏感。
④杆座阻尼不同的影响
图21 a 杆座阻尼较小时球体与筛杆间的作用力
图21 b杆座阻尼较小时筛杆与筛杆座间的作用力
图22 a 杆座阻尼较大时球体与筛杆间的作用力
图22 b 杆座阻尼较大时筛杆与筛杆座间的作用力
对比图21与图22可以发现,间隙元素之间的碰撞力对筛杆与筛杆座间的阻尼系数的变化较为敏感。
3.总结
通过仿真可知,筛杆与筛杆座之间的间隙大小及阻尼大小对筛分动态特性有较大的影。