2011年四川省乐山中考数学试题及答案
- 格式:doc
- 大小:752.90 KB
- 文档页数:11
2012年四川省乐山市中考数学试卷解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(2012•乐山)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元B.﹣237元C.237元D.500元考点:正数和负数。
分析:根据题意237元应记作﹣237元.解答:解:根据题意,支出237元应记作﹣237元.故选B.点评:此题考查用正负数表示两个具有相反意义的量,属基础题.2.(2012•乐山)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A.B.C.D.考点:简单组合体的三视图。
分析:左视图从左往右,2列正方形的个数依次为2,1,依此画出图形即可求出答案.解答:解:左视图从左往右,2列正方形的个数依次为2,1;依此画出图形.故选C.点评:此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.(2012•乐山)计算(﹣x)3÷(﹣x)2的结果是()A.﹣x B.x C.﹣x5D.x5考点:整式的除法。
分析:本题需先根据整式的除法法则和顺序进行计算即可求出正确答案.解答:解:(﹣x)3÷(﹣x)2=﹣x3÷x2=﹣x;故选A.点本题主要考查了整式的除法,在解题时要注意运算顺序和结果的符号是本题的关评: 键. 4.(2012•乐山)下列命题是假命题的是( )A .平行四边形的对边相等B .四条边都相等的四边形是菱形C .矩形的两条对角线互相垂直D .等腰梯形的两条对角线相等 考点: 等腰梯形的性质;平行四边形的性质;菱形的判定;矩形的性质;命题与定理。
分析: 根据等腰梯形的性质、平行四边形的性质、菱形的性质、矩形的性质及菱形的判定方法做出判断即可. 解答: 解:A 、平行四边形的两组对边平行,正确,是真命题; B 、四条边都相等的四边形是菱形,正确,是真命题;C 、矩形的对角线相等但不一定垂直,错误,是假命题;D 、等腰梯形的两条对角线相等,正确,是真命题; 故选C . 点评: 本题考查了等腰梯形的性质、平行四边形的性质、菱形的性质、矩形的性质及菱形的判定方法,属于基本定义,必须掌握. 5.(2012•乐山)如图,在Rt△ABC 中,∠C=90°,AB=2BC ,则sinB 的值为( )A .B .C .D .1考点: 特殊角的三角函数值。
第24章直角三角形与勾股定理一、选择题1.(2011山东滨州,9,3分)在△ABC中,∠C=90°, ∠C=72°,AB=10,则边AC的长约为(精确到0.1)()A.9.1B.9.5C.3.1D.3.5【答案】C2. (2011山东烟台,7,4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A2m B.3m C.6m D.9m(第7题图)【答案】C3. (2011台湾全区,29)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?A.100 B.180 C.220 D.260【答案】C4. (2011湖北黄石,7,3分)将一个有45度角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图(3),则三角板的最大边的长为A. 3cmB. 6cmC. 32cmD. 62cm【答案】D5. (2011贵州贵阳,7,3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是(第7题图)(A)3.5 (B)4.2 (C)5.8 (D)7【答案】D6. (2011河北,9,3分)如图3,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.21B.2 C.3 D.4图3'ADE【答案】B二、填空题1. (2011山东德州13,4分)下列命题中,其逆.命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.【答案】① ④2. (2011浙江温州,16,5分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是 .【答案】1033. (2011重庆綦江,16,4分) 一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A =30°,∠B =90°,BC =6米. 当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.【答案】:314 4. (2011四川凉山州,15,4分)把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式:。
