介孔氮化碳材料合成的研究进展
- 格式:ppt
- 大小:141.00 KB
- 文档页数:1
介孔碳CMK3简介介孔碳CMK3是一种材料,在科学研究和工程应用中具有广泛的用途和潜力。
它具有独特的孔隙结构和表面化学性质,适用于吸附、分离、催化和能源等领域。
本文将详细介绍介孔碳CMK3的制备方法、物理化学特性以及其在不同领域的应用。
制备方法介孔碳CMK3是通过模板法制备的。
首先,选择一种合适的模板材料,如介孔二氧化硅或介孔硅胶。
然后,将模板材料与适量的碳源混合,并加入一定量的催化剂。
混合均匀后,将样品放入高温炉中,在惰性气氛(如氩气)下进行炭化反应。
经过一定时间的高温处理,模板材料会被炭化,形成介孔碳CMK3。
最后,通过酸洗或其他方法去除模板材料,得到纯净的介孔碳CMK3。
物理化学特性介孔碳CMK3具有特殊的孔隙结构和表面化学性质。
其孔径分布在2-10纳米之间,具有中等孔径和中等孔体积。
介孔碳CMK3具有较高的比表面积,可达到500-1000平方米/克。
此外,介孔碳CMK3还具有优异的化学稳定性、热稳定性和机械强度。
应用领域1. 吸附材料介孔碳CMK3具有大量的孔隙和高比表面积,因此在吸附材料领域具有广泛的应用。
它可以作为吸附剂用于水处理、空气净化、废气处理等环保领域。
此外,介孔碳CMK3还可以用于吸附有机物、金属离子等。
2. 分离膜介孔碳CMK3在分离膜领域也展现出了巨大的应用潜力。
由于其特殊的孔隙结构和较高的渗透性,介孔碳CMK3可以用于气体分离、液体分离、离子选择性透过等。
例如,将介孔碳CMK3作为超级电容器电极材料,可以实现高效的能量存储和释放。
3. 催化剂载体介孔碳CMK3还可作为催化剂载体,用于催化反应。
其高比表面积和孔隙结构有利于催化剂的分散和反应物的扩散,提高催化反应的效率和选择性。
例如,将过渡金属纳米颗粒负载在介孔碳CMK3上,可用于催化氧化反应、催化还原反应等。
4. 能源存储介孔碳CMK3在能源存储领域也有广泛的应用。
其孔隙结构和电导性使其成为理想的电容器和电池材料。
介孔碳CMK3用作锂离子电池负极材料,具有高容量、长寿命和快速充放电性能。
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS2013年第32卷第4期·824·化工进展N 掺杂多孔碳材料研究进展余正发1,王旭珍1,2,刘宁1,刘洋1(1大连理工大学化工与环境生命学部化学学院,辽宁大连116024;2中国科学院山西煤炭化学研究所煤转化国家重点实验室,山西太原030001)摘要:通过掺杂氮原子对多孔碳材料进行功能化,可强化多孔碳材料固有的优异性能并赋予其新功能,从而拓宽其在各领域的应用范围。
近年来,研究者相继开发了一系列技术方法,已制备得到多种结构特异、性能优异的氮掺杂多孔碳材料。
本文基于氮掺杂多孔碳材料的最新研究进展,详细介绍了利用液相模板法、化学气相沉积法、氨气后处理法、化学活化法和水热法等制备氮掺杂多孔碳材料的方法,评述了各种方法的特点及局限性,并简要介绍了该类材料在电池催化、气体吸附分离、储氢及污染气体脱除等方面的应用,指出了氮掺杂多孔碳材料工业应用的规模化制备发展方向。
关键词:多孔碳;N 掺杂;模板法;化学气相沉积;吸附中图分类号:O 613.71文献标志码:A文章编号:1000–6613(2013)04–0824–09DOI :10.3969/j.issn.1000-6613.2013.04.017Recent progress of N-doped porous carbon materialsYU Zhengfa 1,WANG Xuzhen 1,2,LIU Ning 1,LIU Yang 1(1School of Chemistry ,Faculty of Chemical ,Environmental and Biological Science and Technology ,Dalian Universityof Technology ,Dalian 116024,Liaoning ,China ;2State Key Laboratory of Coal Conversion ,Institute of Coal Chemistry ,Chinese Academy of Sciences ,Taiyuan 030001,Shanxi ,China )Abstract :Functionalization ,such as nitrogen atom doping ,will enhance intrinsic and/or add new features to porous carbons ,thus making the best of their potential applications.Recently ,a series of methodologies have been developed to prepare nitrogen-doped porous carbons with special structures and properties.Based on the progress made in recent years concerning N-doped porous carbons ,the synthesis strategies for N-doped porous carbon ,including liquid template ,chemical vapor deposition ,post treatment with ammonia ,chemical activation and hydrothermal process ,are introduced.The characteristics and limitations of various methods are also commented.In addition to the summary of the present applications in catalysis ,gas adsorption/separation ,hydrogen storage and removal of pollutant gases of these novel carbon materials ,the development directions of large-scale preparation of N-doped porous carbons for industrial applications are presented.Key words :porous carbon ;N-doped ;template method ;chemical vapor deposition (CVD);adsorption 多孔碳材料由于具有表面化学惰性、高机械稳定性、良好的导电性以及大的比表面积和孔体积等特点,在CO 2吸附[1-3]、催化[4]、储氢[5]以及电化学双电层电容器[6]和燃料电池[7]等领域显示出巨大的应用潜力。
介孔碳和介孔炭介孔碳和介孔炭是一类具有大量孔隙结构的碳材料,其内部具有相当数量的介孔,其孔径通常在2到50纳米之间。
介孔碳和介孔炭因其独特的孔隙结构而受到广泛关注和研究,被认为是一类重要的功能材料。
本文将介绍介孔碳和介孔炭的制备方法、特性及应用领域。
一、制备方法介孔碳和介孔炭的制备方法多种多样,常见的方法包括模板法、溶胶-凝胶法、流化床法等。
1. 模板法模板法是最常用的制备介孔碳和介孔炭的方法之一。
该方法首先制备一种具有周期性孔隙结构的模板材料,如硅胶、有机胺或聚合物等。
然后在模板材料上分散碳前体,如葡萄糖等,通过热处理或碳化使其转化为介孔碳或介孔炭。
最后通过模板的去除,即可得到孔隙结构完整的介孔碳和介孔炭。
2. 溶胶-凝胶法溶胶-凝胶法是另一种常用的制备介孔碳和介孔炭的方法。
该方法通过将碳前体(如葡萄糖、甘油等)溶解在溶胶溶液中,并在适当条件下进行凝胶化和热处理,制备出具有孔隙结构的介孔碳和介孔炭。
