三重积分及其计算.ppt
- 格式:ppt
- 大小:1.01 MB
- 文档页数:41
球面坐标下计算三重积分一、球面坐标介绍xyzoϕr∙∙θAπθ≤≤0的球面坐标.就叫做点,,个数面上的投影,这样的三在点为的角,这里段逆时针方向转到有向线轴按轴来看自为从正轴正向所夹的角,与为有向线段间的距离,与点点为原来确定,其中,,三个有次序的数可用为空间内一点,则点设M r xoy M P OP x z z OM M O r r M z y x M ϕθϕθϕθ),,(,r +∞<≤0.20πϕ≤≤,0πθ≤≤),,(z y x M )0,,(y x P⎪⎩⎪⎨⎧===.cos ,sin sin ,cos sin θϕθϕθr z r y r x 球面坐标与直角坐标的关系为如图,Pxyzo ),,(z y x M ϕr∙∙θzyxA,轴上的投影为在点,面上的投影为在设点A x P P xoy M .,,z PM y AP x OA ===则为常数r 为常数θ为常数ϕ如图,三坐标面分别为圆锥面;球面;半平面.二、直角坐标到球面坐标的变换公式⎰⎰⎰Ω=dxdydz z y x f ),,(⎰⎰⎰Ω.sin )cos ,sin sin ,cos sin (2ϕθθθϕθϕθd drd r r r r f 球面坐标系中的体积元素为,sin 2ϕθθd drd r dV =ϕd rxyzodrϕθd r sin θrd θd θϕϕd θsin r三、例题例1 计算 ⎰⎰⎰Ω+=dxdydz y x I )(22,其中Ω是锥面222z y x =+,与平面a z =)0(>a 所围的立体.a z = ,cos θa r =⇒222z y x =+,4πθ=⇒,20,40,cos 0:πϕπθϕ≤≤≤≤≤≤Ω∴a r 解采用球面坐标:⎰⎰⎰Ω+=dxdydzy x I )(22drr d d a ⎰⎰⎰=40cos 03420sin πθπθθϕθθθππd a)0cos (51sin 255403-⋅=⎰.105a π=。
三重积分的概念三重积分的性质三重积分的计算直角柱面球面回顾:讨论密度分布不均匀的物体的质量:(1) 一根细棒:ab 密度为i ξ=M ()b a x dx ρ=⎰()i ρξi x ∆∑=ni 10lim →λ(2)平面薄片:),(i i ηξ=M (,)i i ρξη∑=n i 10lim →λiσ∆(,)Dx y dxdy ρ=⎰⎰密度为y x D(3)设在空间有限闭区域Ω内分布着某种不均匀的物质,(,,),x y z C ρ∈求分布在Ω内的物质的质量M .密度函数为Ω(,,)k k k ξηζk v ∆(,,)x y z ρ➢分割:12,,,,,i n v v v v ∆∆∆∆把Ω分为➢取近似:(,,)k k k k kM v ρξηζ∆≈∆➢求和:1(,,)n k k k kk M v ρξηζ=≈∆∑➢取极限:01lim (,,)n k k k k k M v λρξηζ→==∆∑设f (x , y , z )是空间有界闭区域Ω上的有界函数,1、将闭区域Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅⋅⋅, ∆v n , 其中∆v i 表示第i 个小闭区域, 也表示它的体积,2、在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξi , ηi , ζi )∆v i ,3、求和∑=ni i i i i v f 1),,(∆ζηξ4、如果当各小闭区域的直径中的最大值λ趋近于零时, 该和式的极限存在, 则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 并记为d (,,)Ωf x y z v⎰⎰⎰三重积分的定义⚫注:(2)三重积分的物理意义:不均匀物体的质量(1)其中dv 称为体积元素, 其它术语与二重积分相同.(3)同样有: 有界闭区域上的连续函数一定可积.d 01.(,,)lim (,,)ni i i ii f x y z v f v λξηζ→=Ω=∆∑⎰⎰⎰将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数, 就得到三重积分的定义.