c d ab 1 2 342011年四川省泸州市中考数学试题一、选择题(本大题共12小题,每小题2分,满分24分)1.25的算术平方根是【 】A .5B .-5C .±5D . 5 2.如图,将该图形绕点O 按下列角度旋转后,不能..与其自身重合的是【 】 A .72º B .108º C .144º D .216º 3.函数212-+=x x y 的自变量x 的取值范围为【 】A .x ≠2B .x >2C .x ≥- 1 2D .x ≥- 12且x ≠24.如图,∠1与∠2互补,∠3=135º,则∠4=【 】 A .45º B .55º C .65º D .75º 5.小明的父亲饭后出去散步,从家中出发走20min 到一个离家900m 的报亭看报10min ,用15min 返回家中.下列各图表示小明的父亲离家的距离y (m )与离家的时间x (min )之间的函数关系的是【 】6.如图所示的两台天平保持平衡,若每块巧克力的质量相等且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为【 】 A .10g ,40g B .15g ,35g C .20g ,30g D .30g ,20g 7.已知⊙O 的半径OA =10cm ,弦AB =16cm ,P 为弦AB 上的一动点,则OP 的最短距离为【 】 A .5cm B .6cm C .8cm D .10cm 8.若实数a 、b 在数轴上对应的位置如图所示,则化简||2b a a ++的结果为【 】 A .-2a +b B .2a +b C .-b D .b 9.若圆锥的底面周长为π20,侧面展开后所得扇形的圆心角为120º,则该圆锥的全面积是【 】 A .π100 B .π200 C .π300 D .π400 10.如图是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是【 】 A .8 B .10 C .12 D .1411.如图,在△ABC 中,∠ABC =90º,∠C =60º,AC =10.将 BC 向BA 方向翻折过去,使点C 落在BA 上的点C 1处,折 痕为BE ,则CE 的长是【 】 A .5 3 B .53-5A .B .C .D .a b 0 主视图 俯视图 AC 1EA B CED O C .10-5 3 D .5+ 312.二次函数y =ax 2+bx +c 的图象如图所示,有下列结论:①abc >0;②b 2-4ac <0;③a -b +c >0;④4a -2b +c <0. 其中正确结论的个数是【 】A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,满分18分)13.某样本数据为2,2,x ,3,3,6.如果这个样本的众数是2,则x 的值是 .14.已知反比例y =2m +1x的图象在第一、三象限,则m 的取值范围为 . 15.矩形ABCD 的对角线交于点O ,AB =4cm ,∠AOB =60º,则矩形的面积为 cm 2.16.若关于x 的方程x 2+(2k +1)x +k 2-2=0的两实数根的平方和等于11,则k 的值为 . 17.如图,半径为2的半圆的内接等腰梯形ABCD 的下底AB 是圆的直径、上底CD 的端点在圆周上,则该梯形周长的最大值是 .18.如图,用三角形摆图案:摆第1层图需要1个三角形,摆第2层图需要3个三角形,摆第3层图需要7个三角形,摆4层图需要13个三角形,摆第5层图需要 个三角形,…,摆第n 层图需要 个三角形.三、(本大题共3小题,每小题5分,满分15分)19.计算:|2|)30(sin 8)143(130-++--- .π.20.先化简,再求值:⎝⎛⎭⎪⎫x +1 x -1+ 1 x 2-2x +1 ÷ x x -1,其中x =2.21.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC .猜想线段CD 与线段AE 的大小关系和位置关系,并加以证明.AB CD…四、(本大题共2小题,每小题6分,满分12分) 22.求不等式组⎩⎪⎨⎪⎧2-x ≥0x -1 2- 2x -1 3< 1 3的整数解.23.甲口袋中装有两个相同的小球,它们的标号分别为2和7;乙口袋中装有两个相同的小球,它们的标号分别为4和5;丙口袋中装有三个相同的小球,它们的标号分别为3、8和9.从3个口袋中各随机地取出1个小球.(1)求取出的3个小球的标号全是奇数的概率;(2)以取出的3个小球上的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.A BS北五、(本大题共3小题,每小题7分,满分21分)24.如图,已知反比例函数y = 6x(x >0)的图象与一次函数y =kx +b 的图象相交于点A (1,m )、B (n ,2). (1)求一次函数的解析式;(2)将一次函数y =kx +b 的图象沿x 轴负方向平移a (a >0)个单位长度得到新图象,求这个新图象与函数y = 6x(x >0)的图象只有一个交点M 时a 的值及点M 的坐标.25.如图,一船以60海里/小时的速度自A 向正北方向航行,在A 处时,灯塔S 在船的北偏东30º的方向上;航行1小时后到达B 处,此时灯塔S 在船 的北偏东75º的方向上.(1)求船在B 处时与灯塔S 之间的距离;(2)若船从B 处继续向正北航行,问经过多长时间船与灯塔S 的距离最近?ABPCM 26.如图,点P 为等边△ABC 的外接圆的劣弧BC 上的一点.(1)求∠BPC 的度数; (2)求证:P A =PB +PC ;(3)设P A 、BC 交于点M ,若AB =4,PC =2,求CM 的长度.六、(本大题满分10分)27.已知二次函数y =ax 2+bx +c 图象的顶点为(0, p 2)且ac = 14.(1)若该函数的图象过点(―1,―1):①求使y <0成立的x 的取值范围;②若圆心在该函数的图象上的圆与x 轴、y 轴都相切,求圆心的坐标.(2)过点A (0,p )的直线与该函数的图象交于点M 、N ,过M 、N 作x 轴的垂线,垂足分别为M 1、N 1.设△AMM 1、△AM 1N 1、△ANN 1的面积分别为S 1、S 2、S 3,是否存在m ,使得对任意实数p ≠0都有S 22=mS 1S 3成立?若存在,请求出m 的值;若不存在,请说明理由.。
四川眉山市2011年中考数学试卷解析1.(2011四川眉山,1,3分)—2的相反数是A .2B .—2C .21 D .—21【解题思路】根据相反数的定义:只有符号不同的两个数就是相反数,进行判断【答案】A 【点评】本题考查了相反数的定义.应该从相反数的符号特点及在数轴上的位置关系进行判断.难度较小. 2.(2011四川眉山,2,3分)下列运算正确的是A .a a a =-22B .4)2(22+=+a a C .632)(a a = D .3)3(2-=- 【解题思路】根据整式加减法则,完全平方公式,幂的乘方法则,二次根式的性质,逐一检验.A .2a 2与-a 不是同类项,不能合并,本选项错误;B .∵44)2(22++=+a a a ,本选项错误; C .63232)(a a a ==⨯,本选项正确;D .33)3(22==-,本选项错误 .【答案】C【点评】本题考查了整式加减法则,完全平方公式,幂的乘方法则,二次根式的性质的运用.关键是熟悉各种运算法则.难度较小.3.(2011四川眉山,3,3分)函数21-=x y 中自变量x 的取值范围是 A .2-≠x B .2≠x C .2<x D .2->x【解题思路】根据分式有意义的条件是分母不等于0,即可求解 【答案】B【点评】本题主要考查了分式有意义的条件,是需要熟记的内容.难度较小.4.(2011四川眉山,4,3分)2011年,我市参加中考的学生约为33200人,用科学记数法表示为A .332×102B .33.2×103C .3.32×104D .0.332×105 【解题思路】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【答案】C【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.难度较小.5.