3. 流化床法流化床法是一种高效的制备介孔碳和介孔炭的方法。
该方法首先将碳前体粉末放置在流化床反应器内,在适当条件下进行热解或碳化反应,生成介孔碳和介孔炭。
该方法制备的介孔碳和介孔炭孔隙结构较为均匀,具有较高的比表面积和孔容。
二、特性介孔碳和介孔炭具有许多独特的特性,主要包括以下几个方面:1. 高比表面积介孔碳和介孔炭由于其内部具有大量的介孔,因此具有较高的比表面积。
高比表面积使其有较强的吸附能力,可以吸附和储存大量的气体、液体和溶质,具有广泛的应用前景。
2. 调控孔径介孔碳和介孔炭的孔径可以通过制备方法的调控来实现。
不同孔径的介孔碳和介孔炭可以用于吸附、分离、催化等不同领域的应用。
因此,介孔碳和介孔炭的孔径调控对其应用性能具有重要影响。
3. 良好的化学稳定性介孔碳和介孔炭由于其具有较完整的碳骨架结构,因此具有良好的化学稳定性。
它们在酸碱环境、高温条件下都能保持稳定的结构和性能,具有较长的使用寿命。
国内外氮化碳改性的研究进展代宏哲;高续春;陈锦中【摘要】石墨氮化碳因具有较好的化学稳定性、热稳定性以及催化性能,引起国内外学者极大的兴趣和关注.本文综述了近年来国内外氮化碳改性的研究进展,重点介绍了离子掺杂、半导体复合、贵金属负载以及金属表面等离子体复合等技术在氮化碳改性中的应用和特点.最后,展望了氮化碳改性的未来发展方向.【期刊名称】《榆林学院学报》【年(卷),期】2018(028)002【总页数】4页(P44-47)【关键词】氮化碳;改性;掺杂;等离子体【作者】代宏哲;高续春;陈锦中【作者单位】榆林学院化学与化工学院,陕西榆林719000;榆林学院化学与化工学院,陕西榆林719000;榆林学院化学与化工学院,陕西榆林719000【正文语种】中文【中图分类】O643.36氮化碳材料因其优异的性能而广泛地应用于污染物降解、光解水制氢、氧化反应、加氢反应等领域,成为近些年无机材料领域的研究热点。
然而其性能仍有很大的提升空间,如:进一步拓展可见光的响应范围;提高对光的利用度;提高g-C3N4材料光解水制氢的转化率等。
部分课题组在优化和改良g-C3N4材料性能上取得了很多成绩,如:通过利用SiO2、SBA-15、Triton X-100及Ionic liquids等作为模版,通过模版法来合成g-C3N4材料,再去除模版之后便形成结构可调的g-C3N4纳米材料,改善了其催化活性。
本文介绍了近些年国内外对氮化碳进行改性的研究进展,主要改性方法有:离子掺杂、半导体复合、贵金属负载以及金属表面等离子体复合。
1金属离子掺杂金属离子掺杂是利用物理或化学方法,将金属离子引入到半导体催化剂晶格结构内部。
晶格中引入的新电荷会使晶格类型发生改变,或者在晶格中形成缺陷,这样就会影响光生电子和空穴的运动状况(复合或者分离等),调整其分布状态或者改变其能带结构,最终改变催化剂的光催化活性.一般认为掺杂金属离子能提高光催化剂催化活性的原因有以下几个方面:(1)掺杂可以形成捕获中心,价态高于q+的金属离子捕获电子,低于q+的金属离子捕获空穴,从而抑制e-与h+复合;(2)掺杂可以形成掺杂能级,使能量较小的光子可激发掺杂能级上捕获的e-和h+,提高光子的利用率;(3)可以导致载流子的扩散长度增大,从而延长电子和空穴的寿命,抑制其复合;(4)掺杂可以造成晶格缺陷,有利于形成更多的氧化中心。
化工进展Chemical Industry and Engineering Progress2022年第41卷第1期多孔g-C 3N 4基光催化材料的制备及应用研究进展王文霞1,2,刘小丰1,陈浠1,许艳虹1,蒙振邦1,郑俊霞1,安太成2(1广东工业大学生物医药学院,广东广州510006;2广东工业大学环境健康与污染控制研究院,广东省环境催化与污染控制重点实验室和粤港澳污染物暴露与健康联合实验室,广东广州510006)摘要:多孔g-C 3N 4基光催化材料由于具有较高的比表面积、丰富的反应活性位点和较短的电子传递路径等特点,能较好地解决块体g-C 3N 4基材料存在的比表面积小、光生载流子复合快及可见光利用效率低等问题,因而具有广阔的发展前景和应用潜力。
本文主要从以下方面进行综述:多孔g-C 3N 4基光催化材料常用的制备方法,包括硬模板法、软模板法、水热合成法、热聚合法、超分子自组装法;多孔g-C 3N 4基材料在光催化领域的应用,包括光解水制氢、光催化降解有机污染物、光催化去除氮氧化物和光催化还原CO 2等;最后指出了当前影响多孔g-C 3N 4基光催化材料发展的关键问题,并对其在光催化领域的应用前景进行了展望。
关键词:多孔材料;石墨相氮化碳;合成;催化;制氢;降解有机污染物;CO 2还原中图分类号:TH3文献标志码:A文章编号:1000-6613(2022)01-0300-10Research advances of synthesis and applications of porous g-C 3N 4-basedphotocatalystWANG Wenxia 1,2,LIU Xiaofeng 1,CHEN Xi 1,XU Yanhong 1,MENG Zhenbang 1,ZHENG Junxia 1,AN Taicheng 2(1School of Biomedical and Pharmaceutical Sciences,Guangdong University of Technology,Guangzhou 510006,Guangdong,China;2Institute of Environmental Health and Pollution Control,Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control and Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure andHealth,Guangdong University of Technology,Guangzhou 510006,Guangdong,China)Abstract:The porous g-C 3N 4-based photocatalysts have broad application prospects due to their unique properties such as large specific surface area,abundant surface reaction active sites and short electrontransfer pathway,which can well overcome the disadvantages as compared with the bulk g-C 3N 4including low specific surface area,fast recombination possibility of photogenerated electron-hole pairs and low utilizationof visible light.In the review,the general synthetic strategies applied to prepare porous g-C 3N 4-based photocatalyst,such as hard template method,soft template method,hydrothermal methods,thermal polymerization and supramolecular self-assembly,are briefly introduced.Besides,the potential applications of porous g-C 3N 4-based photocatalyst in photocatalytic water splitting,photocatalytic degradation of organicpollutants,photocatalytic CO 2reduction and photocatalytic NO x abatement are discussed in detail.Finally,综述与专论DOI :10.16085/j.issn.1000-6613.2021-0288收稿日期:2021-02-07;修改稿日期:2021-04-06。
