食品中糖的测定方法
- 格式:doc
- 大小:68.00 KB
- 文档页数:15
《食品中糖的测定方法》糖是人体所需要的基本营养物质之一,天然食品中或经过加工的食品中均含有糖,因此测定食品中的糖含量是很有必要的。
本文将从常见的食品中糖的测定方法出发,详细介绍其原理及操作流程,包括显色法、高温反应法和比旋法等。
一、显色法显色法是当前最常用的测定糖含量的方法之一,适用于各种类型的糖,如单糖、双糖和多糖等。
该方法的原理是利用糖将某些金属阳离子还原为金属,而金属被还原后会显色,通过比色法来测定糖的含量。
操作流程:1. 食品样品称取适量,加入一定量的水,用搅拌器混合均匀。
2. 取一定量的样品溶液,加入适量的硫酸,然后加入稀酸性硫酸钾。
3. 将试管放入沸水中加热沸腾2~3分钟后冷却到室温,然后加入硼酸溶液,并用氢氧化钠调整pH值。
4. 添加一定量的柠檬酸铵和硫酸亚铁,摇晃5~10秒后,倒入定量瓶中,加入水至刻度并混合均匀。
5. 将比色皿放入波长648nm的分光光度计中,以纯蒸馏水为参比溶液进行调零,然后加入一定量的试液,记录吸光度。
6. 按照比色皿中的样品浓度计算出糖的含量。
二、高温反应法高温反应法通常适用于葡萄糖的测定。
该方法的原理是将葡萄糖在高温下与类似于尿素的化合物反应,生成有色产物,在一定波长下进行比色,从而测定葡萄糖的含量。
2. 将混合均匀的样品溶液倒入试管中,加入苏斯洛溶液和Copper-Tartrate液。
3. 摇晃混合均匀后,将试管放入加热水浴中,保持温度在95℃左右,反应30~40分钟。
4. 试管取出放置降温后,计算产生的颜色深度,并通过与标准溶液比色,计算出糖的含量。
三、比旋法比旋法是一种简单易行的方法,适用于多糖和单糖的测定。
该方法的原理是通过旋光仪测定糖分子的光学旋转,从而得到糖的含量。
2. 过滤处理得到无浮渣的取样液,将取样液置于旋光仪中测定旋光度。
3. 计算得到旋光度后,按照所测定糖的性质和种类进行计算出糖含量。
总之,每种测定方法都有其优势和局限性,选择适用于特定类型的食品的方法最为重要。
四种糖的测定方法
1. 莫尼酮试剂法(Benedict试剂法)
莫尼酮试剂法是测定还原性糖(如葡萄糖和果糖)的常用方法。
该方法利用莫尼酮试剂中的铜离子与还原性糖发生氧化还原反应,生成红色或黄色的沉淀。
根据沉淀的颜色来定量测定糖的含量。
2.酚硫酸法
酚硫酸法是测定非还原性糖(如蔗糖和乳糖)的一种方法。
该方法利用硫酸和酚的作用来将糖酸化,生成暗红色的化合物。
通过比色法来测定溶液的吸收值,然后通过标准曲线计算出糖的含量。
3.高效液相色谱法(HPLC)
高效液相色谱法是一种精确测定各种糖的含量和成分的方法。
该方法使用高效液相色谱仪来分离糖,并使用UV检测器来检测糖的吸收峰。
根据吸光度与浓度的关系,以及外部标准曲线,可以定量测定糖的含量。
4.旋光法
旋光法是一种测量光学活性糖(如葡萄糖和果糖)的方法。
光学活性糖分子可以使光线在通过时转动其振动平面。
旋光仪可以测量这种旋光现象,并根据旋转角度和样品底物的厚度来计算样品中的糖含量。
以上是四种常见的糖的测定方法。
根据不同的糖类和实验需求,可以选择适合的方法进行测定。
这些方法在食品工业、生化研究等领域起着重要作用,帮助人们更好地了解和利用糖的性质和功能。
4种糖的测定方法总结:1、直接滴定法。
原理为糖还原天蓝色的氢氧化铜为红色的氧化亚铜。
缺点:水样中的还原性物质能对糖的测定造成影响。
2、高锰酸钾滴定法。
所用原理同直接滴定法。
缺点:水样中的还原性物质能对糖的测定造成影响,过程较为复杂,误差大。
3、硫酸苯酚法。
糖在浓硫酸作用下,脱水形成的糠醛和羟甲基糠醛能与苯酚缩合成一种橙红色化合物,在10-100mg范围内其颜色深浅与糖的含量成正比,且在485nm波长下有最大吸收峰,故可用比色法在此波长下测定。
苯酚法可用于甲基化的糖、戊糖和多聚糖的测定,方法简单,灵敏度高,实验时基本不受蛋白质存在的影响,并且产生的颜色稳定160min以上。
缺点:如果水样呈橙红色(大部分水样为黄色),会对比色法造成较大的干扰。
4、蒽酮法糖在浓硫酸作用下,可经脱水反应生成糠醛和羟甲基糠醛,生成的糠醛或羟甲基糠醛可与蒽酮反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,故可用于糖的测定。
缺点:,不同的糖类与蒽酮试剂的显色深度不同,果糖显色最深,葡萄糖次之,半乳糖、甘露糖较浅,五碳糖显色更浅。
综合比较;采用蒽酮法能将最为准确地测定尾水中糖的含量。
(一)直接滴定法(本法是国家标准分析方法)中华人民共和国行业标准(果汁-总糖的测定-直接滴定法)SB/T 10203-1994Ⅰ、原理一定量的碱性酒石酸铜甲、乙液等量混合,立即生成天蓝色的氢氧化铜沉淀,这种沉淀很快与酒石酸钠反应,生成深蓝色的可溶性酒石酸钾钠铜络合物。
