MPAcc联考数学基础篇方程与不等式之一元二次方程(二)
- 格式:pdf
- 大小:205.35 KB
- 文档页数:2
高一一元二次函数、方程和不等式串讲高一数学:一元二次函数、方程和不等式串讲一元二次函数、方程和不等式是高中数学中的基础知识,它们在数学中起着重要的作用。
通过这篇文章,我将以人类的视角为你讲述一元二次函数、方程和不等式的概念和应用。
让我们来了解一元二次函数。
一元二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b和c是实数常数,且a不等于零。
这个函数的图像通常是一个抛物线,它可以开口向上或向下,取决于a的正负。
一元二次函数在物理、经济学等领域中有着广泛的应用,例如抛射运动和成本收益分析。
接下来,我们将探讨一元二次方程。
一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b和c是实数常数,且a不等于零。
解一元二次方程的常用方法是配方法、因式分解和求根公式。
解方程的根可以是实数或复数,这取决于方程的判别式b^2 - 4ac的正负。
一元二次方程在数学中有着广泛的应用,例如几何学中的平面图形问题和物理学中的运动问题。
我们来讨论一元二次不等式。
一元二次不等式是指形式为ax^2 + bx + c > 0或ax^2 + bx + c < 0的不等式,其中a、b和c是实数常数,且a不等于零。
解一元二次不等式的方法与解一元二次方程类似,需要考虑不等号的方向。
一元二次不等式在实际问题中的应用也非常广泛,例如优化问题和约束条件下的最优解问题。
通过以上的串讲,我们对一元二次函数、方程和不等式有了更深入的了解。
它们是数学中的重要概念,对于我们理解数学和解决实际问题都非常重要。
希望通过这篇文章,你能够对一元二次函数、方程和不等式有更清晰的认识,并能够灵活应用于实际生活和学习中。
让我们继续努力,掌握更多数学知识,成为数学的行家!。
第二讲 方程与不等式(一)一元一次方程与二元一次方程组 【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义.【例题精讲】 例1. (1)解方程.x x+--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________. 例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .月份 用电量 交电费总数 3月 80度 25元 4月 45度 10元 ⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x(二)一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为 4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根;(2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长.aac b b x 242-±-=(三) 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. 0b a >- B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( ) A.12x >-B.2x >-C.2x <-D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D . 例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg 例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( ) A .0 B .1 C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x xB A O C1 0 1- 1 0 1- 1 01- 1 0 1-0)c a (b >-4321《方程与不等式》测试题一、选择题(本题有10个小题, 每小题3分, 满分30分 )1.不等式组2030x x ->-<⎧⎨⎩的解集是( )A. 2x >B. 3x <C. 23x <<D. 无解 2.解集在数轴上表示为如图1所示的不等式组是( )A .32x x >-⎧⎨⎩≥ B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤3.若关于x 的方程1011--=--m xx x 有增根,则m 的值是( ) A .3B .2C .1D .-14.分式2231x x x +--的值为0,则x 的取值为( )A 、3x =-B 、3x =C 、3x =-或1x =D 、3x =或1x =- 5.一元二次方程2440x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根6.用配方法解方程2620x x -+=,下列配方正确的是( )A .2(3)11x -=B .2(3)7x +=C .2(3)9x -=D .2(3)7x -=7.已知三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( )A .11B .13C .11或13D .11和138.若2X ++42++Y X =0,则X Y的值为( )A .1B .0C .-1D .-29.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是:( )23-图1A . 12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .12x y =-⎧⎨=-⎩ D .21x y =-⎧⎨=⎩ 10.