石墨相氮化碳的液相合成及光催化性能研究进展赵艺蒙;李明;王浩;杨传锋;崔言娟【摘要】Graphitic carbon nitride is a layered material with similar to grapheme.It has become the research hotspot in the field of functional materials,for the unique energy band and electron structures. Based on the limitations of polymer materials,more and more methods have been used to optimize and modify the structure of carbon nitride.Liquid phase synthesis method with mild and changeable proper-ties is an important way to obtained graphitic carbon nitride.A major synthetic method of carbon nitride in liquid phase medium is summarized,including liquid phase electrodeposition,pulse laser ablation, and solvothermal,et al.The effects of different liquid medium and synthetic parameters on crystalline and morphology of the prepared carbon nitride was introduced.In addition,the research progress in the field of photocatalysis of carbon nitride prepared from solvothermal method was summarized.In future, the structure optimization of carbon nitride materials would be greatly enriched by liquid phase synthe-sis method to promote the in-depth research of multi-functional polymer materials.%石墨相氮化碳是类石墨层状聚合物材料,因其特殊的能带和电子结构,近年来成为功能材料研究领域的热点.液相合成法具有温和多变的特性,是石墨相氮化碳合成的重要途径.本文作者就现阶段液相介质合成氮化碳的主要方法进行了介绍,主要包括液相电沉积、脉冲激光烧蚀、溶剂热合成法等.介绍了不同液相介质和合成参数对制备氮化碳材料晶型、形貌等的影响.同时就溶剂热合成氮化碳在光催化领域的研究进展进行了总结.在未来的研究中,液相合成法将极大的丰富氮化碳材料结构优化的途径,有助于推动多功能聚合物材料的深入研究.【期刊名称】《化学研究》【年(卷),期】2018(029)001【总页数】7页(P104-110)【关键词】氮化碳;液相介质;形貌;光催化【作者】赵艺蒙;李明;王浩;杨传锋;崔言娟【作者单位】江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003;江苏科技大学环境与化学工程学院,江苏镇江212003【正文语种】中文【中图分类】O649氮化碳是一种古老的无机物材料,其研究历史可追溯至1834年,BERZELIUS和LIEBIG[1]成功制备出melon(C6N9H3)化合物. 1922年,FRANKLIN首次提出了石墨相氮化碳的概念,预测可以通过热解melon化合物制备[2]. TETER和HEMLEY[3]对其进行了理论计算,提出五种同素异形体结构,其中由于石墨相在常温常压下最稳定,制备过程最易实现,成为科研人员研究的重点,多年来对g-C3N4的合成和结构进行了大量的探索. 2009年,王心晨课题组[4]首次将g-C3N4作为光催化剂进行了报道,并成功利用其光解水制取氢气和氧气. 这一突破性发现将这一古老的人工半导体材料重新唤醒,以g-C3N4为基础的光催化材料研究及应用得到迅速发展,在光电转化、去除环境污染物、CO2还原、光解水制氢等领域表现出优异的催化性能(图1).图1 g-C3N4的两种分子结构:三嗪环单元和七嗪环单元Fig.1 Chemical structures for g-C3N4: triazine and tri-s-triazine units近年来,诸多研究及计算性论文以及综述类文章对g-C3N4的合成方法、优化改性及其在催化/光催化领域的应用等方面进行了大量报道[5]. 纵观氮化碳的合成历史,采用液相介质合成氮化碳也是一种常用的方法. 在液相介质中合成氮化碳明显降低了合成温度,同时利用亚临界/临届状态下溶剂效应,可以制备出具有不同粒子形貌以及不同晶型的氮化碳材料. 另外,在温和的液相介质中,可以采用有机化学的合成方法,从分子水平上对氮化碳的合成进行调控,有望解决聚合物分子结构控制合成的难题. 近年来,采用液相合成法制备g-C3N4材料并应用至光催化研究领域的报道开始涌现. 这将大大的扩展聚合物半导体材料的合成及应用研究. 本文作者介绍了近年来在液相介质中制备氮化碳的研究方法,总结和比较了不同合成方法制备氮化碳材料的结构特征以及其在催化/光催化等方面的应用,以期推动聚合物类半导体材料的深入研究及应用.1 石墨相氮化碳简介理论与实验研究证明,g-C3N4是由三聚三嗪环单元组成的聚合物材料,具有类石墨的层状堆积结构,这种稳定的二维共轭结构有利于面内电子的分散及传输. 其禁带宽度约为2.7 eV,具有可见光吸收能力,是一种典型的可见光响应半导体材料. 导带和价带位置分别位于-1.3和1.4 eV vs NHE,因此从热力学上其光生电子和空穴具有相当的催化还原/氧化能力. 近年来,g-C3N4在能源转化、传感、有机合成等领域表现出优异的性能,具有较大的应用前景.尽管g-C3N4具有无毒、稳定、无污染等诸多优点,但由于聚合物材料本身较高的激子结合能,g-C3N4本身具有电子传输性差,量子效率低的不足. 因此,诸多的研究报道致力于对g-C3N4进行结构优化和改性,包括介孔化改性、表面修饰、掺杂、半导体复合等. 这些方法在不同程度上了优化了g-C3N4的结构并提高了光催化性能. 但同时也发现,这些改性方法针对g-C3N4仍具有很大的局限性. WANG 等[6]将有机分子共聚合入g-C3N4的骨架结构,分子水平上实现了π共轭结构连续可调,产氢效率提高了5倍. 所以,从分子构成上对g-C3N4进行结构优化,同时采用软模板法实现形貌控制,对g-C3N4高效性能的研究具有重要意义.2 液相介质合成氮化碳目前制备氮化碳的方法有很多,包括热聚合法、机械球磨法等. 其中,热聚合法和固相反应法是目前合成氮化碳最普遍采用的方法. 热聚合法具有简单易操作的优点,但需要在高温条件下实现(>500 ℃),分子结构的设计和优化存在困难,合成产物通常存在大量缺陷,在结构和性能调控方面还存在一些限制. 因此,低温液相合成是氮化碳制备和改性的另一重要途径.2.1 液相电沉积法液相电沉积法由于其设备简单、操作容易等优点被应用于氮化碳薄膜的制备中. 