在加热条件下,以次甲基蓝作为指示剂,用标液滴定,样液中的还原糖与酒石酸钾钠铜反应,生成红色的氧化亚铜沉淀,待二价铜全部被还原后,稍过量的还原糖把次甲基蓝还原,溶液由蓝色变为无色,即为滴定终点。
根据样液消耗量可计算出还原糖含量。
样品经除去蛋白质后,在加热条件下,以次甲基蓝做指示剂,滴定标定过的碱性酒石酸铜溶液(用还原糖标准溶液标定碱性酒石酸铜溶液),根据样品溶液消耗体积计算还原糖量。
食品总糖的测定方法
食品总糖的测定方法有以下几种常用的方法:
1. 酶法:使用葡萄糖氧化酶和过氧化物酶对食品中的糖进行氧化反应,生成过氧化氢,通过测定过氧化氢的浓度来间接测定总糖含量。
这种方法具有灵敏度高、准确性好的优点。
2. 光学法:使用氨基酸与糖结合后形成的褐色化合物的吸光度来测定总糖含量。
这种方法操作简单,但对于含有褐变反应的食品,可能会影响结果的准确性。
3. 高效液相色谱法:将食品中的糖提取出来,然后使用高效液相色谱仪进行分离和检测。
这种方法可以同时测定多种不同类型的糖,并具有高灵敏度和高分辨率的优点。
4. 还原糖法:将食品中的糖还原为相应的糖醇,在酸性条件下测定糖醇含量。
这种方法适用于测定还原性糖的含量,但对于不具有还原性的糖,如蔗糖等无法测定。
在实际应用中,根据具体情况选择合适的测定方法,并结合样品的特点和要求进行测定。
糖的测定方法有哪些糖作为一种重要的营养物质,在日常生活中具有重要的意义。
测定糖的含量和类型对于食品工业、医学研究、以及某些疾病的诊断有着重要的应用价值。
以下是关于糖的常见测定方法的详细介绍。
1. 比色法比色法是一种简单常见的测定糖含量的方法。
该方法根据糖的某种特定性质与某种指示剂反应后的颜色变化程度来反映糖的含量。
比色法适用于测定一定浓度范围内的糖,例如葡萄糖、果糖以及麦芽糖等。
2. 还原糖测定法还原糖是指具有还原性的糖类,例如蔗糖、麦芽糖等。
还原糖测定法利用还原性糖在酸性条件下能够还原某些化学物质(例如硝基硫酸铁)的特性进行测定。
该方法主要测定还原糖的含量,常见的方法包括费林试剂法、倍加龙试剂法等。
3. 高效液相色谱法(HPLC)HPLC是一种高效液相色谱方法,可以对多种糖进行精确分离和测定。
该方法通过样品中糖的组分在液体流动相和固体固定相交互作用的方式实现分离和测定。
HPLC测定方法准确性高,灵敏度好,应用范围广。
4. 毛细管电泳法(CE)毛细管电泳法是一种将样品中的糖分离并检测的方法。
该方法利用电场作用和毛细管的微小孔径,将样品中的糖分子按照电荷、大小等特性进行分离。
毛细管电泳法具有分离性能好、快速、高效、高分辨率等优点。
5. 酶法酶法是测定糖的一种常见方法,该方法主要是通过糖酶对糖分子的特异性识别和催化作用进行测定。
例如,葡萄糖氧化酶法可以测定血液中的葡萄糖含量,淀粉酶法可以测定淀粉含量等。
6. 红外光谱法红外光谱法是一种可以鉴定和测定糖的成分和结构的方法。
该方法利用红外光的吸收特性来识别和测量糖的分子振动。
红外光谱法具有非破坏性、快速、准确等特点。
7. 光旋转法光旋转法是一种可以测定糖的手性和纯度的方法。
该方法基于糖分子的旋光性质,通过测量糖溶液的旋光度来确定其纯度和光学活性。
光旋转法特别适用于测定不对称碳原子的手性糖。
8. 荧光法荧光法是一种可以测定糖的方法。
该方法利用某些糖类的特异荧光性质来测定糖的含量和特性。
食品中糖含量的测定方法研究糖作为一种常见的食物成分,在食品中扮演着重要的角色。
然而,过多的糖摄入对健康有害。
因此,准确测定食品中糖的含量是非常重要的。
本文就食品中糖含量的测定方法进行研究。
一、高效液相色谱法高效液相色谱法是目前最常用的测定食品中糖含量的方法之一。
该方法通过将样品中的糖分离并使用色谱柱进行定性和定量分析。
高效液相色谱法有准确度高、分析速度快等优点,已经被广泛应用于食品质量检测。
二、酶法测定法酶法测定法是一种通过酶促反应来测定糖含量的方法。
该方法通过将样品与特定的酶底物反应生成可测定的产物来测定糖的含量。
酶法测定法具有反应性强、准确性高等优点,但需要较长的分析时间。
三、红外光谱法红外光谱法是一种基于糖分子对红外光的吸收和散射的特性来测定糖含量的方法。
该方法具有快速、非破坏性等特点,可以对样品进行迅速的分析。
然而,红外光谱法在某些食品样品中存在干扰物质的问题,因此需要进一步改进。
四、核磁共振法核磁共振法是一种通过测定磁共振信号来确定糖含量的方法。
该方法具有高分辨率、非破坏性等特点,可以对样品进行准确的定量分析。
然而,核磁共振法的设备昂贵且复杂,不易在所有实验室中广泛应用。
五、电化学法电化学法是一种基于糖分子在电化学反应中的电子转移特性来测定糖含量的方法。
该方法具有高灵敏度、准确性高等优点,已经成为一种常用的食品中糖含量测定方法。
然而,电化学法在某些食品样品中存在样品处理和电极选择的问题。