(2011四川眉山,5,3分)若一个正多边形的每个内角为150°,则这个正多边形的边数是A .12B .11C .10D .9 【解题思路】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°-150°=30°,再根据多边形外角和为360度即可求出边数.【答案】A 【点评】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.难度较小. 6.(2011四川眉山,6,3分)下列命题中,假命题是A .矩形的对角线相等B .有两个角相等的梯形是等腰梯形C .对角线互相垂直的矩形是正方形D .菱形的面积等于两条对角线乘积的一半【解题思路】分别根据矩形的性质、等腰梯形的判定定理、正方形的判定及菱形的性质对各选项进行逐一判断即可.A .对角线相等是矩形的性质,故本选项正确;B .直角梯形中有两个角相等但不是等腰梯形,故本选项错误;C .符合正方形的判定定理,故本选项正确;D .符合菱形的性质,故本选项正确. 【答案】B【点评】本题考查的是命题与定理,熟知矩形的性质、等腰梯形的判定定理、正方形的判定及菱形的性质是解答此题的关键.难度较小.7.(2011四川眉山,7,3分)化简:mm nm n -÷-2)(结果是 A .1--m B .1+-m C .m mn +- D .n mn --【解题思路】根据分式乘法及除法的运算法则进行计算,即分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【答案】原式=1)1()(+-=-⨯-m nm m m n 故选B【点评】本题考查的是分式的乘除法,分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.难度较小. 8.(2011四川眉山,8,3分)下列说法正确的是A .打开电视机,正在播放新闻B .给定一组数据,那么这组数据的中位数一定只有一个C .调查某品牌饮料的质量情况适合普查D .盒子里装有2个红球和2个黑球,搅均后从中摸出两个球,一定一红一黑【解题思路】分别根据随机事件、中位数及全面调查与抽样调查的概念进行解答. A .打开电视机,正在播放新闻是随机事件,故本选项错误;B .由中位数的概念可知,给定一组数据,那么这组数据的中位数一定只有一个,故本选项正确;C.由于调查某品牌饮料的质量具有一定的破坏性,故适合抽样调查,故本选项错误;D.由于盒子里装有2个红球和2个黑球,所以搅匀后从中摸出两个球,一红一黑是随机事件,故本选项错误.【答案】B【点评】本题考查的是随机事件、中位数及全面调查与抽样调查的概念,熟知以上知识是解答此题的关键,难度较小.9.(2011四川眉山,9,3分)如图所示的物体的左视图是【解题思路】根据左视图就是从左面看到的图形,从左边看去,就是两个长方形叠在一起,即可得出结果.【答案】D【点评】本题考查了三视图的知识,左视图就是从左面看到的图形,难度较小.10.(2011四川眉山,10,3分)已知三角形的两边长是方程x2-5x+6的两个根,则该三角形的周长L的取值范围是A.1<L<5 B.2<L<6 C.5<L<9 D.6<L<10【解题思路】先利用因式分解法解方程x2-5x+6=0,得到x=2或x=3,即三角形的两边长是2和3,再根据三角形三边的关系确定第三边的取值范围,从而得到三角形的周长L的取值范围.【答案】∵x2-5x+6=0,∴(x-2)(x-3)=0,∴x=2或x=3,即三角形的两边长是2和3,∴第三边a的取值范围是:1<a<5,∴该三角形的周长L的取值范围是6<L<10.故选D.【点评】题考查了用因式分解法解一元二次方程的方法:把方程左边分解成两个一次式的乘积,右边为0,从而方程就转化为两个一元一次方程,解一元一次方程即可.也考查了三角形三边的关系:三角形任意两边之和大于第三边.难度中等.11.(2011四川眉山,11,3分)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为A.50° B.25°C.40° D.60°【解题思路】由PA、PB是⊙O的切线,根据切线的性质得到∠OAP=∠OBP=90°,再根据四边形的内角和为360°可得到∠AOB,而AC是⊙O的直径,根据互补即可得到∠BOC 的度数.【答案】∵PA 、PB 是⊙O 的切线,∴∠OAP=∠OBP=90°, 而∠P=50°, ∴∠AOB=360°-90°-90°-50°=130°, 又∵AC 是⊙O 的直径, ∴∠BOC=180°-130°=50°. 故选A【点评】本题考查了圆的切线的性质:圆的切线垂直于过切点的半径;也考查了四边形的内角和为360°.