例如,WANG等[7]以纯的含氮液体N,N-二甲基甲酰胺和丙烯腈分别作为电解液进行电沉积实验,在硅基板上分别得到α-C:H:O薄膜和氢化的非晶氮化碳α-CNx:H 薄膜,其N/C物质的量之比为0.25. 近几年液相电沉积法也应用于制备g-C3N4. CAO课题组[8]最先在Si(100)基板上,以物质的量之比为1∶1.5的C3N3Cl3和C3H6N6的饱和乙腈溶液电解沉积得到g-C3N4薄膜. 研究发现,反应体系中前驱物的物质的量之比对产物化学组成、化学键态以及结构有影响,调整前驱物的比例可以得到较高结晶度的g-C3N4 [9-10]. 另外,将液相电沉积法和模板法相结合,以SiO2纳米球修饰ITO电极,可以制备出空心球状g-C3N4[11].2.2 液相脉冲激光烧蚀法液相脉冲激光烧蚀法作为一种制备纳米材料的新型方法,已广泛应用于各种纳米材料的制备. YANG等[12-15]将石墨靶浸渍在氨水中,采用液相脉冲激光烧蚀法制备出了一系列具有不同形貌的α-C3N4和β-C3N4晶体(图2). 采用此方法自组装制备多样化氮化碳晶体的过程可以总结如下:(1)通过定向聚集使得较小的0D 纳米颗粒形成1D 纳米棒或纳米带;(2)1D纳米结构组装转化成2D碳氮化合物纳米片或3D纳米花状结构.图2 液相脉冲激光烧蚀法制备的多种氮化碳SEM图片Fig.2 SEM images of various carbon nitrides prepared from liquid pulsed laser ablation method[15]2.3 回流加热法以有机溶剂为反应介质,采用液相加热回流的方法是有机合成最常用的方法之一. 无模板存在下,ZIMMERMAN等[16]以氮化锂(Li3N)和三聚氰氯(C3N3Cl3)为原料,二甘醇二甲醚为溶剂,氮气气氛中回流加热8~48 h,得到g-C3N4空心球. 在较低温度下(0~120 ℃),二甲基甲酰胺(DMF)为反应介质,常压回流聚合热处理,同样可以得到三嗪堆积单元形成的g-C3N4材料[17]. 储气实验表明. 尽管其比表面积并不高(10 m2/g),但此富氮化合物具有较高的储氢容量,在室温下(< 100 bar)可达到0.34%质量比,这在新型储能材料的研究中具有重要意义.乙二胺((CH2NH2)2)和四氯化碳(CCl4)是合成氮化碳的常用氮源和碳源. 选用一定模板可以制备具有不同形貌的氮化碳材料. LU等[18]以多孔阳极Al2O3膜为模板制备出外径为100 nm,壁厚为10 nm的g-C3N4纳米管,并以此为催化剂实现了甲醇电解氧化. 此外,此方法制备的g-C3N4纳米管可以作为催化剂载体,在负载Pt之后可以实现环己烯的氢化[19]. SiO2基硬模板是最常用的模板材料,以不同的Si基分子筛为模板可以制备得出具有不同2D/3D孔结构的氮化碳材料[20-21]. 例如,VINU等[22]以SBA-15为模板制备得到二维六边形有序排列的富C介孔氮化碳(图3). 通过调整(CH2NH2)2和CCl4的质量比,可以合成出高N含量的有序介孔氮化碳[23]. 此外,氰胺类有机化合物也是常用的氮源前驱体. 以二聚氰胺/三聚氰胺和 CCl4为前驱物,不同孔径和尺寸的硅基材料为模板,可调控制备出不同尺寸和形貌的多孔氮化碳产物[24-25].图3 以SBA-15为模板制备的2D六边形有序介孔氮化碳TEM 图片Fig.3 TEM images of 2D hexagonal ordered mesoporous carbon nitride preparedwith using SBA-15 as templates2.4 溶剂热法溶剂热法可以定义为在封闭系统里极性或非极性溶剂中发生的化学反应,反应温度高于溶剂沸点[26]. 与水热法相比,非水溶剂种类多,具有高反应活性,通过控制反应参数(温度、溶剂、时间等)可以有效调控产物分子结构和粒子形貌. 溶剂热法制备氮化碳是此类聚合物材料合成的重要途径,较低的温度下进行聚合反应可以充分防止氮的流失,得到富氮产物. 同时,温和的反应条件有利于得到低缺陷、高晶度的晶体材料.以CCl4和极性含氮溶剂分别为碳源和氮源,高温高压溶剂热条件下(300~500 ℃)可制备石墨相氮化碳材料[27-28]. 非极性有机溶剂(苯、环乙烷、四氯化碳等)通常与溶质分子间作用力较弱,依靠范德华力发生溶剂化效应. 以此类溶剂为反应介质,溶剂热方法可以制备得到不同晶型的氮化碳产物[29]. 其中,苯由于其稳定的共轭结构,是溶剂热合成的优良溶剂. 富含高反应活性-Cl基团的三嗪环化合物C3N3Cl3为溶剂热合成氮化碳最常用的反应前驱物之一. 国内外研究报道表明,通过调控苯热法反应参数(温度、时间、压力等)可以制备出α,β-C3N4 纳米晶[30-33]. 以NaNH2或NaN3为N源,苯热条件下(220 ℃)可以得到g-C3N4纳米颗粒和纳米管,具有显著的光致荧光特性(图4)[34-36]. 除苯之外,以环己烷或四氯化碳(CCl4)为有机溶剂,利用溶剂分子的溶剂化作用作为控制模板剂,可以得到不同形貌的氮化碳材料,如g-C3N4纳米带、纳米管、纳米微球等[37-40]. 在非水溶剂中大多数为极性有机溶剂,因其独特的分子特性,如还原性、分子螯合等,在纳米材料合成领域被广泛使用[41-42]. 总结氮化碳材料合成史,除(CH2NH2)2外,极性有机溶剂肼(NH2NH2)、三乙胺(Et3N)、DMF等均可以被用作有机反应介质,在不同的温度范围内,溶剂热合成不同结构的g-C3N4[43-45]. 表1中为典型的溶剂热法制备g-C3N4的方法及产物.图4 苯热法制备的两端封闭的g-C3N4纳米管SEM图片Fig.4 SEM images of both ends closed g-C3N4 nanotubes prepared from benzene thermal methods表1 典型的溶剂热合成g-C3N4方法及产物Table 1 Typical methods and products of g-C3N4 synthesized form solvothermal methods作者原料溶剂反应条件产物参考文献MONTIGAUD等C3H6N6+C3N3Cl3二异丙基乙胺140MPa,250℃g-C3N4[44]LI等C3H6N6+C3N3Cl3苯自生压力,400℃g-C3N4空心球[29]LI等C3H6N6+C2H4N4CCl44.5~5MPa,290℃g-C3N4纳米带/管[39]MONTIGAUD等C3H6N6NH2NH23Gpa,800~850℃g-C3N3.36O0.14H1.24[43]DEMAZEAUGC3H6N6+C3N3Cl3Et3N130MPa,250℃g-C3N4[46]MONTIGAUD等C3H6N6+C3N3Cl3Et3N140MPa,250℃g-C3N4[47]LV等C3N3Cl3+Li3N苯5~6MPa,355℃α-C3N4/β-C3N4[32]MU等C3N3Cl3+Na环己烷自生压力,250℃g-C3N4球形粒子[48]CAO等C3N3Cl3+Na环己烷1.8MPa,230℃CN纳米管[37]ZHANG等C3N3Cl3+NaN3CCl4180℃g-C3N4[49]3 溶剂热合成氮化碳光催化剂非金属2D聚合物半导体g-C3N4作为一类全新的光催化材料,因其独特的能带结构特点及化学稳定性,近年来在光催化研究领域成为明星材料. 随着优化改性方法的不断增加,高温煅烧热聚合制备g-C3N4的一些不足逐渐显现. 因此,溶液相合成法对g-C3N4制备及优化途径的拓展显得尤为重要. 经过近几年的发展,溶剂热法合成具有光催化性能的g-C3N4的研究报道开始陆续被报道. 2012年,作者课题组[50]首次以乙腈为溶剂,在较低温度下(180 ℃)溶剂热合成出g-C3N4纳米棒. 产物由三嗪/七嗪单元共轭组成,具有宽的可见光吸收光谱(> 600 nm). 在可见光照射下,能够有效分解有机污染物,同时能够光解水制取氢气. 这一报道打破了溶剂热低温合成g-C3N4材料不具备光催化活性的界限,为低维非金属聚合物光催化材料的合成提供了新的思路. 