综上所述,食品中糖含量的测定方法有多种选择,每种方法都有其特点和局限性。
在实际应用中,我们可以根据具体情况选择合适的测定方法。
随着科学技术的不断进步,未来可能会出现更加准确和快速的测定方法,为食品质量检测提供更大的便利和贡献。
食物中的糖含量测定实验食物中的糖含量是很多人关注的一个问题。
糖的摄入过多会导致肥胖、糖尿病等健康问题。
因此,我们有必要了解不同食物中的糖含量,以便做出更科学合理的饮食选择。
本文将介绍一种简单的实验方法来测定食物中的糖含量。
实验材料:1. 不同食物样品(例如:苹果、面包、饼干等)2. 蒸馏水3. 硫酸4. 强碱溶液5. 甲醇实验步骤:1. 取不同食物样品,如苹果、面包、饼干等,准备好实验所需材料;2. 将样品称量并研磨成细粉末状;3. 取一小量样品,加入试管中;4. 加入适量的蒸馏水,使样品完全浸泡;5. 在加热装置上对试管进行加热,使其达到沸腾状态,然后继续加热一段时间;6. 取出试管,待样品冷却后,加入少量的硫酸溶液,将试管摇动均匀;7. 将试管放置在离心机中,离心一段时间,以将固体和液体分离;8. 将上层液体取出,加入适量的强碱溶液,摇动试管,使其中的糖转化为葡萄糖;9. 取少量甲醇,加入试管中,使其中的葡萄糖形成甲基葡萄糖苷;10. 将试管放入恒温水浴中加热一段时间,使甲基葡萄糖苷脱水生成甲基葡萄糖聚合物;11. 从水浴中取出试管,待其冷却后,加入一定量的蒸馏水使其溶解;12. 将试管中的溶液转移到比色皿中,使用试剂盒中提供的试剂进行测定。
实验结果分析:根据试剂盒中提供的指示,我们可以根据比色皿中试剂的颜色变化来判断食物样品中糖的含量。
通常,颜色越深,表示糖含量越高。
实验注意事项:1. 操作时要戴上实验手套和护目镜,以免接触到试剂对皮肤和眼睛造成伤害;2. 实验器材要干净,在使用之前要进行消毒处理,以防污染实验结果;3. 操作过程中要注意安全,避免发生意外事故。
总结:通过本实验方法,我们可以简单、快速地测定食物中的糖含量。
这对于我们了解食物的营养成分,特别是糖的含量,具有重要的参考价值。
通过控制糖的摄入量,我们能更好地保护我们自身的健康。
参考文献:[1] 何庆宇, 吕蓉, 高行建, 等. 食物中糖度提取实验[J]. 实验科学与技术, 2019, 17(8): 39-41.[2] 王栋, 杨骏, 史大忠, 等. 无水谷氨酸高产菌株的筛选及其发酵工艺的优化[J]. 实验技术与管理, 2020, 37(3): 111-116.[3] 邰小庆, 左霄雯, 李葆春, 等. 食物中糖含量的测定方法研究[J]. 中国食品学报, 2017, 17(3): 362-366.。
总糖的测定方法
总糖的测定是食品分析中的重要内容,不同的食品中总糖的含量也会有所不同。
因此,正确、准确地测定总糖的含量对于食品质量的控制和评价具有重要意义。
下面将介绍几种常用的总糖测定方法。
首先,常用的总糖测定方法之一是菲林法。
这种方法是将待测样品与酚酞溶液
和硫酸混合,然后在沸水浴中加热,使其发生蓝色到粉红色的变化,再用标准葡萄糖溶液进行比色测定。
菲林法操作简便,结果准确,因此被广泛应用于食品分析领域。
其次,还有硫酸酚法。
这种方法是将待测样品与硫酸酚溶液混合,然后在沸水
浴中加热,使其发生褐色沉淀,再用标准葡萄糖溶液进行比色测定。
硫酸酚法操作简单,结果准确,适用于各种食品样品的总糖测定。
另外,还有氧化还原滴定法。
这种方法是将待测样品与氢氧化钠溶液和酚酞溶
液混合,然后滴加碘液进行滴定,直至出现蓝色终点,再用标准葡萄糖溶液进行滴定测定。
氧化还原滴定法操作简单,结果准确,适用于各种食品样品的总糖测定。
最后,还有高效液相色谱法。
这种方法是利用高效液相色谱仪对待测样品进行
分离和检测,通过测定色谱图谱中总糖峰的面积来计算总糖的含量。
高效液相色谱法操作复杂,但结果准确,适用于各种复杂食品样品的总糖测定。
总之,不同的总糖测定方法各有优缺点,具体选择应根据实际情况和要求进行。
在进行总糖测定时,需严格按照操作规程进行,以确保测定结果的准确性和可靠性。
希望本文介绍的总糖测定方法能够对您有所帮助。
糖度检测方法标准糖度是描述溶液中糖分浓度的一个重要指标,对于食品加工、农业种植、酿酒等行业来说,糖度的准确测量是非常关键的。
本文将介绍几种常见的糖度检测方法及其标准,以及各种方法的优缺点和适用范围。
一、折光法折光法是一种常用的糖度检测方法,通过测量溶液的折射率来确定糖度。
根据不同的糖度测量范围,可以选择不同的仪器。
常见的折光仪有手持式折光仪和台式折光仪。
使用折光仪时,首先需要根据仪器的要求进行校准,然后将样品放入测量池中,仪器会自动显示糖度值。
折光法测量糖度的优点是快速、准确,适用于各种类型的溶液。
二、密度法密度法是通过测量溶液的密度来确定糖度,是一种简单实用的糖度检测方法。
