机械毕业设计--应用PLC的恒温箱控制系统设计
- 格式:doc
- 大小:727.00 KB
- 文档页数:43
一、题目恒温箱PLC系统控制二、指导思想和目的要求1)通过毕业设计培养学生综合运用所学的基础理论、基础知识、基本技能进行分析和解决实际问题的能力。
2)使学生受到PLC系统开发的综合训练,达到能够进行PLC 系统设计和实施的目的。
3)使学生掌握利用PLC对温度进行PID控制方法。
三、主要技术指标1、选用三菱FX2N系列可编程控制器作为主机2、主要参数温度范围:200—1050℃控制精度:±1℃输入电压:AC200—240V消耗功率:2KW外形尺寸:40×45×45cm3、系统构成通过一个温度传感器检测恒温箱的温度值并把它转换成标准电流(或电压)信号后,送到A/D转换模块,转换成的数字信号输送到PLC主机。
PLC主机得到一个控制量,该控制量的大小决定PLC输出控制的继电器的导通时间,从而控制温度值的大小。
4、控制要求采用PID控制算法,使PLC控制的恒温箱的温度变化能按照给定的曲线运行,如图所示四、要求1.设计电气控制原理图。
2、进行PLC的选择及I/O分配。
3、设计PLC硬件系统。
4、对系统所需电气元器件选型,编制电气元件明细表。
5、PLC控制程序设计。
五、主要参考书及参考资料1、自动控制原理及系统2、PLC及应用、目录摘要 (1)第1章可编程控制器基础知识 (2)1.1 PLC的定义 (2)1.2 PLC的类型选择 (3)第2章可编程器的系统运用 (5)2.1恒温箱工艺过程及控制要求 (5)2.2模块功能指令 (9)2.2.1展热电阻/热电偶模块用法 (9)2.2.2系统输入输出控制 (10)第3章恒温箱工作的基本原理 (13)3.1恒温箱工作原理 (13)3.2控制系统温度采集 (17)3.3恒温控制装置PLC接线图 (19)3.4系统的配置及I/O地址 (20)3.5梯形图(附录) (21)总结 (22)致谢 (23)附录 (24)参考文献 (31)摘要在日常生活、工业生产和实验室中电热恒温箱的应用随处可以见到。
基于plc的智能温控系统毕业设计基于 PLC 的智能温控系统毕业设计一、引言温度控制在工业生产、农业养殖、日常生活等众多领域都具有至关重要的作用。
传统的温控系统往往存在精度不高、响应速度慢、稳定性差等问题,难以满足现代生产和生活的需求。
随着可编程逻辑控制器(PLC)技术的不断发展,基于 PLC 的智能温控系统应运而生,其凭借着高精度、快速响应、稳定性好等优点,在各个领域得到了广泛的应用。
二、系统总体设计(一)系统需求分析在设计智能温控系统之前,首先需要对系统的需求进行详细的分析。
系统需要能够实时监测温度,并根据设定的温度值进行自动控制,同时还需要具备报警功能,当温度超出设定范围时能够及时发出警报。
此外,系统还需要具备良好的人机交互界面,方便操作人员进行参数设置和监控。
(二)系统总体结构基于 PLC 的智能温控系统主要由温度传感器、PLC 控制器、执行机构、人机交互界面等部分组成。
温度传感器用于实时采集温度信号,并将其转换为电信号传输给 PLC 控制器。
PLC 控制器对采集到的温度信号进行处理和分析,并根据设定的控制算法输出控制信号,控制执行机构(如加热器、冷却器等)的工作状态,从而实现对温度的精确控制。
人机交互界面则用于操作人员进行参数设置、监控温度变化等操作。
三、硬件设计(一)温度传感器选型温度传感器的选型直接影响到系统的测量精度和响应速度。
在本系统中,选用了高精度、响应速度快的热电偶温度传感器。
热电偶温度传感器具有测量范围广、精度高、稳定性好等优点,能够满足系统的需求。
(二)PLC 控制器选型PLC 控制器是整个系统的核心,其性能直接影响到系统的稳定性和可靠性。
在本系统中,选用了西门子 S7-200 系列 PLC 控制器。
该系列PLC 控制器具有功能强大、可靠性高、编程简单等优点,能够满足系统的控制需求。
(三)执行机构选型执行机构的选型需要根据系统的控制要求和实际工作环境来确定。
在本系统中,选用了电加热器和风扇作为执行机构。
编号: 毕业论文(设计)题目基于PLC温度控制系统的设计指导教师学生姓名学号专业自动化教学单位机电工程学院毕业论文(设计)开题报告书德州学院毕业论文(设计)中期检查表院(系):机电工程学院专业:自动化 2014 年 4月 7日目录1引言 (2)1.1课题背景以及研究的目的、意义 (2)1.2温控系统的现状 (2)1.3项目研究内容 (3)2系统硬件设计 (4)2.1 PLC选择 (4)2.2 硬件电路设计 (7)3 系统软件设计 (13)3.1 编程与通信软件的使用 (14)3.2 程序设计 (14)3.3 系统程序流程图 (15)3.4 控制系统控制程序的开发 (16)4系统的仿真和运行测试 (25)4.1 组态王的运行 (25)4.2 实时曲线的观察 (26)4.3 分析历史趋势曲线 (27)4.4 编辑数据的报表 (27)4.5系统稳定性测试及最终评估 (27)参考文献 (29)谢辞 (30)附录一三菱FX系列PLC指令一览表 (30)附录二系统程序(梯形图) (32)基于PLC温度控制系统的设计(德州学院机电工程学院,山东德州253023)摘要:本文主要介绍了基于日本三菱公司FX2N系列的可编程控制器从而进行硬件设计和软件设计,进而完成了一个完整的关于炉温控制系统的设计方案。