在此基础上,本研究小组改变前驱物,在120~180 ℃下首次无模板一步法制得g-C3N4空心球,并用于光催化降解有机染料(图5)[51]. 通过简单的反应参数调控,杂原子修饰g-C3N4空心球可以通过此溶剂热方法得到. 非密闭前驱物处理过程使得O2分子容易混合入反应体系,在亚临届溶剂热反应过程中,O2分子发生活化. 通过简单的调控反应时间,可以将活化O元素掺杂入g-C3N4分子骨架. 测试结果表明,O元素的掺杂能够有效扩展可见光吸收范围,同时杂原子的参与引起电子分布不均匀,促进光生电荷的分离. 在可见光照下,改O掺杂g-C3N4材料在中性条件下能够快速去除水中重金属Cr(VI),而且具有优异的光解水制氢活性[52].图5 (a)O掺杂g-C3N4空心球的TEM图片,(b)光吸收光谱图,(c)光催化还原Cr(VI)活性曲线Fig.5 (a) TEM images of O-doped g-C3N4 hollow spheres, (b) Optical absorption spectra, (c) Curves of photocatalytic activity for Cr(VI) reduction4 结语与展望g-C3N4作为一类特殊的富氮碳基化合物,因其特殊的半导体特性,在催化、光催化、传感等功能材料研究领域具有广泛的研究价值. 固相煅烧热聚合法虽然是目前普遍应用的g-C3N4合成法,因其较高的合成温度,对g-C3N4分子调控具有不易操作性,因此,发展低温液相合成法是实现g-C3N4分子设计和优化合成的重要途径. 在此基础上,将极大的拓展改性g-C3N4的合成及研究内容.今后,液相合成g-C3N4的研究工作可以从以下几个方面进行:1) 杂原子掺杂修饰g-C3N4的合成. 尽管固相合成法已经成功制备出杂原子修饰材料,但高温条件下所得产物通常杂原子掺杂量较低,轻质杂元素高温下易挥发. 在密闭溶剂热环境中,杂原子能够最大限度的参与反应,掺杂入g-C3N4分子骨架,起到结构调控的作用. 2) 不同方法相结合,比如微波溶剂热法等,扩展溶剂热的合成途径,提高g-C3N4的长程有序聚合度,这对优化聚合物的电荷传输效率具有重要意义.参考文献:[1] LIEBIG J. Uber einige stickstoff-verbindungen [J]. Anna-len der Pharmacie, 1834, 10(1): 1-47.[2] FRANKLIN E C. The ammono carbonic acids [J]. Journal of the American Chemical Society, 1922, 44(3): 486-509.[3] TETER D, HEMLEY R. Low-compressibility carbon nitrides [J]. Science, 1996, 271(5245): 53-55.[4] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials, 2009, 8(1): 76-80.[5] 李鹏, 王海燕, 朱纯. 金属掺杂类石墨相氮化碳的理论研究[J]. 化学研究, 2016, 27(2): 152-160.LI P, WANG H Y, ZHU C. Theoretical investigation on g-C3N4 doped by the different metal atoms [J]. Chemical Research, 2016, 27(2): 152-160.[6] ZHANG J S, CHEN X F, TAKANABE K, et al. Synthesis of a carbon nitridestructure for visible-light catalysis by copolymerization [J]. Angewandte Chemie International Edition, 2010, 49(2): 441-444.[7] WANG H, KIYOTA H, TOSHIYA M, et al. Amorphous carbon and carbon nitride films synthesized by electrolysis of nitrogen-containing liquid [J]. Diamond and Related Materials, 2000, 9: 1307-1311.[8] LI C, CAO C B, ZHU H S, et al. Preparation of graphitic carbon nitride by electrodeposition [J]. Chinese Science Bulletin, 2003, 48(16): 1737-1740. [9] LI C, CAO C B, ZHU H S, et al. Electrodeposition route to prepare graphite-like carbon nitride [J]. Materials Science and Engineering: B, 2004, 106: 308-312.[10] LI C, CAO C B, ZHU H S. Graphitic carbon nitride thin films deposited by electrodeposition [J]. Materials Letters, 2004, 58(12/13): 1903-1906. [11] BAI X J, LI J, CAO C B. Synthesis of hollow carbon nitride microspheres by an electrodeposition method [J]. Applied Surface Science, 2010, 256(8): 2327-2331.[12] YANG L, MAY P W, YIN L, et al. Direct growth of highly organized crystalline carbon nitride from liquid-phase pulsed laser ablation [J]. Chemistry of Materials, 2006, 18(21): 5058-5064.[13] YANG L, MAY P W, YIN L, et al. Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution [J]. Journal of Nanoparticle Research, 2007, 9: 1181-1185.[14] YANG L, MAY P W, YIN L, et al. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid [J]. Diamond and Related Materials, 2007, 16: 725-729.[15] YANG L, MAY P W, YIN L, et al. Decomposition of noncommutativeU(1) gauge potential [J]. Nanotechnology, 2007, 18: 335605-335610. [16] ZIMMERMAN J L, WILLIAMS R, KHABASHESKU V N, et al. Synthesis of spherical carbon nitride nanostructures [J]. Nano Letters, 2001, 1(12): 731-734.[17] YANG S J, CHO J H, OH G H, et al. Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature [J]. Carbon, 2009, 47(6): 1585-1591.