常见的密度计有玻璃密度计和数字密度计。
使用密度计测量时,首先需要根据仪器的要求进行校准,然后将样品放入密度计中,仪器会自动显示糖度值。
密度法测量糖度的优点是简便易行,适用于各种类型的溶液。
三、滴定法滴定法是一种常见的定量分析方法,也可以用于测量糖度。
滴定法的原理是将标准溶液滴定到待测溶液中,通过滴定液的消耗量来确定糖度。
滴定法需要使用一定量的标准溶液和指示剂。
测量时,先将待测溶液与指示剂混合,然后滴加标准溶液,直到指示剂的颜色发生变化。
滴定法测量糖度的优点是准确可靠,适用于各种类型的溶液,但操作相对复杂。
四、红外光谱法红外光谱法是一种非常准确的糖度检测方法,通过测量溶液中糖分特征吸收峰的强度来确定糖度。
红外光谱仪是一种高精度的仪器,可以提供详细的红外光谱图。
使用红外光谱法测量时,首先需要将样品制成固体或液体,然后放入红外光谱仪中进行测量。
红外光谱法测量糖度的优点是准确性高,可以提供更多的理化信息,适用于各种类型的溶液。
以上是几种常见的糖度检测方法及其标准。
不同的方法适用于不同的场景,在选择糖度检测方法时,需要根据实际需求和条件选择合适的方法。
同时,在进行糖度检测时,还需要注意仪器的校准和样品的处理,以确保测量结果的准确性和可靠性。
食品中糖的测定方法对于糖的测定方法有很多,大致可分为三类1.物理法,(1.旋光法, 2 .折光法, 3.比重法,)2.物理化学法,(1.点位法, 2极普法,3.光度法,4.色谱法)3.化学方法,(1.斐林氏法. 2.高锰酸钾法. 3.碘量法.4.铁氰化钾法.5.蒽铜比色法.6.咔唑比色法)共计三大种,在测定其他碳水化合物时,往往是使其水解为糖再进行测定。
一. 总糖的测定食品中的总糖主要指具有还原性的葡萄糖,果糖,戊糖,乳糖和在测定条件下能水解为还原性的单糖的蔗糖(水解后为1分子葡萄糖和1分子果糖),麦芽糖(水解后为2分子葡萄糖)以及可能部分水解的淀粉(水解后为2分子葡萄糖)。
还原糖类之所以具有还原性是由于分子中含有游离的醛基(-CHO)或酮基(=C=O)。
测定总糖的经典化学方法都是以其能被各种试剂氧化为基础的。
这些方法中,以各种根据斐林氏溶液的氧化作用的改进法的应用范围最广。
在这里我们主要给大家介绍铁氰化钾法,蒽铜比色法,斐林氏容量法。
斐林氏容量法由于反应复杂,影响因素较多,所以不如铁氰化钾法准确,但其操作简单迅速,试剂稳定,故被广泛采用。
蒽铜比色法要求比色时糖液浓度在一定范围内,但要求检测液澄清,此外,在大多数情况下,测定要求不包括淀粉和糊精,这就要在测定前将淀粉,糊精去掉,这样就使操作复杂化,限制了其广泛应用。
(一)铁氰化钾法1.原理:样品中原有的和水解后产生的转化糖都具有还原性质,在碱性溶液中能将铁氰化钾还原,根据铁氰化钾的浓度和检验滴定量可计算出含糖量。
其反应为下:C6H12O6+6K3[Fe(CN)6] + 6KOH →(CHOH)4•(COOH)2 + 6K4[Fe(CN)6]+ 4H2O滴定终了时,稍过量的转化糖即将指示剂次甲基兰还原为无色的隐色体。
2,试剂1)1%的次甲基兰指示剂2)盐酸(水解作用)3)10%和30%的NaOH溶液4)1%铁氰化钾(贮存特色瓶,临用前标定)标定步骤称蔗糖1.0000g→定容500ml→取此液50ml→于100ml容量瓶→加hcl5ml→摇匀→65-70℃水裕15分钟→取出冷却→用30%NaOH中和→加水于刻度→倒入滴定管中→取10ml1%铁氰化钾于锥形瓶中→加10%NaOH2.5ml加12.5ml的水加玻璃珠颗粒→加热至沸→保持一分钟→加次甲基兰1滴→立即以糖液滴足至蓝色退去为止,记录用量。
食品中总糖的测定是衡量食品中糖分含量的一种方法,可以通过化学分析的方法来进行测定。
下面是总糖的测定步骤:
样品制备
将待测样品称取适量,加入适量的蒸馏水或磷酸盐缓冲液中,搅拌均匀后过滤,得到过滤液备用。
硫酸酚试剂法
将10 mL过滤液加入试管中,加入1 mL硫酸酚试剂,搅拌均匀后加入10 mL硫酸试剂,再次搅拌均匀。
将试管放入沸水中加热5分钟,冷却至室温后,加入50 mL蒸馏水,用0.1mol/L 氢氧化钠溶液滴定至橙黄色,记录用量V1。
硝酸汞法
将10 mL过滤液加入试管中,加入3 mL硝酸汞试剂,加热至沸腾,持续加热5分钟,冷却后加入50 mL蒸馏水,用0.1mol/L氢氧化钠溶液滴定至橙黄色,记录用量V2。
计算
总糖的含量C(%)=(V1-V2)×0.1×1000/样品质量(g)。
总糖含量的计算中,V1为硫酸酚试剂法所用氢氧化钠溶液的用量,V2为硝酸汞试剂法所用氢氧化钠溶液的用量,0.1为氢氧化钠溶液的摩尔浓度,1000为单位转换系数。
总糖的测定可以通过硫酸酚试剂法和硝酸汞法两种方法进行,其中硝酸汞法的测定结果更加准确。
总糖的测定对于衡量食品中糖分含量,评估食品的营养价值和安全性具有重要意义。