该设计编程时调用了PID控制模块,使得程序更为简洁,运行速度更为理想。
在软件上,则是通过利用比较新型的三菱专用软件三菱(PLC)GX Developer 8.86Q,实现控制系统的实时监控、数据的实时采样与处理。
实验证明,此系统具有快、准、稳等优点,在工业温度控制领域能够广泛应用。
关键词:温度控制;可编程控制器;三菱FX2N;PID控制模块1引言1.1课题背景以及研究的目的、意义进入21世纪后,我国社会的各项发展突飞猛进,世界的技术更是日新月异,竞争也愈演愈烈,传统的人工的操作已不能满足于目前的制造业前景,也无法保证高质量的要求,更不能提升高新技术企业的形象。
1 引言1.1 设计目的温度的测量和控制对人类平常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。
在许多场合,及时准确获得目的的温度、湿度信息是十分重要的。
近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,可以在工业、农业等各领域中广泛使用。
1.2 设计内容重要是运用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温度为为一定值,并能实现手动启动和停止,运营指示灯监控实时控制系统的运营,实时显示当前温度值。
1.3 设计目的通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完毕工程项目中所应具有的基本素质和规定。
培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。
2 系统总体方案设计2.1 系统硬件配置及组成原理2.1.1 PLC型号的选择本温度控制系统采用德国西门子S7-200 PLC。
S7-200 是一种小型的可编程序控制器,合用于各行各业,各种场合中的检测、监测及控制的自动化。
S7-200系列的强大功能使其无论在独立运营中,或相连成网络皆能实现复杂控制功能。
因此S7-200系列具有极高的性能/价格比。
2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。
S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中涉及定数量的I/O端口,同时还可以扩展各种功能模块。
S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。
表2.1 S7-200系列PLC中CPU22X的基本单元本设计采用的是CUP226。
它具有24输入/16输出共40个数字量I/O点。
基于PLC的热水箱恒温控制系统温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。
在科学研究和生产实践的诸多领域中, 温度控制占有着极为重要的地位, 特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。
对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。
例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等。
温度控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。
可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继承计算机、自动控制技术和通信技术为一体的新型自动装置。
它具有抗干扰能力强,价格便宜,可靠性强,编程简单,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。
第一章绪论1.1 引言可编程序控制器(Programmable Controller,简称PLC)是以微处理器为基础,综合了计算机技术、控制技术、通讯技术等高新技术的工业装置。
现代PLC不仅具有传统继电器控制系统的控制功能,而且能扩展输入输出模块,特别是可以扩展一些智能控制模块,构成不同的控制系统,将模拟量输入输出控制和现代控制方法融为一体,实现智能控制、闭环控制、多控制功能一体的综合控制系统。
在工农业生产中,常用闭环控制方式控制温度、压力、流量等连续变化的模拟量,PID控制是常见的一种控制方式。
由于其不需要求出控制系统的数学模型,算法简单、鲁棒性好、可靠性高,在使用模拟量控制器的模拟控制系统和使用计算机(包括PLC)的数字控制系统中得到了广泛的应用。
本文针对恒温水箱温控系统的要求,以PLC为温度控制系统的核心,利用PID控制算法实现水箱的恒温控制。
