初中数学十大解题方法
- 格式:doc
- 大小:262.50 KB
- 文档页数:10
初中数学解题技巧与方法初中数学常用解题法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
不同题型的解题法选择题:在做选择题可运用各种解题的方法:如直接法、特殊值法、排除法、验证法、图解法、假设法、动手操作法(比如折一折,量一量等方法),对于选择题中有“或”的选项一定要警惕,看看要不要取舍。
初中数学解题技巧中考数学命题除了着重考查基础学问外,还非常重视对数学(方法)的考查,如配方法,待定系数法、判别式法等操作性较强的数学方法。
那么接下来给大家共享一些关于学校数学解题技巧,盼望对大家有所关心。
学校数学解题技巧1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形奇妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,假如能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特别与一般的转化、详细与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类争论的思想:在数学中,我们经常需要依据讨论对象性质的差异,分各种不怜悯况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所讨论的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是学校代数中重要的变形技巧,配方法在分解因式、解方程、争论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为简单的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在讨论或证明一个命题时,由结论向已知条件追溯,既从结论开头,推求它成立的充分条件,这个条件的成立还不明显;则再把它当作结论,进一步讨论它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
初中数学最经典的九大解题方法初中数学不难学,但是要掌握一定的方法,下面9个方法贯穿了整个初中乃至高中数学,同学们务必要掌握哦!1、配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
初中数学超级经典实用的9大解题方法初中数学的学习和解题非常讲究方式方法,今天三好网老师和大家分享的是初中数学超级经典实用的9大解题方法,希望对大家学好初中数学有帮助:1、配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
战胜初中数学难题的五大妙招数学是一个让很多初中生感到头疼的科目。
但是,只要掌握了一些技巧和方法,就能轻松战胜数学难题。
在这篇文章中,我将为大家分享五个战胜初中数学难题的妙招。
一、理解问题理解问题是解决数学难题的第一步。
在解题之前,确保自己完全理解问题的内容和要求是非常重要的。
仔细阅读题目,并将其分解成更小的部分,帮助你更好地理解问题。
如果有需要,可以用自己的话重新描述问题,以确保自己真正理解了题目。
二、画图辅助画图是解决数学难题时非常有用的工具。
通过画图,可以将抽象的数学问题转化为具体的形象,从而更好地理解问题和找到解决方法。
无论是几何题还是代数题,画图都可以帮助我们更好地理清思路和推导过程。
三、列方程解代数题在面对代数题时,列方程是非常有效的解题方法。
通过将问题转化为数学方程,我们可以利用代数运算来求解。
首先,将问题中的未知数用字母表示,然后根据题目的条件列出方程。
接着,利用代数运算将方程简化并求解出未知数的值。
四、反证法反证法在解决数学难题时也是一种常用的方法。
当我们无法直接找到证明方法时,可以尝试采用反证法。
假设问题的反面,然后通过推理和逻辑推导得出矛盾的结论,从而证明原命题是正确的。
这种方法常常能够帮助我们更深入地理解问题,并找到解决方法。
五、多练习最后一个妙招就是多做练习。
数学是一门需要不断练习的学科,只有通过不断地练习才能掌握其中的技巧和方法。
选择一些适合自己水平的练习题,每天坚持一定的时间进行练习。
通过反复练习,我们可以培养自己的数学思维能力,提高解题的速度和准确性。
总结起来,战胜初中数学难题的五大妙招是:理解问题、画图辅助、列方程解代数题、反证法和多练习。
通过掌握这些妙招,我们能够更轻松地应对数学难题,提高自己的数学水平。
希望这些方法对于初中生们能够有所帮助,让大家在数学学习中取得更好的成绩。
初中数学因式分解常用七大解题方法,分类讲解+例题解析,收藏初中数学|因式分解常用七大解题方法,分类讲解+例题解析,收藏 -一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ———a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);三、分组分解法(一)分组后能直接提公因式比如,从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
(二)分组后能直接运用公式分组后能直接运用公式,主要是通过对题目当中各因式的观察,进行分组后,能够进行提公因式分解,直到分解的最后能够变成几个多项式或单项式与多项式的乘积为止。
综合练习:四、十字相乘法.十字相乘法是因式分解当中比较难的一种分解方式。
在运用过程当中,对同学们的思维提出了更高的要求,等大家都熟练了这种方法以后,其实对于因式分解是非常简单的,而且比较方便。
对于十字相乘法,我们分为四种类型。
给大家做详细的讲解。
针对每一种方法都有经典的例题解析,通过例题解析的方式让大家明白因式分解时该如何操作,遵循怎样的分解步骤,才能比较顺利的解决和掌握十字相乘法。
初中数学解题方法和技巧(附常见的6种
方法)
初中数学的解题方法和技巧是初中数学研究中至关重要的一环。
以下是常见的6种解题方法和技巧:
1. 理清思路,逐步分析:在解题时,首先需要理清思路,逐步