食品中总糖的测定食品中总糖的测定是一项重要的分析方法,在食品质量控制和营养评估中起着至关重要的作用。
总糖是指食品中所有能被水解为单糖的碳水化合物的总和。
测定食品中的总糖含量可以帮助人们了解食品的甜度,从而进行食品配方的调整和营养评估。
本文将介绍几种常用的测定食品中总糖的方法。
首先,最常用的方法是邓漏滴定法。
这种方法使用邓漏仪进行实验操作,通过滴定和计算滴定所用的标准糖溶液的体积来确定食品中总糖的含量。
该方法操作简单、快速,且结果准确可靠。
其次,还可以使用苏糖试剂法进行总糖的测定。
该方法是通过苏糖试剂与食品中的糖发生反应,生成有色物质,并用分光光度计进行测定。
该方法的优点是快速、灵敏,适用于多种食品样品的测定。
另外,还可以使用蒽醌法进行总糖的定量分析。
这种方法是利用蒽醌与糖类结合反应生成有色物质,通过比色测定蒽醌与产生的有色物质之间的吸光度差来测定总糖的含量。
该方法对不同类型的糖具有较好的选择性。
此外,还可以使用酶法测定食品中的总糖含量。
这种方法是利用特定酶对食品中的糖进行水解,产生反应物,然后通过测定反应物的含量来确定食品中总糖的含量。
这种方法操作简便,且结果准确可靠。
最后,还可以使用高效液相色谱法(HPLC)进行总糖的测定。
该方法利用高效液相色谱仪分离和定量食品中的糖类成分,通过根据不同糖类的保留时间和峰面积来进行定量分析。
这种方法需要专门的设备和荧光检测器,但结果准确可靠。
总结起来,测定食品中总糖的方法有很多种,每种方法都有其适用的范围和特点。
根据实际需求和实验条件,选择合适的方法进行测定是非常重要的。
同时,实验中应注意操作规范,避免干扰物质的干扰,确保结果的准确性和可靠性。
四种糖的测定方法糖是一类普遍存在于食品和生物体内的有机化合物,在生物体内扮演着能量供应和结构支持的重要角色。
因此,准确测定糖的含量对于食品工业、医学研究以及农业等领域至关重要。
本文将介绍四种常见的糖类测定方法:离子色谱法、高效液相色谱法、酶法和光学旋光法。
离子色谱法(Ion Chromatography,IC)是一种基于糖与离子交换柱相互作用的分析方法。
该方法的原理是,通过将样品中的糖溶解成离子形式,并通过离子色谱柱对其进行分离和定量测定。
该方法具有高灵敏度、分离效果好和操作简便等特点。
离子色谱法广泛应用于果汁、乳制品、饮料等食品中糖的含量测定,同时也可用于生物体内糖的测定,如血糖测定。
高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种利用高压将流动相通过色谱柱以及对样品中的目标物进行分离和检测的方法。
在糖的测定中,通常采用葡萄糖氧化酶(Glucose Oxidase,GOD)进行检测。
首先,将样品中的糖通过酶反应转化为过氧化氢和酮糖,然后过氧化氢再和荧光素酶反应生成荧光素,最后通过荧光检测器进行定量测定。
该方法具有高灵敏度、准确度高和分离效果好的特点,广泛应用于食品和生物体中糖类的测定。
酶法是一种常见的测定糖的方法。
在糖类测定中,常使用葡萄糖氧化酶(Glucose Oxidase,GOD)进行测定。
该酶与葡萄糖结合形成过氧化氢和酮糖,然后通过反应转换为酸与染料反应产生有色产物,最后根据产生的色度与糖的浓度成正比进行定量测定。
酶法具有操作简便、准确性高和灵敏度高等特点,广泛应用于血糖检测和食品中糖类的测定等领域。
光学旋光法是一种通过测量糖溶液在光的干涉下发生的旋光现象来测定糖含量的方法。
根据糖分子中的手性碳原子的存在,使得糖分子能够旋光,通过测量光经过旋光液体时的偏离程度,并与标准旋光度进行对比,可以确定糖的含量。
光学旋光法具有准确性高、非破坏性测量以及对复杂样品的适用性等特点,广泛应用于食品、医药等领域的糖类测定。
蔗糖含量测定方法
蔗糖是一种常见的糖类物质,在食品工业和医药工业中被广泛应用。
蔗糖含量的测定对于食品的质量控制非常重要。
本文将介绍几种常见的蔗糖含量测定方法。
1.折射法
折射法是一种常用的测定蔗糖含量的方法。
这种方法基于溶液中溶质浓度和折射率之间的关系。
通过使用折射仪测定样品溶液的折射指数,然后使用经验公式将折射指数转换为蔗糖含量。
2.重量法
重量法是一种直接测定蔗糖含量的方法。
它通过测量样品中蔗糖的重量来确定其含量。
具体操作是将样品溶解在适量的溶剂中,然后将其溶液适当稀释,最后将溶液中的蔗糖沉淀出来并称重,通过计算可得到蔗糖的含量。
3.比色法
比色法是一种常用的快速测定蔗糖含量的方法。
它基于蔗糖溶液在一定浓度下对光的吸收作用。
通过将样品溶液与适当浓度的标准溶液进行比色,根据样品与标准溶液的吸光度之差,可以确定样品中蔗糖的含量。
4.液相色谱法
液相色谱法是一种高效的测定蔗糖含量的方法。
这种方法利用溶液中的蔗糖与色谱柱中的固定相进行相互作用,通过不同的保留时间来确定蔗糖的含量。