1.2选题的背景温度是是工业上常见的被控参数之一,特别在冶金、化工、机械制造等领域,恒温控制系统被广泛应用于热水器等一些热处理设备中。
基于PLC的温度控制系统设计摘要可编程控制器(plc)作为传统继电器控制装置的替代产品已广泛应用工业控制的各个领域,由于它可通过软件来改变控制过程,而且具有体积小,组装灵活,编程简单抗干扰能力强及可靠性高等特点,非常适合于在恶劣的工业环境下使用。
本文所涉及到的温度控制系统能够监控现场的温度,其软件控制主要是编程语言,对PLC而言是梯形语言,梯形语言是PLC目前用的最多的编程语言。
关键字:PLC 编程语言温度Design of the temperature control Systems based on PLCAbstractProgramming controler ( plc ) the replacing product as traditional relay control equipment each that already applies industrial control extensively field ,Since it can change control course through software ,It is little to is strong and reliability bad industrial environment use. The temperature control system that this paper is concerned with can the temperature of monitoring , its software control is programming language mainly, for PLC is ladder-shaped language, ladder-shaped language is the most programming language that PLC now uses.Keyword:PLC Programming language Temperature目录摘要----1Abstrack1引言-31.1课题研究背景1.2温度控制系统的发展状况1.3 总体设计分析2系统结构模块63.1 PLC的定义--73.2 PLC的发展--83.2.1 我国PLC的发展-83.3 PLC的系统组成和工作原理-----93.3.1 PLC的组成结构--93.3.2PLC的扫描工作原理3.4PLC的发展趋势3.5 PLC的优势--103.6 PLC的类型选择4.1 PID控制程序设计4.1.1 PID控制算法---124.1.2PID在PLC中的回路指令-144.1.3PID参数设置4.23A模块及其温度控制4.2.13A模块的介绍--174.2.2 数据转换4.2.3软件编程的思路---195程序的流程图---196 整个系统的软件编程---207结束语谢词24参考文献1 引言1.1 课题研究背景温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。
PLC恒温水箱控制系统毕业设计首先,我们将使用一种可编程逻辑控制器(PLC)来实现该系统。
PLC是一种专业设计用于自动化控制系统的计算机硬件设备。
它可以通过逻辑程序对输入信号进行处理,并根据程序中定义的逻辑规则来控制输出信号。
在本设计中,PLC将作为核心控制单元来实现恒温水箱控制。
其次,我们需要设计一个温度传感器来实时监测水箱内的温度。
温度传感器可以通过感知器的温度变化来产生相应的电信号,并将其传递给PLC进行处理。
在设计过程中,我们需要选择一个高精度、可靠性高的温度传感器,以确保控制系统的准确性和稳定性。
接下来,我们需要设计一个恒温控制回路,并将其连接到水箱中的加热器。
该控制回路可以根据PLC传递过来的温度数据,自动调整加热器的工作状态,以维持恒定的水箱温度。
在设计过程中,我们需要充分考虑水箱的体积、加热器的功率和加热时间等因素,以确保系统能够快速响应温度变化,并达到恒温的要求。
此外,为了满足实际生产的需求,我们需要在系统中设置一些安全保护措施。
例如,当水箱内温度超过设定的上限或下限时,PLC应该能够自动切断加热器的供电,以防止温度过高或过低导致的不可逆损坏。
此外,我们还可以设置报警系统,当温度超过安全范围时,发出警报以提醒操作人员及时处理。
最后,我们需要设计一个人机界面(HMI),以便操作人员能够方便地监控和控制系统的运行状态。
HMI应该提供实时的温度显示、温度设定功能以及对加热器工作状态的控制等。
另外,为了便于维护和故障排除,HMI还应提供一些系统参数的查看和修改功能。
综上所述,PLC恒温水箱控制系统是一个涉及多种技术和设备的复杂系统。
在实际的设计和实现过程中,我们需要仔细考虑系统的功能需求、硬件选型、软件编程以及安全保护等方面的问题,以确保系统能够稳定、高效地运行。
通过本篇文章的介绍,相信读者对PLC恒温水箱控制系统的设计和实现有了更深入的了解。