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元) 12 3 4 人 数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组A 、272366x y x y +=⎧⎨+=⎩B 、2723100x y x y +=⎧⎨+=⎩C 、273266x y x y +=⎧⎨+=⎩D 、2732100x y x y +=⎧⎨+=⎩二、填空题 (本题有6个小题,每小题3分, 共18分) 11.方程()412=-x 的解为12.已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x 13.方程01)1(42=+++x k x 的一个根是2,那么_____=k ,另一根是 14.代数式x 241+的值不大于28x-的值,那么x 的正整数解是 15. 已知关于x 的方程2(2)x k x +=-的根小于0,则k 的取值范围是 16.某公司成立3年以来,积极向国家上缴利税,由第一年的200万元增长到800万元,则平均每年增长的百分数是三、解答题(本大题有4小题, 共52分,解答要求写出文字说明, 证明过程或计算步骤) 17.解下列方程(每题6分,共12分)(1)x 2+3=3(x +1) (2)3411x x-=-18.(本题满分12分)某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.(本题满分14分)己知一元二次方程2x x m 20-+-=有两个不相等的实数根21x x ,。
新初中数学方程与不等式之一元二次方程知识点总复习有解析一、选择题1.如图,AC ⊥BC ,:3:4AC BC =,D 是AC 上一点,连接BD ,与∠ACB 的平分线交于点E ,连接AE ,若83ADE S ∆=,323BCE S ∆=,则BC =( )A .3B .8C .3D .10【答案】B【解析】【分析】 过E 作,,EF BC EG AC ⊥⊥垂足分别为,,F G 由角平分线的性质可得:,EF EG =利用83ADE S ∆=,323BCE S ∆=可以求得,AD BC进而求得,CDE BCD S S ∆∆的面积,利用面积公式列方程求解即可.【详解】解:如图,过E 作,,EF BC EG AC ⊥⊥垂足分别为,.F GCE Q 平分,ACB ∠,EF EG ∴=:3:4AC BC =Q ,设3,4,AC x BC x == Q 83ADE S ∆=,323BCE S ∆=, 18132,,2323AD EG BC EF ∴•=•= 1,,4AD AD x BC ∴=∴= 2,CD AC AD x ∴=-= 162,3CDE ADE S S ∆∆∴==163216.33BCD S ∆∴=+= 12416,2x x ∴••= 2,x ∴= (负根舍去)48.BC x ∴==故选B .【点睛】本题考查的是三角形的平分线的性质,等高的两个三角形的面积与底边之间的关系,一元二次方程的解法,掌握相关知识点是解题关键.2.国庆期间电影《我和我的祖国》第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把增长率记作x ,则方程可以列为( ) A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=【答案】D【解析】【分析】用含x 的代数式表示出第二天和第三天的票房收入,三天的票房收入再相加即得答案.【详解】解:设平均每天票房收入的增长率记作x ,则233(1)3(1)10x x ++++=. 故选:D.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为:()21a x b ±=.3.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( )A .168(1+a %)2=128B .168(1-a %)2=128C .168(1-2a %)=128D .168(1-a 2%)=128【答案】B【解析】【分析】【详解】解:第一次降价a%后的售价是168(1-a%)元,第二次降价a%后的售价是168(1-a%)(1-a%)=168(1-a%)2;故选B.4.若代数式226(3)1x x m x ++=+-,则m =( )A .-8B .9C .8D .-9【答案】C【解析】【分析】已知等式右边利用完全平方公式化简,利用多项式相等的条件求出m 的值即可.【详解】 226(3)1x x m x ++=+-=x 2+6x+8,可得m=8,故选:C.【点睛】此题考查配方法的应用,解题关键在于掌握计算公式.5.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①若b =ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则方程x 2﹣bx +ac =0也一定有两个不等的实数根;③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;④若x 0是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中正确的( )A .只有①②③B .只有①②④C .①②③④D .只有③④【答案】B【解析】【分析】判断上述方程的根的情况,只要看根的判别式△=-24b ac 的值的符号就可以了.④难度较大,用到了求根公式表示0x .