分析问题,找到解决问题的方法和步骤。
2. 画图辅助解答:在解答数学题时,画图是非常有用的方法。
通过画图,可以更清晰地理解问题,并且可以发现一些隐藏的规律
和关系。
3. 正确理解题目中的各种术语和符号:理解和正确运用数学中
的术语和符号是解题的关键。
在解题时,需要认真阅读题目,并准
确地理解其中的各种术语和符号。
4. 打破常规,尝试新方法:在解题时,有时候需要打破常规,
尝试一些新的方法。
这样可以激发自己的思维,发现一些不同的解
题思路。
5. 掌握基本公式和定理:掌握数学中的基本公式和定理是解题的前提。
只有掌握了基本公式和定理,才能更好地解题。
6. 练、练、再练:练是掌握解题方法和技巧的重要途径。
只有通过大量的练,才能更加熟练地掌握各种解题方法和技巧,提高自己的数学解题能力。
以上是初中数学解题方法和技巧的常见6种方法,希望对初中数学学习者有所帮助。
初中数学应用题解题方法总结数学是一门需要运用理论知识解决实际问题的学科,而应用题是数学的实践性体现。
初中阶段是学生接触应用题的重要阶段,因此了解和掌握初中数学应用题的解题方法非常重要。
在这篇文章中,我们将总结一些常见的初中数学应用题解题方法。
一、图像法图像法是初中数学应用题中常用的解题方法之一。
当问题中涉及到几何形状、位置关系或者图表数据时,可以通过绘制图像来帮助解题。
例如,在解决面积、体积问题时,我们可以先绘制出相应的图形,利用几何图形的性质来计算面积或体积。
此外,在解决速度、距离、时间等问题时,我们也可以通过绘制速度-时间图来帮助理解和解决问题。
二、代数方法代数方法也是初中数学应用题中常用的解题方法之一。
当问题中涉及到等式、方程或者变量时,可以通过代数方法来解决。
例如,在解决关于年龄、比例、速度等问题时,可以通过设定变量,建立代数方程式来解决问题。
代数方法的优势在于可以建立模型,通过符号运算来解决问题,使问题更加抽象化,更容易推广到其他类似问题。
三、逻辑推理逻辑推理是初中数学应用题中常用的解题方法之一。
当问题中涉及到条件、假设或者逻辑关系时,可以通过逻辑推理来解决。
例如,在解决选课、选班干部等问题时,我们可以根据条件和假设来推导出最终的答案。
逻辑推理的优势在于可以通过推理和分析找到解题的规律和方法,提高解题的准确性。
四、数学建模数学建模是初中数学应用题中较高级的解题方法之一。
当问题中涉及到复杂的实际情境,无法直接用一、二、三种方法解决时,可以通过数学建模来解决。
数学建模的过程包括问题分析、建立模型、求解模型和验证模型四个步骤,通过分析实际问题的数学特点,转化为数学模型并进行求解,最后将求解结果反馈到实际问题中。
数学建模的优势在于能够将实际问题更具体地量化为数学问题,并通过数学模型来解决。
五、思维方法除了以上几种解题方法外,还可以运用一些思维方法来解决初中数学应用题。
例如,归纳法、反证法、策略方法等。
很多同学觉得初中数学很难,每次考试都丢分很多,已经成了“扯后腿”的学科。
其实只要掌握九个解题方法,同学们就会发现其实初中数学并不难学。
今天,给大家带来数学最经典的九大解题方法,可贯穿整个初中数学学习体系,希望对同学们有帮助~1、配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。
配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
例:用配方法将二次函数一般式变为顶点式2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
例:用因式分解法解一元二次方程3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
例:换元法化简整式(x+2y)2-(x-2y)2换元法1令a= x+2y,b= x-2y原式=a2-b2=(a+b)(a-b)a+b=2x, a-b=4y∴原式=2x·4y=8xy换元法2令a=x, b=2y原式=(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=4ab=8xy4、判别式法与韦达定理一元二次方程x2+bx+c=0(a≠0)中,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 例题: 用配方法解方程x2+4x+1=0,经过配方,得到( ) A.(x+2) 2=5 B.(x-2) 2=5 C.(x-2) 2=3 D.(x+2) 2=3 【分析】配方法:若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算。 【解】将方程x2+4x+1=0, 移向得:x2+4x=-1, 配方得:x2+4x+4=-1+4, 即(x+2) 2=3; 因此选D。
2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 例题: 若多项式x2+mx-3因式分解的结果为(x-1)(x+3),则m的值为( ) A.-2 B.2 C.0 D.1 【分析】根据因式分解与整式乘法是相反方向的变形,先将(x-1)(x+3)乘法公式展开,再根据对应项系数相等求出m的值。 【解】∵x2+mx-3因式分解的结果为(x-1)(x+3), 即x2+mx-3=(x-1)(x+3), ∴x2+mx-3=(x-1)(x+3)=x2+2x-3, ∴m=2; 因此选B。
3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 例题: 已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为( ) A.-5或1 B.1 C.5 D.5或-1 【分析】解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单 【解】设x2+y2=t,t≥0,则原方程变形得
(t+1)(t+3)=8,化简得: (t+5)(t-1)=0, 解得:t1=-5,t2
=1
又t≥0 ∴t=1 ∴x2+y2的值为只能是1. 因此选B.