基于PLC的温度控制系统设计毕业论文目录1 绪论 (1)1.1课题背景及设计目的和意义 (1)1.2国外研究现状 (1)1.3项目设计容 (2)2 PLC和组态软件基础 (3)2.1 plc基础 (3)2.1.1 plc的产生和应用 (3)2.1.2 plc的组成和工作原理 (3)2.1.3 plc的分类及特点 (5)2.2组态软件的基础 (5)2.2.1组态的定义 (5)2.2.2组态王软件的特点 (5)2.2.3组态王软件仿真的基本方法 (6)3 PLC控制系统的硬件设计 (7)3.1 PLC控制系统设计的原则和步骤 (7)3.1.1 PLC控制系统设计的原则 (7)3.1.2 PLC控制系统设计的一般步骤 (7)3.1.3 PLC程序设计的一般步骤 (7)3.2 PLC的选型和硬件配置 (8)3.2.1 PLC型号的选择 (8)3.2.2 S7-200CPU的选择 (9)3.2.3 EM235模拟量输入/输出模块 (9)3.2.4 热电式传感器 (9)3.2.5 可控硅加热装置简介 (9)3.3 系统整体设计方案和电气连接图 (10)3.4 PLC控制器的设计 (10)3.4.1 控制系统数学模型的建立 (11)3.4.2 PID控制及参数整定 (11)4 PLC控制系统的软件设计 (14)4.1 PLC程序设计的方法 (14)4.2 编程软件STEP7--Micro/WIN 概述 (14)4.2.1 STEP7--Micro/WIN 简单介绍 (14)4.2.2 计算机与PLC的通信 (15)4.3 程序设计 (15)4.3.1程序设计思路 (15)4.3.2 PID指令向导 (16)4.3.3 控制程序及分析 (20)5 组态画面的设计 (24)5.1组态变量的建立及设备连接 (24)5.1.1新建项目 (24)5.2创建组态画面 (27)5.2.1新建主画面 (27)5.2.2新建PID参数设定窗口 (27)5.2.3新建数据报表 (28)5.2.4新建实时曲线 (28)5.2.5新建历史曲线 (29)5.2.6新建报警窗口 (29)6 系统测试 (31)6.1启动组态王 (31)6.2实时曲线观察 (31)6.3分析历史趋势曲线 (32)6.4查看数据报表 (34)6.5系统稳定性测试 (34)结论 (36)致谢 (37)参考文献 (38)附录 (43)1 绪论1.1 课题背景及设计目的和意义电锅炉广泛应用,电热锅炉的性能决定了产品的质量。
南京工程学院自动化学院本科毕业设计(论文)题目:基于PLC温度控制系统的设计专业:测控技术与仪器Graduation Design (Thesis)The Design Of The Temperature Examination In PLC Temperature Control SystemByWANG Zhu JieSupervised byProf. XIA Qing GuanAssociate Prof. LU HongSchool of AutomationNanjing Institute of TechnologyJune, 2011毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
毕业设计论文题目:基于PLC恒温控制系统的设计专业:生产过程自动化专业姓名:顾晓可学号:0402100133指导老师:焦欣欣老师2012年12月17号目录摘要 (3)第一章绪论 (4)1.1本课题研究现状 (4)1.2本文主要的研究工作 (4)第二章恒温控制系统的硬件设计 (6)2.1恒温控制系统的组成 (6)2.2恒温控制系统总体设计方案 (7)2.3 PID控制原理 (7)2.4可编程序控制器介绍 (9)2.5PLC的选型 (11)2.6模拟量模块选择 (12)2.7其他硬件选择 (13)2.8系统供电接线图 (18)2.9PLC硬件接线图 (19)第三章恒温控制系统软件设计 (23)3.1STEP7-Micro/Win32 编程软件介绍 (23)3.2I/O地址分配 (24)3.3系统主程序 (25)3.4PID控制算法程序 (28)3.5标度转换 (29)3.6数码显示 (30)3.7人机界面 (31)第四章结论 (33)参考文献 (34)致谢 (35)附录系统各部分程序 (36)主程序 (36)标度变换程序 (40)PID参数设定程序 (42)PID输出中断程序 (43)数显程序 (44)摘要随着计算机技术、通信技术、自动控制技术以及各种智能技术的迅速发展,高可靠性可编程控制器(PLC)出现,使得现代工业控制系统的设计开发周期短,可靠性高,成本低。
本文结合恒温控制系统的特点,提出控制系统的总体设计方案,采用PLC 和检测仪表完成系统硬件设计;编写PLC控制程序和监控组态界面,实现温度采集与显示,实现了温度在线监测和控制。
并采用工业以太网,实现现场控制单元与上位机进行信息交换,并能与企业内部联网。
关键词:自动检测;PLC;温度;监控组态第一章绪论1.1本课题研究现状在人类的生活环境中,温度扮演着极其重要的角色。
温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。