液相色谱法具有高灵敏度、高分辨率和高重复性的优点,广泛应用于蔗糖含量的测定。
总结起来,测定蔗糖含量的方法有折射法、重量法、比色法和液相色
谱法等。
根据具体情况,可以选择适合的方法进行测定。
这些方法的选择
应该考虑到测定时间、精确度、仪器设备和操作条件等因素。
同时,要保
证测定的准确性和可重复性,可以进行多重测定和与标准方法的对比验证。
一、还原糖的测定还原糖是指具有还原性的糖类。
葡萄糖分子中含有游离醛基,果糖分子中含有游离酮基,乳糖和麦芽糖他分子中含有游离的半缩醛羟基,因而它们都具有还原性,都是还原糖。
其他非还原性糖类,如双糖、三糖、多糖等(常见的蔗糖、糊精淀粉等都属于此类),本身不具有还原性,但可以通过水解而成具有还原性的单糖,再进行测定,然后换算成样品中相应糖类的含量。
所以糖类的测定是以还原糖的测定为基础的。
还原糖的测定方法很多,其中最常用的有直接滴定法及高锰酸钾滴定法,现分别介绍如下:1、直接滴定法该法是目前最常用的测定还原糖的方法,它具有试剂用量少、操作简单、快速、滴定终点明显等特点,适用于各类食品中还原糖的测定。
但对深色样品(如酱油、深色果汁等)因色素干扰使终点难以判断,从而影响其准确性。
原理将一定量的碱性酒石酸铜甲、乙液等量混合,立即生成天蓝色的氢氧化铜沉淀,这种沉淀很快与酒石酸钾钠反应,生成深蓝色的可溶性酒石酸钾钠铜络合物。
在加热条件下,以次甲基蓝作为指示剂,用样液滴定经标定的碱性酒石酸铜溶液,还原糖将二价铜还原为红色的氧化亚铜沉淀,待二价铜全部被还原后,稍过量的还原糖把次甲基蓝还原,溶液由蓝色变为无色,即为滴定终点。
根据样液消耗量可计算还原糖含量。
⑴原理样品经处理除去蛋白质等杂质后,加入稀盐酸在加热条件下使蔗糖水解转化为还原糖,再以直接滴定法测定水解后样品中还原糖的总量。
⑵试剂。
①盐酸:6mol/L。
②甲基红指示剂:1g/L。
称取0.1g甲基红,用体积分数60%的乙醇溶解并定容到100mL。
③氢氧化钠溶液:200g/L。
④其他试剂:同“还原糖的测定”。
测定方法①样品处理ⅰ、对于乳类、乳制品及含蛋白质的饮料(雪糕、冰淇淋、豆乳等)称取2.50~5.00g固体样品或吸取25.00~50.00mL液体样液,置于是250mL容量瓶中,加水50mL,摇匀后慢慢加入5mL醋酸锌及5mL亚铁氰化钾溶液,加水至刻度,混匀,静置30min。
食品中总糖的测定总糖(Total Sugar)是指食品中所有单糖、双糖、多糖的总和,也包括加入的糖和本身含有的糖。
测定食品中总糖的含量对于评估食品的营养质量具有非常重要的意义,而常见的方法包括酚硫酸法、烯醇法和酶法等。
下面我们将针对这些方法进行详细介绍。
一、酚硫酸法酚硫酸法是一种经典的总糖测定方法,其原理是利用硫酸和酚反应可以将酚氧基与糖的羟基结合,从而形成不稳定的脱水碳酸热橙色化合物。
测定时首先将食品样品与硫酸混合,在沸水中加热,待样品冷却后加入邻苯二酚,最后读取吸光度。
酚硫酸法的优点是简单、快速,并且精度较高,但其缺点在于会与某些多糖如果胶和半乳糖结合并形成沉淀,从而导致误差。
二、烯醇法烯醇法是一种新型的总糖测定方法,与酚硫酸法相比,它在测定水果和蔬菜样品中的多糖时更为准确。
其原理是加热样品与硫酸混合,使多糖分子开链,并将醇基氧化为酮基。
然后,加入过量的含有醛基的叔丁醇,利用醛基与酮基之间的缩合反应形成的共轭体系反应,最终读取吸光度。
烯醇法的主要优点是能够避免酚硫酸法在测定多糖时产生的误差,同时其操作简单、快速,并且对于各种食品样品都有较好的适用性。
三、酶法酶法是一种利用特定酶解分子中糖类的测定方法。
常见的酶法包括葡萄糖氧化酶法、酵母葡萄糖醛酸酶法、异麦芽糖酶法等。
这些方法能够针对不同类型的糖酮酸进行特异性测定,从而在较高灵敏度和较低检出限之间进行平衡。
酶法的主要优点在于可靠性高、精度高、灵敏度高,并且能够减少不特异的干扰。
其缺点在于操作较为复杂,并且需要使用一些酶类试剂,成本较高。
综上所述,总糖的测定是食品质量评估中的关键步骤,适用的测定方法应根据食品样品类型和实际需求进行选择。
常用的酚硫酸法、烯醇法和酶法各有其优劣,需要根据不同的实验要求和实际情况进行选择。
食品中糖的测定方法对于糖的测定方法有很多,大致可分为三类1.物理法,(1.旋光法, 2 .折光法, 3.比重法,)2.物理化学法,(1.点位法, 2极普法,3.光度法,4.色谱法)3.化学方法,(1.斐林氏法. 2.高锰酸钾法. 3.碘量法.4.铁氰化钾法.5.蒽铜比色法.6.咔唑比色法)共计三大种,在测定其他碳水化合物时,往往是使其水解为糖再进行测定。
一. 总糖的测定食品中的总糖主要指具有还原性的葡萄糖,果糖,戊糖,乳糖和在测定条件下能水解为还原性的单糖的蔗糖(水解后为1分子葡萄糖和1分子果糖),麦芽糖(水解后为2分子葡萄糖)以及可能部分水解的淀粉(水解后为2分子葡萄糖)。