【详解】解:①若b =,方程两边平方得b 2=4ac ,即b 2﹣4ac =0,所以方程ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则b 2﹣4ac >0方程x 2﹣bx +ac =0中根的判别式也是b 2﹣4ac >0,所以也一定有两个不等的实数根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac 2+bc +c =0成立,当c ≠0时ac +b +1=0成立;当c =0时ac +b +1=0不成立;④若x 0是一元二次方程ax 2+bx +c =0的根,可得0x , 把x 0的值代入(2ax 0+b )2,可得b 2﹣4ac =(2ax 0+b )2,综上所述其中正确的①②④.【点睛】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示0x ,整体代入求2204(2)b ac ax b -=+.总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.6.用配方法解一元二次方程时,原方程可变形为( ) A .2(2)1x +=B .2(2)7x +=C .2(2)13+=xD .2(2)19+=x 【答案】B【解析】试题分析:243x x +=,24434x x ++=+,2(2)7x +=.故选B .考点:解一元二次方程-配方法.7.八年级()1班部分学生去春游时,每人都和同行的其他每一人合照一张双人照,共照了双人照片36张,则同去春游的人数是( )A .9B .8C .7D .6 【答案】A【解析】【分析】设同去春游的人数是x 人,由每人都和同行的其他每一人合照一张双人照且共照了双人照片36张,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设同去春游的人数是x 人, 依题意,得:1(1)362x x -=, 解得:19x =,28x =-(舍去).故选:A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8.已知x=1是一元二次方程的解,则b 的值为( ) A .0B .1C .D .2【答案】C【解析】根据一元二次方程解的定义,把x=1代入x2+bx+1=0得关于b的一次方程,然后解一次方程即可.【详解】解:把x=1代入x2+bx+1=0得1+b+1=0,解得b=-2.故选:C.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.下列方程中,有实数根的是()A0+==B1C10=D x-【答案】D【解析】【分析】根据二次根式的性质逐项分析即可.【详解】A.∵x2+2≥2,0≥≠,故不正确;B.∵x-2≥0且2-x≥0,∴x=20=,故不正确;C0≥≠,故不正确;≥110D.∵x+1≥0,-x≥0,∴-1≤x≤0.-,x∴x+1=x2,∴x2-x-1=0,∵∆=1+4=5>0,∴x1,x2(舍去),-有实数根,符合题意.x故选D.【点睛】本题考查了二次根式的性质,无理方程的解法,以及一元二次方程的解法,熟练掌握各知识点是解答本题的关键.10.用配方法解方程2640x x ++=时,原方程变形为( )A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x +=【答案】C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x 2+6x+5+4-5=0,即(x+3)2=5.故选:C .【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.11.若关于x 的一元二次方程ax 2+bx+6=0的一个根为x=﹣2,则代数式6a ﹣3b+6的值为( )A .9B .3C .0D .﹣3【答案】D【解析】分析:根据关于x 的一元二次方程260ax bx ++=的一个根为2x =-,可以求得2a b -的值,从而可以求得636a b -+的值.详解:∵关于x 的一元二次方程260ax bx ++=的一个根为x =−2,∴()()22260a b ,⨯-+⨯-+= 化简,得2a −b +3=0,∴2a −b =−3,∴6a −3b =−9,∴6a −3b +6=−9+6=−3,故选D.点睛:考查一元二次方程的解,解题的关键是明确题意,建立所求式子与已知方程之间的关系.12.已知一元二次方程12()( )0a x x x x --=(a≠0,x 1≠x 2)与一元一次方程 0dx e +=有一个公共解x=x 1,若一元二次方程()12()()0a x x x x dx e --++=有两个相等的实数根,则( )A .()12a x x d -=B .()21a x x d -=C .()212a x x d -=D .()221a x x d -= 【答案】B【解析】【分析】 由x=x 1是方程12()( )0a x x x x --=(a≠0,x 1≠x 2)与 0dx e +=的一个公共解可得x=x 1是方程()12()()0a x x x x dx e --++=的一个解,根据一元二次方程根与系数的关系可得x 1+x 1=12()ax ax d a-+--,整理后即可得答案. 【详解】 ∵12()( )0a x x x x --=(a≠0,x 1≠x 2)与 0dx e +=有一个公共解x=x 1,∴x=x 1是方程()12()()0a x x x x dx e --++=的一个解, ()2121212 ()0()()a x x x x dx e ax ax ax d x ax x e --++=-+-++=,∵一元二次方程()12()()0a x x x x dx e --++=有两个相等的实数根, ∴x 1+x 1=12()ax ax d a-+--, ∴a(x 2-x 1)=d ,故选:B .【点睛】 本题考查一元二次方程ax 2+bx+c=0(a≠0)根与系数的关系,若方程的两个根为x 1、x 2,那么x 1+x 2=b a -,x 1·x 2=c a;熟练掌握韦达定理是解题关键.13.