毕业设计(论文)中文摘要毕业设计(论文)外文摘要目录1 绪论 (1)2 FX2N系列PLC (3)3 FX2N-4AD模块介绍 (4)3.1 通道选择 (4)3.2 程序实例 (6)4 传感器简介 (7)4.1 热电偶传感器应用 (9)4.2 叶轮式流量传感器 (10)4.3 光电开关 (11)5 BCD译码器 (15)6 搅拌部分 (16)6.1搅拌过程分类 (16)6.2搅拌桨叶分类 (17)6.3 流体搅拌基本原理及参数 (18)7 冷却器简介 (18)8 程序设计 (19)8.1恒温箱的工艺过程及控制要求 (19)8.2控制方案分析 (20)8.3系统的配置 (20)8.4主要控制程序说明 (21)8.5 恒温箱控制总梯形图 (25)8.6 恒温箱控制语句表 (32)结论 (38)致谢 (39)参考文献 (40)1 绪论可编程控制器简称PC(英文全称:Programmable Controller),它经历了可编程序矩阵控制器PMC、可编程序顺序控制器PSC、可编程序逻辑控制器PLC(英文全称:Programmable Logic Controller)和可编程序控制器PC 几个不同时期。
为与个人计算机(PC)相区别,现在仍然沿用可编程逻辑控制器这个老名字。
1987年国际电工委员会(International Electrical Committee)颁布的PLC 标准草案中对PLC做了如下定义:“PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。
它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。
PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。
”目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。
开关量的逻辑控制这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。
如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。
模拟量控制在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。
为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。
PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。
运动控制PLC可以用于圆周运动或直线运动的控制。
从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。
如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。
世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。
过程控制过程控制是指对温度、压力、流量等模拟量的闭环控制。
作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。
PID调节是一般闭环控制系统中用得较多的调节方法。
大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。
PID处理一般是运行专用的PID子程序。
过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。
数据处理现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。
这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。
数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。
通信及联网PLC通信含PLC间的通信及PLC与其它智能设备间的通信。
随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC 的通信功能,纷纷推出各自的网络系统。
新近生产的PLC都具有通信接口,通信非常方便。
2 FX2N系列PLCFX2N系列是FX家族中功能最强、速度最高的微型PLC。
它的基本指令执行时间高达0.08s。
内置的用户存储器为8K步,最大可以扩展到256个I/O点,有多种特殊功能模块和功能扩展板,可以实现多轴定位控制。
机内有时钟,PID指令用于模拟量闭环控制。
有功能很强的数学指令集,例如浮点数运算、开平方和三角函数等。
每个FX2N基本单元可以扩展8个特殊单元。
FX2N系列PLC具有丰富的元件资源,有3072点辅助继电器。
提供了多种特殊功能模块,可实现过程控制位置控制。
有多种RS—232C/RS—422/RS—485串行通信模块或功能扩展板支持网络通信。