难度中等.12.(2011四川眉山,12,3分)如图,直线b x y +-=(b >0)与双曲线xky =(x >0)交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于M ,BN ⊥x 轴于N ;有以下结论: ①OA=OB②△AOM ≌△BON③若∠AOB=45°,则S △AOB =k ④当AB=2时,ON-BN=1;其中结论正确的个数为A .1B .2C .3D .4【解题思路】①②设A (x 1,y 1),B (x 2,y 2),联立b x y +-=与xk y =,得x 2-bx+k=0,则x 1•x 2=k ,又x 1•y 1=k ,比较可知x 2=y 1,同理可得x 1=y 2,即ON=OM ,AM=BN ,可证结论;③作OH ⊥AB ,垂足为H ,根据对称性可证△OAM ≌△OAH ≌△OBH ≌△OBN ,可证S △AOB =k ;④延长MA ,NB 交于G 点,可证△ABG 为等腰直角三角形,当AB= 时,【答案】设A (x 1,y 1),B (x 2,y 2),代入xky =中,得x 1•y 1=x 2•y 2=k , 联立 ⎝⎛=+-=x ky b x y ,得x 2-bx+k=0, 则x 1•x 2=k ,又x 1•y 1=k , ∴x 2=y 1, 同理可得x 1=y 2, ∴ON=OM ,AM=BN ,∴①OA=OB ,②△AOM ≌△BON ,正确;③作OH ⊥AB ,垂足为H ,∵OA=OB ,∠AOB=45°,∴△OAM ≌△OAH ≌△OBH ≌△OBN , ∴S △AOB =S △AOH +S △BOH =S △AOM +S △BON = 21k+ 21k=k ,正确; ④延长MA ,NB 交于G 点, ∵NG=OM=ON=MG ,BN=AM , ∴GB=GA ,∴△ABG 为等腰直角三角形, 当AB=时,GA=GB=1,∴ON-BN=GN-BN=GB=1,正确.正确的结论有4个. 故选D .【点评】本题考查了反比例函数的综合运用.关键是明确反比例函数图象上点的坐标特点,反比例函数图象的对称性.难度较大.13.(2011四川眉山,13,3分)因式分解:=-234xy x .【解题思路】先提公因式x ,再利用平方差公式继续分解因式. 【答案】)2)(2(y x y x x -+【点评】本题考查了提公因式法与公式法分解因式,提取公因式后继续进行二次因式分解是关键,注意分解因式要彻底.难度较小. 14.(2011四川眉山,14,3分)有一组数据,2、6、5、4、5,它们的众数是 .【解题思路】根据众数的定义解答即可 【答案】5【点评】此题考查了众数的概念----一组数据中,出现次数最多的数位众数,众数可以有多个.难度较小. 15.(2011四川眉山,15,3分)如图,梯形ABCD 中,如果AB ∥CD ,AB=BC ,∠D=60°,AC 丄AD ,则∠B= .【解题思路】由∠D=60°,AC 丄AD ,得到∠ACD=30°,而AB ∥CD ,根据平行线的性质得到∠BAC=∠ACD=30°,又因为AB=BC ,根据等腰三角形的性质得到∠BCA=∠BAC=30°,最后根据三角形的内角和定理计算出∠B 的度数.【答案】120°【点评】:本题考查了梯形的性质:梯形的两底边平行.也考查了等腰三角形的性质和三角形内角和定理.难度较小.16.(2011四川眉山,16,3分)已知一个圆锥形的零件的母线长为3cm ,底面半径为2cm , 则这个圆锥形的零件的侧面积为 cm2.(用π表示).【解题思路】先计算出底面圆的周长,根据圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆的周长,利用扇形的面积公式进行计算即可.【答案】6π【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆的周长.也考查了扇形的面积公式. 难度较小.17.(2011四川眉山,17,3分)已知一元二次方程0132=+-y y 的两个实数根分别为y 1、y 2,则(y 1-1)(y 2-1)的值为 .【解题思路】先根据一元二次方程y 2-3y+1=0的两个实数根分别为y 1、y 2,求出y 1+y 2及y 1•y 2的值,再代入(y 1-1)(y 2-1)进行计算即可.