三重积分的概念三重积分的性质三重积分的计算直角柱面球面➢线性性质[]d d d (,,)(,,)(,,)(,,)f x y z g x y z v f x y z v g x y z v αβαβΩΩΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢可加性d d d 12(,,)(,,)(,,)f x y z v f x y z v f x y z v ΩΩΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢几何意义d v V Ω=⎰⎰⎰V 为Ω的体积➢不等式(,,)f g x y z ≤∈Ωd d (,,)(,,)f x y z v g x y z vΩΩ≤⎰⎰⎰⎰⎰⎰d d (,,)(,,)f x y z v f x y z vΩΩ≤⎰⎰⎰⎰⎰⎰(),Df x y d σ=⎰⎰曲顶柱体的体积➢估值定理(,,)m f M x y z ≤≤∈Ωd (,,)mV f x y z v MVΩ≤≤⎰⎰⎰➢中值定理(,,)f x y z 在Ω上连续,则存在(,,),ξηζ∈Ω使得d (,,)(,,)f x y z v f V ξηζΩ=⎰⎰⎰三重积分的概念三重积分的性质三重积分的计算直角柱面球面在直角坐标系中, 如果我们用三族(平行于坐标面的)平面x = 常数, y = 常数, z = 常数, 对空间区域进行分割那末每个规则小区域都是长方体. 其体积元素为:dv =dxdydz三重积分可写成:三重积分在直角坐标系中的计算法与二重积分类似, 三重积分可化成三次积分进行计算.具体可分为先单后重和先重后单两种类型.d (,,)f x y z v Ω=⎰⎰⎰(),,f x y z dxdydzΩ⎰⎰⎰(一)先单后重(先一后二)法假设:1(,,)f x y z Ω在有界闭区域上连续;2º过Ω内任一点M 且平行于某坐标轴的直线与Ω的边界曲面S 至多有两个交点.以下以z 轴的情形为例.),(2y x zz =),(1y x z z =),(2y x z z =),(1y x z z =xyzoΩD xy 1z 2z 2S 1S ),(1y x z z =),(2y x z z =ab),(y x ),,(:),,(:2211y x z z S y x z z S ==(,),xy x y D ∈过点作直线穿出.穿入,从从21z z Ω在xOy 面上的投影区域为D xy ,以D xy 的边界为准线作母线平行z 轴的柱面.这柱面与Ω的边界曲面S相交,并将S 分成上、下两部分:则Ω可以表示为12{(,,)(,)(,),(,)}.xy x y z z x y z z x y x y D Ω=≤≤∈()()12,(,,),,,x y f x y z z z x y z x y z ⎡⎤⎣⎦先将看作定值,将只看作的函数,在区间上对积分21(,)(,)(,,)(,)[(,,)].xyxyD z x y z x y D f x y z dv F x y d f x y z dz d σσΩ==⎰⎰⎰⎰⎰⎰⎰⎰从而原三重积分可表示为21(,)(,)(,,)xyz x y z x y D d f x y z dzσ=⎰⎰⎰这就化为一个定积分和一个二重积分的运算21(,)(,)(,,)z x y z x y f x y z dz⎰(,)xy F x y D 再计算在闭区间上的二重积分(,)F x y ==⎰⎰⎰Ωdvz y x f ),,(12:()(),,xy D y x y y x a x b ≤≤≤≤若得2()y y x =abD1()y y x =Dba2()y y x =1()y y x =先对z ,再对y ,最后对x 的三次积分dx ⎰dy ⎰(),,.f x y z dz ⎰()1,z x y ()2,z x y ()1y x ()2y x ab注:若将积分域Ω投影到yOz 或xOz 面上,则可把三重积分化为按其它顺序的三次积分.x y zyoz →→Ω积分次序为将投影到面21(,)(,)(,,)(,,)yzx y z x y z D f x y z dv d f x y z dxσΩ=⎰⎰⎰⎰⎰⎰21(,)(,)(,,)(,,)xzy x z y x z D f x y z dv d f x y z dyσΩ=⎰⎰⎰⎰⎰⎰y x z xoz →→Ω积分次序为将投影到面Ω:平面x =0, y = 0, z = 0,x+2y+ z =1所围成的区域x = 0, y = 0, x+2y =1 围成例1.