[18] LU X F, WANG H J, ZHANG S Y, et al. Synthesis, characterization and electrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation [J]. Solid State Science, 2009, 11: 428-432.[19] BIAN S W, MA Z, SONG W G. Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter [J]. The Journal of Physical Chemistry C, 2009, 113(20): 8668-8672.[20] VINU A, SRINIVASU P, SAWANT D, et al. Three-dimensional cage type mesoporous CN-based hybrid material with very high surface area and pore volume [J]. Chemistry of Materials, 2007, 19(17): 4367-4372. [21] TALAPANENI S N, MANE G P, MANO A, et al. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores, band gaps and nitrogen content from a single aminoguanidine precursor [J]. Chenistry & Sustainability, 2012, 5(4): 700-708.[22] VINU A, ARIGA K, MORI T, et al. Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride [J]. Advanced Materials, 2005, 17(13): 1648-1652.[23] VINU A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content [J]. Advanced Functional Materials, 2008, 18(5): 816-827.[24] LIU L, MA D, ZHENG H, et al. Synthesis and characte-rization of microporous carbon nitride [J]. Microporous and Mesoporous Materials, 2008, 110(2/3): 216-222.[25] BAI X, LI J, CAO C, et al. Solvothermal synthesis of the special shape (deformable) hollow g-C3N4 nanospheres [J]. Materials Letters, 2011, 65(7): 1101-1104.[26] DEMAZEAU G. Solvothermal reaction: an original route for the synthesis [J]. Journal of Materials Science, 2008, 43(7): 2104-2114.[27] CAO Y G, CHEN X L, LAN Y C, et al. A new method for synthesis of amorphous carbon nitride powders [J]. Applied Physics A, 2000, 71(4): 465-467.[28] BAI Y J, LÜ B, LIU Z G, et al. Solvothermal preparation of graphite-like C3N4 nanocrystal [J]. Journal of Crystal Growth, 2003, 247(3/4): 505-508. [29] LI C, YANG X G, YANG B J, et al. Synthesis and cha-racterization of nitrogen-rich graphitic carbon nitride [J]. 2007, 103(2/3): 427-432.[30] FU Q, CAO C B, ZHU H S. A solvothermal synthetic route to prepare polycrystalline carbon nitride [J]. Chemical Physics Letters, 1999, 314(3/4): 223-226.[31] LV Q, CAO C B, ZHANG J T, et al. The composition and structure of covalent carbon nitride solids synthesized by solvothermal method [J]. Chemical Physics Letters, 2003, 372(3/4): 469-475.[32] LV Q, CAO C B, LI C, et al. Formation of crystalline carbon nitride powder by a mild solvothermal method [J]. Journal of Materials Chemistry, 2003, 13: 1241-1243.[33] CAO C B, LV Q, ZHU H S. Carbon nitride prepared by solvothermal method [J]. Diamond and Related Materials, 2003, 12(3/7): 1070-1074. [34] GUO Q J, XIE Y, WANG X J, et al. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures [J]. Chemical Physics Letters, 2003, 380(1/2): 84-87. [35] GUO Q X, XIE Y, WANG X J, et al. Synthesis of carbon nitride nanotubes with C3N4 stoichiometry via a benzene-thermal process at low temperatures [J]. Chemical Communications, 2004, 1: 26-27.[36] GUO Q X, YANG Q, ZHU L, et al. A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Communications, 2004, 132(6): 369-374.[37] CAO C, HUANG F, CAO C, et al. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route [J]. Chemistry of Materials, 2004, 16(25): 5213-5216.[38] LI J, CAO C B, HAO J W, et al. Self-assembled one-dimensional carbon nitride architectures [J]. Diamond and Related Materials, 2006, 15(10): 1593-1600.[39] LI J, CAO C B, ZHU H S. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes [J]. Nanotechnology, 2007, 18: 115605-115611.[40] LYTH S M, NABAE Y, MORIYA S, et al. Carbon nitride as a nonpreciouscatalyst for electrochemical oxygen reduction [J]. The Journal of Physical Chemistry Letters, 2009, 113: 20148-20151.[41] 许家胜, 陈启富, 张杰, 等. 水热/溶剂热法形貌控制合成铜基微纳米晶体颗粒材料的研究进展[J]. 材料科学与工程学报, 2017, 35(1): 153-159.XU J S, CHEN Q F, ZHANG J, et al. Progress of Morphology Controlled synthesis of copper based mocro/nano crystals viahydrothermal/solvothermal method [J]. Journal of Materials Science & Engineering, 2017, 35(1): 153-159.[42] 吕玉珍, 孙倩, 李超, 等. 油酸修饰TiO2纳米棒的溶剂热合成及形貌调控研究[J]. 无机材料学报, 2017,7(7): 719-724.LV Y Z, SUN Q, LI C, et al. Solvothermal synthesis and morphological control of TiO2 nanorods modified with oletic acid [J]. Journal of Inorganic Materials, 2017, 7(7): 719-724.[43] MONTIGAUD H, TANGUY B, DEMAZEAU G, et al. Solvothermal synthesis of the graphitic form of C3N4 as macroscopic ssample [J]. Diamond and Related Mate-rials, 1999, 8(8/9): 1707-1710.[44] MONTIGAUD H, TANGUY B, DEMAZEAU G, et al. Sur la synthèse de C3N4 de structure graphitique par voie solvothermale [J]. Competes Rendus de I’Académie des Sciences-Series ⅡB-Mechanic-Physics-Chemistry-Astro-nomy, 1997, 325: 229-234.[45] LU X F, GAI L G, CUI D L, et al. Synthesis of carbon nitride nanocrystals on SBA-15 microparticles by a constant-pressure solvothermal method [J]. Journal of Crystal Growth, 2007, 306(2): 400-405.[46] DEMAZEAU G. Solvothermal processes: a route to the stabilization ofnew materials [J]. Journal of Materials Chemistry, 1999, 9(1): 15-18. [47] MONTIGAUD H, TANGUY B, DEMAZEAN G, et al. C3N4: Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form [J]. Journal of Materials Science, 2000, 35(10): 2547-2552.[48] MU T C, HUANG J, LIU Z M, et al. Synthesis and cha-racterization of polyether structure carbon nitride [J]. Journal of Materials Research, 2004, 19(6): 1736-1741.[49] ZHANG J, LIU W, LI X F, et al. Well-crystallized nitrogen-rich graphitic carbon nitride nanocrystallites prepared via solvothermal route at low temperature [J]. Materials Research Bulletin, 2009, 44(2): 294-297. [50] CUI Y J, DING Z X, FU X Z, et al. Construction of conjugate carbon nitride nanoarchitecture in solution at low temperatures for photoredox catalysis [J]. Angewandte Chemie International Edition, 2012, 51: 11814-11818.[51] CUI Y J, TANG Y B, WANG X C. Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants [J]. Materials Letters, 2015, 161: 197-200.[52] WANG Y X, WANG H, CHEN F Y, et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis [J]. Applied Catalysis B: Environmental, 2017, 206: 417-425.。
氮掺杂纳米碳材料研究方面取得进展
文章来源:宁波材料技术与工程研究所
氮掺杂纳米碳材料研究已经成为国际碳材料领域的热点之一,这主要是因为氮原子比碳原子多一个价电子,氮掺杂进入石墨的六元环结构后可形成吡啶、吡咯、石墨氮、吡啶氧化物等含氮官能团,不仅可以提高纳米碳材料的表面化学活性,还可对其电子结构进行调节。
在众多纳米碳材料中,空心碳球具有低密度、高比表面积、可填充空腔等结构特性,在药物传输、纳米反应器、锂电、活性酶固载等领域具有广阔的应用前景。
空心碳球一般采用化学气相沉积法、电弧放电法、水热法、模板法制备,主要存在尺寸控制难、球壳厚度大、表面粗糙、石墨化程度低等缺点。
中科院宁波材料技术与工程研究所所属新能源技术所张建研究员课题组与河北科技大学化学与药物工程学院合作开展了系统的研究工作,提出了模板法离子液石墨化制备掺氮纳米碳球的新方法,即采用含氮的离子液体作为碳源和氮源,在单分散的氧化硅小球模板上组装成纳米薄层,经高温石墨化处理后除去氧化硅模板(图1)。
制备得到空心碳球具有尺寸可控(直径最大900nm)、壁薄(5~12nm)、中孔结构、氮掺杂(氮含量3.2%)等优点(图2)。
这一成果为纳米碳材料掺杂结构合成及官能团化学研究提供了新思路。
目前,双方正围绕新颖掺杂结构设计、应用性能研究、规模化制备可行性探索等方向开展深入合作。
相关工作发表在2013年首期出版的Journal of Materials Chemistry A上(DOI: 10.1039/C2TA01013E)。
图1:空心碳球形成过程原理示意图
图2 空心碳球表征结果:(a)扫描电镜照片(b)透射电镜照片(c)红外光谱谱图(d)N1s谱图。