基本单元是构成PLC系统的核心部件,内有CPU、存储器、I/O模块、通信接口和扩展接口等。
FX2N基本单位有16/32/48/64/80/128点,六个基本FX2N单元中的每一个单元都可以通过I/O扩展单元扩充为256 I/O点,其基本单元如表所示。
表2-1 FX2N基本单元(继电器输出)表2-2 FX2N基本单元(可控硅输出)表2-3 FX2N基本单元(晶体管输出)本设计中用到的是FX2N-60MT PLC一台,配合FX2N-4AD一台及FX2N-2DA一台构成控制系统。
FX2N-60MTPLC中数字及字母的含义如下:60:60个输入输出触点。
M:单元类型为基本单元。
T:(输出形式)晶体管输出(无触点直流负载用)。
MT后面没有符号表示电源和输入输出类型等特性为AC100/200V电源,DC24V输入(内部供电)。
3 FX2N-4AD模块介绍本系统使用了FX2N-4AD和FX2N-2DA特殊功能模块。
这里只对FX2N-4AD模块做主要介绍。
FX2N-4AD是一种具有4输入通道、接受模拟信号并将其转化为数字量的(A/D)模块,它可以接受的模拟量范围为电压DC -10 - +10V(分辨率为5mV)、电流+4 - +20mA、-20 - +20mA(分辨率为20μA)。
它占用FX2N扩展总线的8个点,这8个点可以分配成输入或输出。
它与主单元FX2N之间是通过缓冲存储器交换数据的。
FX2N-4AD 共有32个缓冲存储器,每个16位。
3.1 通道的选择FX2N-4AD要选择通道,对通道进行初始化。
初始化由缓冲器BFM#0中4位十六进制数字H□□□□控制,从右到左第1位字符控制通道1(CH1),而第4位字符控制通道4等。
字符的意义如下:□=0,预设电压输入(-10 - +10V);□=1,预设电流输入(-20 - +20mA);□=2,预设电流输入(+4 - +20mA);□=3,通道关闭,OFF。
例如H3310,其意义为选择第一通道(CH1)做电压输入(-10 - +10V),选择第2通道(CH2)为电流输入(+4 - +20mA),选择第3通道(CH3)及选择第4通道(CH4)关闭。
FX2N-4AD的输入电流、电压与输出数字之间的关系如下图所示。
图a 对应于电压输入(-10 - +10V),其数字输出为(-2000 - +2000);图b对应于电流输入(-20 - +20mA),其数字输出为(-1000 - +1000);图c对应于电流输入(+4 - +20mA),其数字输出为(0 - +1000)。
a)预设0(-10 - + 10V) b)预设1(+4 - +20mA)c)预设2(-20 - +20mA)3.2 程序实例如将FX2N-4AD模块连接在特殊功能模块的0号(K0)位置,编程如下图3.2。
图中第1行是读出FX2N-4AD的识别码,它的识别码为K2010,放在BFM#30中。
执TO指令,将放在0号位置的特殊功能模块的BFM#30的内容写到D4中去。
执行CMP指令;当K2010与FX2N-4AD的识别码相同时,M1置1.下一行,执行第一个TO指令,对通道进行初始化,将H3300写入到得BFM#0,建立模拟通道CH1及CH2。
执行第二个TO指令,将K4写入BFM#1及#2,将CH1和CH2的平均采样设为4。
执行FROM指令,将FX2N-4AD的操作状态由BFM#29中读出。
并输入到FX2N-4AD的K4M10。
当BFM#29的b0为OFF,表示无错,当b10为OFF,表示数字输入值正常。
如果FX2N-4AD没有错误,将BFM#5和#6采样内容的平均值读入到FX2N 主单元的D0、D1中去。
图3.2 FX2N-4AD使用实例4 传感器简介在本设计中用到了温度传感器、液位传感器、流量传感器,所以在此对传感器做简要介绍。
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
传感器的分类目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。
3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。
传感器的静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。
传感器的动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。
在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。
这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。
最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。
传感器的线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。
在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。