为执行“均衡教育"政策,某县2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元.若每年投人教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .()225001 1.2x +=B .()22500112000x += C .()()225002********* 1.2x x++++= D .()()22500250012500112000x x ++++=【答案】D【解析】【分析】设每年投入教育经费的年平均增长百分率为x ,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.【详解】设每年投入教育经费的年平均增长百分率为x ,由题意得,2500+2500×(1+x )+2500(1+x )2=12000.故选:D .【点睛】此题考查由实际问题抽象出一元二次方程,解题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.14.方程22310x x +-=的两根之和为( )A .32-B .23-C .3-D .12【答案】A【解析】【分析】据一元二次方程的根与系数的关系即可判断.【详解】 根据一元二次方程的根与系数的关系可得:两个根的和是:32-. 故选:A .【点睛】此题考查根与系数的关系,解题关键在于掌握若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-12b c x x a a =,. .15.在解方程(x+2)(x ﹣2)=5时,甲同学说:由于5=1×5,可令x+2=1,x ﹣2=5,得方程的根x 1=﹣1,x 2=7;乙同学说:应把方程右边化为0,得x 2﹣9=0,再分解因式,即(x+3)(x ﹣3)=0,得方程的根x 1=﹣3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是..( )A .甲错误,乙正确B .甲正确,乙错误C .甲、乙都正确D .甲、乙都错误【答案】A【解析】(x+2)(x ﹣2)=5,x 2-4=5,x 2-9=0,(x+3)(x-3)=0,x+3=0或x-3=0,x 1=-3,x 2=3,所以甲错误,乙正确,故选A.16.聪聪、明明、伶伶、俐俐四人共同探究代数式2235x x -+的值的情况他们做了如下分工,聪聪负责找值为0时x 的值,明明负责找值为4时x 的值,伶伶负责找最小值,俐俐负责找最大值,几分钟,各自通报探究的结论,其中正确的是( )(1)聪聪认为找不到实数x ,使2235x x -+的值为0;(2)明明认为只有当1x =时,2235x x -+的值为4;(3)伶伶发现2235x x -+有最小值;(4)俐俐发现2235x x -+有最大值A .(1)(2)B .(1)(3)C .(1)(4)D .(1)(2)(4) 【答案】B【解析】【分析】解一元二次方程,根据判别式即可判断(1)(2),将式子2x 2﹣3x +5配方为2(x ﹣34)2+318,根据平方的非负性即可判断(3)(4). 【详解】 解:(1)2x 2﹣3x +5=0,△=32﹣4×2×5<0,方程无实数根,故聪聪找不到实数x ,使2x 2﹣3x +5的值为0正确,符合题意,(2)2x 2﹣3x +5=4,解得x 1=1,x 2=12,方程有两个不相等的实数根,故明明认为只有当x =1时,2x 2﹣3x +5的值为4错误,不符合题意, (3)∵2x 2﹣3x +5=2(x ﹣34)2+318, 又∵(x ﹣34)2≥0, ∴2(x ﹣34)2+318≥318, ∴2x 2﹣3x +5有最小值,故伶伶发现2x 2﹣3x +5有最小值正确,符合题意,(4)由(3)可知2x 2﹣3x +5没有最大值,故俐俐发现2x 2﹣3x +5有最大值错误,不符合题意,故选:B .【点睛】本题考查解一元二次方程和配方法的应用,掌握一元二次方程求根公式和配方法是解决本题的关键.17.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A .x 1≠x 2 B .x 1+x 2>0 C .x 1•x 2>0 D .x 1<0,x 2<0【答案】A【解析】分析:A 、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x 1≠x 2,结论A 正确;B 、根据根与系数的关系可得出x 1+x 2=a ,结合a 的值不确定,可得出B 结论不一定正确;C 、根据根与系数的关系可得出x 1•x 2=﹣2,结论C 错误;D 、由x 1•x 2=﹣2,可得出x 1<0,x 2>0,结论D 错误.综上即可得出结论.详解:A ∵△=(﹣a )2﹣4×1×(﹣2)=a 2+8>0,∴x 1≠x 2,结论A 正确;B 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1+x 2=a ,∵a 的值不确定,∴B 结论不一定正确;C 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1•x 2=﹣2,结论C 错误;D 、∵x 1•x 2=﹣2,∴x 1<0,x 2>0,结论D 错误.故选A .点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.18.已知关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是( ) A .2B .﹣1C .2或﹣1D .不存在【答案】A【解析】【分析】先由二次项系数非零及根的判别式△>0,得出关于m 的不等式组,解之得出m 的取值范围,再根据根与系数的关系可得出x 1+x 2=2m m +,x 1x 2=14,结合1211+x x =4m ,即可求出m 的值.