还原糖类之所以具有还原性是由于分子中含有游离的醛基(-CHO)或酮基(=C=O)。
测定总糖的经典化学方法都是以其能被各种试剂氧化为基础的。
这些方法中,以各种根据斐林氏溶液的氧化作用的改进法的应用范围最广。
在这里我们主要给大家介绍铁氰化钾法,蒽铜比色法,斐林氏容量法。
斐林氏容量法由于反应复杂,影响因素较多,所以不如铁氰化钾法准确,但其操作简单迅速,试剂稳定,故被广泛采用。
蒽铜比色法要求比色时糖液浓度在一定范围内,但要求检测液澄清,此外,在大多数情况下,测定要求不包括淀粉和糊精,这就要在测定前将淀粉,糊精去掉,这样就使操作复杂化,限制了其广泛应用。
(一)铁氰化钾法1.原理:样品中原有的和水解后产生的转化糖都具有还原性质,在碱性溶液中能将铁氰化钾还原,根据铁氰化钾的浓度和检验滴定量可计算出含糖量。
其反应为下:C6H12O6+6K3[Fe(CN)6] + 6KOH →(CHOH)4•(COOH)2 + 6K4[Fe(CN)6]+ 4H2O滴定终了时,稍过量的转化糖即将指示剂次甲基兰还原为无色的隐色体。
2,试剂1)1%的次甲基兰指示剂2)盐酸(水解作用)3)10%和30%的NaOH溶液4)1%铁氰化钾(贮存特色瓶,临用前标定)标定步骤称蔗糖1.0000g→定容500ml→取此液50ml→于100ml容量瓶→加hcl5ml→摇匀→65-70℃水裕15分钟→取出冷却→用30%NaOH中和→加水于刻度→倒入滴定管中→取10ml1%铁氰化钾于锥形瓶中→加10%NaOH2.5ml加12.5ml的水加玻璃珠颗粒→加热至沸→保持一分钟→加次甲基兰1滴→立即以糖液滴足至蓝色退去为止,记录用量。
正式滴定比较滴定时少0.5ml糖液,煮沸1分钟,加指示剂一滴,再用糖液滴定至兰色褪去,计算铁氰化钾溶液的浓度。
A=(W•V)/(1000×0.95)A:相当于10ml铁氰化钾溶液的转化糖的量(克)V:滴定时消耗的糖液的体积W:称取纯蔗糖的量1000:稀释比0.95:换算等数3.操作方法稀释10g→用100ml水作溶液→于250ml容量瓶→加20%醋酸铅10ml→至沉淀完为止→加10ml10%NA2HPO4→至不在产生沉淀为止→加水至刻度→过滤-取滤液50ml→于100ml容量瓶中→按铁氰化钾标定法进行转化,中和及滴定计算糖含量总糖(以转化糖计%)= (A ×1000)/(W•V)×100A:相当于10ml铁氰化钾溶液的转化糖的重量,W:样品的重量V:滴定时样液消耗的体积4.实验应注意(a)达终点时,过量的转化糖将指示剂次甲基兰还原为无色的隐色体,隐色体容量受空气中氧所氧化,很快又变成指示剂的颜色。
(b)整个过程应在低温电炉上进行,滴定要速度,否则终点不明显(c)糖与硫酸反应脱水生成羟甲基呋喃甲醛,生产物再与蒽铜缩合成兰色化合物,其颜色深浅与溶液中糖的浓度成正比,单、双糖等糖类都直接于试剂发生作用,因此不需要水解。
(二)蒽铜的比色法1.原理:糖与硫酸反应脱水生成羟甲基呋喃甲醛,生产物再与蒽铜缩合成兰色化合物,其颜色深浅与溶液中糖的浓度成正比,可比色定量。
2.试剂(1)硫酸锌溶液:溶解500g化学纯硫酸锌于500ml水中(2)亚铁氰化钾溶液:溶解10.6g化学纯亚铁氰化钾于100ml水中(3)0.2%蒽铜试剂:溶解蒽铜0.2g于100ml95%硫酸中,置棕色瓶中冷暗处保存(4)0.1%葡萄糖液:准确称干燥葡萄糖0.1000g 定容100ml3.操作方法(1)标准曲线绘制(2)100ml容量瓶编号沸水浴加热6分钟,取出冷却→用1cm比色杯→610nm测定吸光度→作出以吸光度为横坐标,糖液浓度为纵坐标的准曲线(3)样品测定称10g样品→于100ml热水加入500ml容量瓶中-加硫酸锌5ml→沸水浴5分钟→取出再摇动下加亚铁氰化钾5ml,→冷却→定容500ml→过滤→吸滤液25ml→于250ml容量瓶→定容250ml→取稀释液1ml,于比色管中→加10ml 蒽铜试剂→摇匀→水浴加热6分钟→冷却→比色试验注意1,样液必须清澈透明,加热后不应有蛋白质沉淀2,样品颜色较深时,可用活性炭脱色后再进行测定3,此法与所用的硫酸浓度和加热时间有关4,所取糖液浓度在1-2.5mg/100ml之间二. 还原糖的测定方法还原糖包括葡萄糖、果糖、麦芽糖,在葡萄糖分子中含有淤青的醛茎,在果糖分子中含有淤青的酮茎,在乳糖中和麦芽糖中含有淤青的半缩羧茎,因此都有还原性。
在测定还原糖时一般测定总糖时所有将糖类水解为转化糖再测定的方法都可用来测定还原糖。
(一)斐林氏容量法1.此法的原理、试剂、方法与总糖的测定方法相同。
只是样品溶液不必以过转化,而是直接取滤液进行滴定,滤液进行滴定,滤液中的还原糖含量以在0.2-0.5%为好,又能通过增减样品量或改变稀释倍数来调节。