氮化碳的制备及光催化分解水制氢性能研究韩莹莹;何伟培;李泊林;李泽胜;李德豪【摘要】以三聚氰胺为原材料,经过煅烧、球磨、以及超声等处理制备具有光催化分解水制氢气性能的上下层氮化碳(g-C3N4).通过模拟太阳光、X射线衍射(XRD)、扫描电子显微镜(SEM)等方法研究了氮化碳的催化性能、结构以及表面形态.结果表明:氮化碳上层的比表面积达到316 m2/g,下层的比表面积245m2/g.氮化碳上层的催化性能比下层氮化碳催化性能好,氮化碳上层作为光催化剂参与反应3h制得氢气量为3400μ mol/g,而氮化碳下层在同等条件下产生氢量为1840μmol/g.【期刊名称】《合成材料老化与应用》【年(卷),期】2018(047)004【总页数】4页(P83-86)【关键词】三聚氰胺;氮化碳;催化性能;制氢【作者】韩莹莹;何伟培;李泊林;李泽胜;李德豪【作者单位】广东石油化工学院化学工程学院,广东茂名525000;广东石油化工学院化学工程学院,广东茂名525000;广东石油化工学院化学工程学院,广东茂名525000;广东石油化工学院化学工程学院,广东茂名525000;广东石油化工学院化学工程学院,广东茂名525000【正文语种】中文【中图分类】O643当今,我们处于能源资源越来越少和环境污染严重的时代,而氢气是具有高效、清洁和能效高的特点,对环境没有污染,因此氢气成为重要的新清洁能源,具有远大的运用前景。
目前,传统氢气获取方式为能源化工产业的热解或电解水,此方法对电能依赖性很高,而我国的电能主要来源于火力发电,在工业生产中可行性不强[1]。
因此研发大规模的廉价制氢技术是世界各国科学家共同关注的问题,太阳能是取之不尽、用之不竭的一次性清洁廉价能源,所以利用太阳能进行光催化分解水制氢,是从根本上解决能源短缺和和环境污染问题的理想途径之一,成为高效利用和转换太阳能最为重要的研究方向之一[2]。
氮化碳是催化领域中一种新型的可见光催化剂,来源广泛,并且氮化碳具有一系列的优势,如良好的热稳定性、化学稳定性以及独特的能带结构等特性,在光催水制氢、光合成以及环境污染治理等方面均有运用[3]。
2014年第33卷第5期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ・1185・化工进展新型非金属光催化剂——石墨型氮化碳的研究进展范乾靖,刘建军,于迎春,左胜利(北京化工大学化工资源有效利用国家重点实验室,北京 100029)摘要:石墨型氮化碳(g-C3N4)聚合物是一种具有合适禁带宽度(2.7eV)的新型非金属有机半导体光催化剂,它具有良好的热稳定性和化学稳定性。
本文介绍了石墨型氮化碳的结构、理化性质和合成方法,重点阐述了进一步提高石墨型氮化碳光催化活性的方法,包括形貌调控、掺杂改性、共聚合改性和硫介质调控。
并论述了石墨型氮化碳在可见光下催化分解水和降解有机污染物方面的应用现状。
最后指出进一步探索和优化石墨型氮化碳的合成及改性方法,提高其光催化性能依然是g-C3N4在光催化领域应用的研究重点。
关键词:氮化碳;催化剂;太阳能;制氢;降解中图分类号:O 643 文献标志码:A 文章编号:1000–6613(2014)05–1185–10DOI:10.3969/j.issn.1000-6613.2014.05.018Research progress in a new metal-free photocatalyst——graphitic carbonnitrideF AN Qianjing,LIU Jianjun,YU Yingchun,ZUO Shengli(State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing100029,China)Abstract:Polymeric graphitic carbon nitride,g-C3N4,is a new organic photocatalyst with semiconductor property and proper band gap of 2.7eV,which possesses high thermal and chemical stability. In this paper,the structure,physicochemical properties and preparation methods of g-C3N4 are reviewed. As the photocatalytic activity of g-C3N4 is generally low,the methods to make it an effective photocatalyst are summarized,including texture modification,elements doping and constructing heterojunction with other materials,copolymerization and sulfur-mediated function. In addition,the applications of g-C3N4 for photocatalytic water splitting and degradation of organic water pollutants under visible light are discussed. At the end,it can be concluded that the developing tendency of g-C3N4 as a photocatalyst is exploring and further optimizing the preparation and modification methods to improve its photocatalytic activity.Key words:carbon nitride;catalyst;solar energy;hydrogen production;degradation随着世界人口的迅猛增加和工业化程度的不断提高,日益严峻的环境污染和能源短缺问题成为人类社会面临的重要挑战之一。
氮掺杂有序介孔碳-Ni纳米复合材料的制备及电化学性能潘旭晨;汤静;薛海荣;郭虎;范晓莉;朱泽涛;何建平【摘要】以F127为模板剂,NiC12为镍源,尿素为氮源,间苯二酚甲醛原位聚合树脂为碳源,分别采用均相法和两相法制备Ni-N-OMC-1,Ni-N-OMC-2纳米复合材料.X射线衍射(XRD)、激光拉曼以及透射电子显微镜(TEM)等测试结果表明,复合材料具有有序介孔结构,Ni以金属微粒形式嵌于碳骨架中,提高了有序介孔碳的石墨化程度.X射线光电子能谱测试(XPS)表明尿素热解后以4种形式存在:sp3杂化与C 结合的N原子,吡啶N原子,sp2杂化与C结合的N原子以及quaternary-N原子.Ni-N的共改性改变了碳载体的理化性质,有利于Pt纳米粒子的负载与分散.均相法制备的Ni-N-OMC-1复合材料微波负载Pt后,氧还原极限电流密度为5.32 mA· cm-2,氢氧化电化学活性面积高达138.53 m2·g-1,电化学催化活性优于商业20% Pt/C材料(4.49 mA· cm-2,96.98 m2·g-1).【期刊名称】《无机化学学报》【年(卷),期】2015(031)002【总页数】9页(P282-290)【关键词】均相法;两相法;有序介孔碳;N-Ni复合掺杂;电催化活性【作者】潘旭晨;汤静;薛海荣;郭虎;范晓莉;朱泽涛;何建平【作者单位】南京航空航天大学材料科学与技术学院,南京210016;南京航空航天大学材料科学与技术学院,南京210016;南京航空航天大学材料科学与技术学院,南京210016;南京航空航天大学材料科学与技术学院,南京210016;南京航空航天大学材料科学与技术学院,南京210016;南京航空航天大学材料科学与技术学院,南京210016;南京航空航天大学材料科学与技术学院,南京210016【正文语种】中文【中图分类】TB333质子交换膜燃料电池(DMFC)依赖于高效的氧化与还原反应,将化学能转变为电能,其转化效率与电催化活性物质,电极载体等有关。