【详解】∵关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1、x 2,∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩, 解得:m >﹣1且m≠0,∵x 1、x 2是方程mx 2﹣(m+2)x+4m =0的两个实数根, ∴x 1+x 2=2m m +,x 1x 2=14, ∵1211+x x =4m , ∴214m m +=4m , ∴m=2或﹣1,∵m >﹣1,∴m=2,故选A .【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:根据二次项系数非零及根的判别式△>0,找出关于m 的不等式组;牢记两根之和等于﹣b a 、两根之积等于c a.19.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】【分析】根据二次项系数非零结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根, ∴220(2)4(2)(6)0k k k k V -≠⎧⎨=----⎩…,解得:32k ≥且k≠2. 故选D .【点睛】 本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式△≥0,列出关于k 的一元一次不等式组是解题的关键.20.方程250x x -=的解是( )A .5x =-B .5x =C .10x =,25x =-D .10x =,25x =【答案】D【解析】【分析】提取公因式x 进行计算.【详解】提取公因式x 得:x·(x −5)=0,所以10x =,25x =. 故本题答案选D .【点睛】本题考查了一元二次方程的计算,掌握提取公因式这一知识点是解题的关键.。
一元二次方程二次函数一元二次不等式知识归纳一元二次方程、二次函数和一元二次不等式知识归纳一元二次方程、二次函数和一元二次不等式是高中数学中的重要内容,掌握了这些知识可以帮助我们解决实际问题和推导数学关系。
本文将对一元二次方程、二次函数和一元二次不等式进行归纳总结,以帮助读者更好地理解和掌握这些知识。
一、一元二次方程一元二次方程是形如ax^2 + bx + c = 0(其中a ≠ 0)的方程,其中x 表示未知数。
解一元二次方程的常用方法有因式分解法、配方法和求根公式法。
1. 因式分解法当一元二次方程可以因式分解为两个一次因子相乘时,我们可以通过将方程两边置零,将每个因子等于零来求解。
例如,对于方程x^2 -5x + 6 = 0,我们可以将其因式分解为(x - 2)(x - 3) = 0,从而得到x = 2和x = 3两个解。
2. 配方法当一元二次方程无法直接因式分解时,我们可以通过配方法将方程转化为完全平方式,然后再进行求解。
例如,对于方程x^2 - 5x + 6 = 0,我们可以通过将常数项进行拆分,得到x^2 - 2x - 3x + 6 = 0,进而变为(x(x - 2) - 3(x - 2) = 0,再经过合并同类项和提取公因式的步骤得到(x -2)(x - 3) = 0,进而求得x = 2和x = 3两个解。
3. 求根公式法对于一元二次方程ax^2 + bx + c = 0,我们可以通过求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求解。
其中,±表示两个相反的解,而√表示平方根。
这种方法适用于所有一元二次方程的求解,包括没有实数解的情况。
二、二次函数二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数且a ≠ 0。
二次函数的图像通常是一个开口朝上或朝下的抛物线。
掌握了二次函数的性质和图像特点可以帮助我们分析函数的变化趋势和解决实际问题。
一元二次方程与不等式的解法一元二次方程和不等式是初中数学学习中的重要内容,它们在实际问题中的应用非常广泛。
本文将介绍一元二次方程和不等式的解法,包括基本的求解方法和注意事项。
一、一元二次方程的解法一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为已知常数,x为未知数。
求解一元二次方程可以采用以下两种常用方法:方法一:因式分解法对一元二次方程进行因式分解,将其写成两个一次因式相乘的形式,然后使两个一次因式分别等于0,得到方程的根。
例如,对于方程2x^2 + 7x + 3 = 0,可以将其因式分解为(2x + 1)(x + 3) = 0。
根据零乘法则,得到2x + 1 = 0或x + 3 = 0。
解得x = -1/2或x= -3,即方程的解为x = -1/2和x = -3。
方法二:配方法对于一元二次方程,如果无法直接进行因式分解,我们可以采用配方法来求解。
1. 将方程移项,使得方程的一次项系数为1,即将方程转化为形如x^2 + px + q = 0的方程。
2. 根据配方法,我们需要找到两个数m和n,使得它们的和等于p,乘积等于q。
将方程改写为(x + m)(x + n) = 0。
3. 根据乘法公式展开,得到x^2 + (m + n)x + mn = 0。
4. 将方程与原方程对比,得到m + n = p,mn = q。
5. 解方程组,得到m和n的值。
6. 得到方程的解。
例如,对于方程x^2 + 7x + 10 = 0,我们需要找到两个数m和n,使得m + n = 7,mn = 10。
很明显,符合条件的两个数是2和5。
因此,方程可以写成(x + 2)(x + 5) = 0。
根据零乘法则,得到x + 2 = 0或x + 5 = 0。
解得x = -2或x = -5,即方程的解为x = -2和x = -5。
二、一元二次不等式的解法一元二次不等式的一般形式为:ax^2 + bx + c > 0(或< 0),其中a、b、c为已知常数,x为未知数。