计算三重积分x + 2y + z =1yx121()112y x =−D xyzy x x I d d d ⎰⎰⎰Ω=1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限分析:1xyz121解:d d d x x y zΩ⎰⎰⎰121(1)00d (12)d x x x x y y−=−−⎰⎰120d x y z−−⎰12301(2)d 4x x x x =−+⎰148=练习:将积分次序改为:先y 再z 后x将积分次序改为:先x 再z 后y1xyz121x + 2y + z =1()012101201z x yy x x ≤≤−−⎧⎪⎪Ω≤≤−⎨⎪≤≤⎪⎩:例2 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中 积分区域 Ω为由曲面22y x z +=,2x y =,1=y , 0=z 所围成的空间闭区域.2y x=1y =oxy-11xyD 11、画出(观察)积分区域分析:2、确定积分次序先z 再y 后x,3、确定z 的积分上下限4、将Ω向xoy 平面做投影得区域xyD ⎰⎰⎰−+=1101222),,(yx x dz z y x f dy dx I .例3 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中积分区域Ω为由曲面 222y x z +=及22x z −=所围成的闭区域.1、画出(观察)积分区域分析:2、确定积分次序先z , 再y 后x ,3、确定z 的积分上下限222z x=−下曲面21((0,0)2(0,0)0)z z =>=2212z x y=+上曲面=22222(,,)xyxx yD I d f x y z dz σ−+∴⎰⎰⎰xyD Oxy–1122222112112(,,).x x xx ydx dy f x y z dz −−−−−+=⎰⎰⎰22222x y z x⎧⎪Ω⎨⎪+≤≤−⎩:2211x y x −−≤≤−11x −≤≤由⎩⎨⎧−=+=22222xz y x z ,221,x y +≤:xyz xoy D Ω消去得在面上的投影区域4、将Ω向xoy 平面做投影得区域xyD 解:xy xoy D xoy Ω思考:在面上的投影区域是一个圆域,那么在平面进行的二重积分,可不可以利用极坐标系计算?需要注意些什么?2222,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例4计算其中是由曲面与平面所围成xyzo2z y x =−2z y x =−−分析:1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限yxo4y =2y x ==222222xyy x y x D x z dv d x z dzσ−−−Ω++⎰⎰⎰⎰⎰⎰-=22224222y x xy xdx dy x z dz−−−+⎰⎰⎰分析:1、画出(观察)积分区域2、确定积分次序先y 再z 后x,4、将Ω向xoz 平面做投影得区域xzD 3、确定y 的积分上下限=2242222xzx z D x z dv d x z dyσ+Ω++⎰⎰⎰⎰⎰⎰22224,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例计算其中是由曲面与平面所围成xyzΩ22y x z =+4y =xz2−2224x z +==2222422xzx zD x z dvd x z dyσΩ+++⎰⎰⎰⎰⎰⎰()=22222244x y xzx z d σ+≤−−+⎰⎰xz2−2224x z +=2r =()()=222224041282415d rr rdrr r dr πθππ−⋅=−=⎰⎰⎰解:1、确定了积分次序后,内层积分上下限至多包含两个变量,中层积分上下限至多包含一个变量,外层积分上下限必须是常数2、对于先单后重的次序,重积分部分可以根据积分区域的特点采用极坐标系计算(1)把积分区域Ω向某轴(例如 z 轴)投影,得投影区间],[21c c ;(3) 计算二重积分⎰⎰zD dxdy z y x f ),,(其结果为z 的函数)(z F ;(4)最后计算单积分⎰21)(c c dz z F 即得三重积分值.z(二)先重后单(先二后一)法先重后单, 就是先求关于某两个变量的二重积分再求关于另一个变量的定积分122,zz c c z xoy D ∈Ω⎡⎤⎣⎦()对用过轴且平行平面的平面去截,得截面21()zc cD g z dzdxdy=⎰⎰⎰V d z y x f ⎰⎰⎰Ω),,(即,若f (x, y, z )= g (z )21(,,).zc c D dz f x y z dxdy =⎰⎰⎰易见, 若内层的二重积分容易计算时,这个方法更显出优越性。