【答案】∵一元二次方程y 2-3y+1=0的两个实数根分别为y 1、y 2,∴y 1+y 2=3,y 1•y 2=1, ∴(y 1-1)(y 2-1),=y 1y 2-y 1-y 2+1,=y 1y 2-(y 1+y 2)+1, =1-3+1, =-1.故答案为:-1.【点评】题考查的是一元二次方程根与系数的关系及代数式求值,若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=ab-,x 1x 2= a c ,难度中等.18.(2011四川眉山,18,3分)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是 .【解题思路】解不等式得x≤3a ,由于只有两个正整数解,即1,2,故可判断3a的取值范围,求出a 的职权范围【答案】原不等式解得x≤3a , ∵解集中只有两个正整数解, 可知是1,2, ∴2≤3a<3, 解得6≤a <9.故答案为:6≤a <9.【点评】题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应根据不等式的基本性质.对3a的范围的把握是本题最易错的地方,也是学生最难理解之处.难度较难.19.(2011四川眉山,19,6分)计算:28)1()14.3(2011--+-+-π【解题思路】根据0指数幂,二次根式的化简,去绝对值法则分别计算,再合并同类项.【答案】2【点评】本题考查了实数的运算,0指数幂.关键是熟悉各项的运算法则,先分别计算,再合并同类项.难度较小.20.(2011四川眉山,20,6分)解方程:⎩⎨⎧=-=+②①212y x y x【解题思路】由于两方程中y 的系数互为相反数,所以可先用加减消元法,再用代入消元法求方程组的解.【答案】⎩⎨⎧-==11y x【点评】本题考查的是解二元一次方程组的加减消元法和代入消元法,熟知以上知识是解答此题的关键.难度较小. 21.(2011四川眉山,21,8分)如图,图中的小方格都是边长为1的正方形,△ABC 的顶点坐标为A (0,-2)、B (3,-1)、C (2,1).(1)请在图中画出△ABC 关于y 轴对称的图形△AB′C′; (2)写出点B′和C′的坐标.【解题思路】(1)根据对称轴为y 轴,作出△ABC 的轴对称图形△AB′C′;(2)根据所画出的图形,求点B′和C′的坐标.【答案】(1)△ABC 关于y 轴对称的图形△AB′C′如图所示;(2)由图形可知B′(-3,-1),C′(-2,1).【点评】本题考查了轴对称变换的作图.关键是明确对称轴,根据对应点的连线被对称轴垂直平分,找对应点的位置.难度较小. 22.(2011四川眉山,22,8分)在一次数学课外活动中,一位同学在教学楼的点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为15cm .求旗杆的高度.【解题思路】过A 作AE ⊥BC ,构造两个直角三角形,然后利用解直角三角形的知识解答.【答案】过A 作AE ⊥BC ,垂足为E ,由题意可知,四边形ADCE 为矩形,yxAB CO∴EC=AD=15,在Rt △AEC 中,tan ∠EAC=AECE, ∴AE=3560tan 15tan =︒=∠EAC CE (米), 在Rt △AEB 中,tan ∠BAE=AEBE,∴BE=AE•tan ∠EAB=35•tan30°=5(米),∴BC=CE+BE=20(米). 故旗杆高度为20米.【点评】此题考查了解直角三角形的知识,作出辅助线,构造直角三角形是解题的关键.难度中等. 23.(2011四川眉山,23,9分)某中学团委、学生会为了解该校学生最喜欢的球类活动的悄況,对足球、乒乓球、篮球、排球四个项目作调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息射答下列问题:(1)求这次接受调查的学生人数,并补全条形统计图; (2)求扇形统计图中喜欢篮球的圆心角度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是最喜欢乒乓球的概率是多少?【解题思路】(1)读图可知喜欢足球的有40人,占20%,所以一共调查了40÷20%=200人,(2)喜欢篮球的占40%,所占的圆心角为360°×40%=144度,(3)喜欢乒乓球的人数为60人,总人数为200人,根据概率公式即可得出结果.【答案】(1)200,补全统计图,如图所示:(2)144°;(3) 103【点评】本题考查学生的读图能力,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,难度适中.24.