10毫升费林氏A、B 液混合时理论上相当还原糖量如下:葡萄糖(无水)果糖或转化糖尿病 0.0500克乳糖尿病 0.0678克麦芽糖 0.0807克2试剂(1)斐林氏A液,称69.8g cp硫酸铜于100ml水中,过滤备用(2)斐林氏B液,称34.6g.cp浓流锌钠和100gcp NaOH于1000ml水中,过滤备用3方法称取样品10-20g:制备与转化同铁氰化钾法。
将样液倒入滴管中,吸取A,B液准备预滴定预滴定:吸A、B液各5ml→从滴管中加15ml样液→加热至沸→继续滴加样液→至兰色变潜→加3滴次甲基兰→在1分钟内滴定到终点达到终点时,稍微过量的转化糖,将兰色的次甲基兰染色体还原为无色的隐色体,而显出氧化亚铜的红色,去碱性条件下加热糖的产物是复杂的。
去碱性中断裂是由于碱度不同,加热时间不同,生产不等的碎片,这种碎片给后面滴定带来误差,而且,这种碎片与糖没有化合量的关系,所以,Lanecrol-Eynon Method 作出数据检索表正式滴定:吸A,B液各5ml→于三角瓶→加比预定量少0.5-1.0ml样液→2分钟内要求沸腾1分钟→加3滴指示剂→用样液滴定兰色消失总沸腾时间为3分钟,即滴定在3分钟完成。
计算:还原糖=( F•V2)/(W•V1)×100F:转还糖回数,即与10ml斐林氏试液相当的转化糖毫克数,V1:样品试液总体积V2:样品试液滴定量W:样品重量在测量乳糖制品时,若蔗糖与乳糖的含量比超过3:1时,则应与滴定量中加上相关表中(课本中表9-8)校正值后在进行计算我们举例如下:如果标准果糖溶液度为每100ml溶液含糖262.5mg。
对于10ml斐林试液从9-5可以查得果糖液滴定应为20ml。
如果不是20ml,可先算出A,B液校正等数。
然后进行计算再如标准糖溶液浓度为每100ml溶液含糖199.3ml,对于10ml A,B液从9-4中查到,糖液滴定量应为25.00ml,若有出入可校正。
如果要求不高,可省略校正步骤但要求1%得测定误差,则省略校正。
另外有时候并未根据检索表计算样含糖量,但对A,B液进行标定,以使确定相当得还原糖量。
这种误差为0.5%。
下面我们讲标定量A,B液准确准确称取烘干冷却得A.R蔗糖1.5g→用水溶解称取250ml容量瓶中→定容→吸50ml于100ml 定量瓶中→加HCL5ml→再65-70摄氏度水裕15分钟→冷却→用30%NaOH中和→定容准确吸A,B液各5ml于三角瓶中→加水约50ml玻璃珠三粒→加热至沸→保持1分钟→加指示剂1滴→再煮1分钟→立即用糖液滴定至兰色褪去,红色出现即为终点正式滴定,先加入比预滴定时少0.5ml左右得糖液煮沸1分钟→加指示剂1滴→再煮沸1分钟→继续滴至终点计算:A=W*V/500×0.95A:相当于10ml斐林氏A、B液的转化糖的量W:称取蔗糖的质量V :滴定蔗糖的量500:稀释比0.95:换算等数最后计算:总糖(还原糖测定时样品溶液的消耗体积应该与标定葡萄糖标液的消耗体积相近,通过测定了解样品浓度是否合适,浓度过大或过小应该加以调整,使测定时消耗样品溶液量在10毫升左右;二是通过测定可知道此溶液的大概消耗量,以便在正式的滴定时,预先加入比实际用量少1毫升左右的样液,只留下1ml左右的样液在续滴定时加入,以便保证在1分钟内完成续滴定工作,提交预测定的准确度。
2.此实验影响测定结果的主要操作因素是反应液碱度、热源强度,煮沸时间和滴定速度一般煮沸时间短消耗糖多,反之,消耗糖液少,滴定速度过快,消耗糖量多,反之,消耗糖量少。
另外溶液碱度愈高,二价铜的还原愈快,因此必须严格控制反应的体积)以转化糖计%=(A*1000/W*V)*100A:同上W:制取样品的量V:滴定是时样品消耗量1000:是稀释倍数(100/50*500)1.预测定的目的:对样品溶液中还原糖浓度有一定要要求(0.1%左右),,使反应体系碱度一致。
热源一般采用800W 电炉,反应液在2秒内沸腾。
(二)KMNO4(高锰酸钾法)1.原理,还原糖在碱性溶液中使铜盐还原成氧化亚铜,在酸性条件下,氧化亚铜能使硫酸铁还原为硫酸亚铁,再用KMNO4溶液滴定硫酸亚铁,即可标出还原糖的量。
2. 操作方法(1)样品处理a. 乳糖:包括乳制品以及含蛋白质的冷食类称样2-5g(液体样25~50ml)→于250ml容量瓶→加水50ml→加A液10ml+1N NaOH 4ml →定容→静置30秒→过滤→弃去初液→可测还原糖及蔗糖用。
b. 低酒度饮料:麦精露、各类汽酒等饮料。
先暴气除CO2→取100ml→于蒸发皿中→用1 N NaOH 中和→沸水浴蒸至原体积四分之→转入250ml容量瓶→加50ml水→摇匀→(加A液10ml→加1 N NaOH 4ml)→加水至刻度→静置30秒→过滤。
c. 含多量淀粉的食品:婴儿食品、糕干粉、宝宝乐、代乳粉、饼干、面包、糕点等称样10-20g→250ml容量瓶→加水200ml→45度水浴加热1小时→不停摇动→冷后加水至刻度→静置→吸出清夜200ml于另一容量瓶(250ml)→加A液10ml+1N NaOH 4ml→静置30秒→过滤。