4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
注意:①△=b2-4ac<0,方程无实数根,即无解;②△=b2-4ac =0,方程有两个相等的实数根;③△=b2-4ac>0,方程有两个不相等的实数根。 例题:
当m为什么值时,关于x的方程01)1(2)4(22xmxm有实根。 【分析】题设中的方程未指明是一元二次方程,还是一元一次方程,所以应分42m=0和42m≠0两种情形讨论。 【解】当42m=0即2m时,)1(2m≠0,方程为一元一次方程,总有实根; 当42m≠0即2m时,方程有根的条件是: △=208)4(4)1(222mmm≥0,解得m≥25 ∴当m≥25且2m时,方程有实根。 综上所述:当m≥25时,方程有实根。
5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 例题:
例1. 已知函数y=mxxnx22431的最大值为7,最小值为-1,求此函数式。 【分析】求函数的表达式,实际上就是确定系数m、n的值;已知最大值、最小值实际是就是已知函数的值域,对分子或分母为二次函数的分式函数的值域易联想到“判别式法”。
【解】 函数式变形为: (y-m)x2-43x+(y-n)=0, x∈R, 由已知得y-m≠0 ∴ △=(-43)2-4(y-m)(y-n)≥0 即: y2-(m+n)y+(mn-12)≤0 ① 不等式①的解集为(-1,7),则-1、7是方程y2-(m+n)y+(mn-12)=0的两根,
代入两根得:1120497120()()mnmnmnmn 解得:mn51或mn15
∴ y=5431122xxx或者y=xxx224351 此题也可由解集(-1,7)而设(y+1)(y-7)≤0,即y2-6y-7≤0,然后与不等式①比较系数而得:mnmn6127,解出m、n而求得函数式y。
6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 例题: 如图,在△ABC中,∠B=2∠C,∠BAC的平分线交BC于点D。求证:AB+BD=AC
【分析】若遇到三角形的角平分线时,常构造等腰三角形,借助等腰三角形的有关性质,往往能够找到解题途径。 【解】延长CB到点F,使BF=AB,连接AF,则△BAF为等腰三角形,且∠F=∠1.再根据三角形外角的有关性质,得出∠ABD=∠1+∠F , 即∠ABD=2∠1=2∠F,而∠ABD=2∠C,所以∠C=∠1=∠F , △AFC为等腰三角形,即AF=AC,又可得△FAD为等腰三角形,因此 ,AF=DF=DB+BF=DB+AB,即AB+BD=AC。
7、反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。 例题: 若P是两条异面直线l、m外的任意一点,则( ) A.过点P有且仅有一条直线与l、m都平行 B.过点P有且仅有一条直线与l、m都垂直 C.过点P有且仅有一条直线与l、m都相交 D.过点P有且仅有一条直线与l、m都异面 【分析】 对于A,若存在直线n,使n∥l且n∥m 则有l∥m,与l、m异面矛盾;对于C,过点P与l、m都相交的直线不一定存在,反例如图(l∥α);对于D,过点P与l、m都异面的直线不唯一. 【答案】B 8、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 例题: 如图2,C是线段AB上的一点,△ACD、△BCE都是等边三角形,AE、BD相交于O。 求证:∠AOC=∠BOC。
图2 证明:过点C作CP⊥AE,CQ⊥BD,垂足分别为P、Q。 因为△ACD、△BCE都是等边三角形, 所以AC=CD,CE=CB,∠ACD=∠BCE, 所以∠ACE=∠DCB 所以△ACE≌△DCB
所以AE=BD, 可得CP=CQ 所以OC平分∠AOB 即∠AOC=∠BOC 9、几何变换法 在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。 例题: 1. 平移变换 把图形中的某一个线段或者一个角移动到一个新的位置,使图形中分散的条件紧密地结合到一起。 一般有2种方法: 1.平移已知条件 2.平移所求问题,把所求问题转化,其实就是逆向证明。几何题多数都是逆向思考的。 例 :在三角形ABC中,BD=CE,求证:AB+AC大于AD+AE。这是典型的平移条件问题。 【解】我们把三角形AEC平移到如图所示的FBD位置。这里用了BD=EC的条件 。设AB与FD交于P 这样,容易构造两个全等的三角形 AEC,FBD 由于 PA+PD大于 AD PF+PB大于 BF 两式相加 PA+PB+PD+PF大于AD+BF 又因为BF= AE,AC= FD 所以AB+AC大于AD+AE 2.旋转变换 把平面图形绕旋转中心,旋转一个定角,使分散的条件集中在一起. 例:如图,等腰直角三角形ABC中,AB=AC,∠A=90,M,N为斜边BC上两点且∠MAN=45,求证:BM^2+CN^2=MN^2