(2011四川眉山,24,9分)在眉山市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已在(2)的条件下,请说明哪种方案的总费用最少?【解题思路】(1)设运往E 地x 立方米,由题意可列出关于x 的方程,求出x 的值即可;(2)由题意列出关于a 的一元一次不等式组,求出a 的取值范围,再根据a 是整数可得出a 的值,进而可求出答案;(3)根据(1)中的两种方案求出其费用即可. 【答案】(1)设运往E 地x 立方米,由题意得,x+2x-10=140,解得:x=50, ∴2x-10=90,答:共运往D 地90立方米,运往E 地50立方米; (2)由题意可得,[]⎩⎨⎧≤+--<+-12)30(90502)30(90a aa , 解得:20<a≤22, ∵a 是整数, ∴a=21或22, ∴有如下两种方案:第一种:A 地运往D 地21立方米,运往E 地29立方米; C 地运往D 地39立方米,运往E 地11立方米;第二种:A 地运往D 地22立方米,运往E 地28立方米; C 地运往D 地38立方米,运往E 地12立方米;(3)第一种方案共需费用:22×21+20×29+39×20+11×21=2053(元),第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),所以,第一种方案的总费用最少.【点评】本题考查的是一元一次不等式组及一元一次方程的应用,根据题意列出一元一次不等式组及一元一次方程是解答此题的关键.难度适中.25.(2011四川眉山,25,9分)如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于F .(1)求证:∠DCP=∠DAP ;(2)若AB=2,DP :PB=1:2,且PA ⊥BF ,求对角线BD 的长.【解题思路】(1)根据菱形的性质得CD=AD ,∠CDP=∠ADP ,证明△CDP ≌△ADP 即可;(2)由菱形的性质得CD ∥BA ,可证△CPD ∽△FPB ,利用相似比,结合已知DP :PB=1:2,CD=BA ,可证A 为BF 的中点,又PA ⊥BF ,从而得出PB=PF ,已证PA=CP ,把问题转化到Rt △PAB 中,由勾股定理,列方程求解.【答案】(1)证明:∵四边形ABCD 为菱形,∴CD=AD ,∠CDP=∠ADP ,∴△CDP ≌△ADP ,∴∠DCP=∠DAP ;(2)解:∵四边形ABCD 为菱形,∴CD ∥BA ,CD=BA ,∴△CPD ∽△FPB , ∴21===PF CP BF CD PB DP , ∴CD= 21BF ,CP= 21PF , ∴A 为BF 的中点,又∵PA ⊥BF ,∴PB=PF ,由(1)可知,PA=CP ,∴PA=21 PB , 在Rt △PAB 中,PB 2=22+(21PB )2, 解得PB=334, 则PD=332, ∴BD=PB+PD=32.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是运用方程的思想,利用相似和勾股定理,列出关于PB 的方程.难度较大.26.(2011四川眉山,26,11分)如图,在直角坐标系中,已知点A (0,1),B (-4,4),将点B 绕点A 顺时针方向90°得到点C ;顶点在坐标原点的拋物线经过点B .(1)求抛物线的解析式和点C 的坐标;(2)抛物线上一动点P ,设点P 到x 轴的距离为d 1,点P 到点A 的距离为d 2,试说明d 2=d 1+1;(3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.【解题思路】(1)设抛物线的解析式:y=ax 2,把B (-4,4)代入即可得到a 的值;过点B 作BE ⊥y 轴于E ,过点C 作CD ⊥y 轴于D ,易证Rt △BAE ≌Rt △ACD ,得到AD=BE=4,CD=AE=OE-OA=4-1=3,即可得到C 点坐标(3,5);(2)设P 点坐标为(a ,b ),过P 作PF ⊥y 轴于F ,PH ⊥x 轴于H ,则有d 1=41a 2,又AF=OF-OA=PH-OA=d 1-1= 41a 2-1,PF=a ,在Rt △PAF 中,利用勾股定理得到PA=d 2= 41a 2+1,即有结论d 2=d 1+1; (3)△PAC 的周长=PC+PA+5,由(2)得到△PAC 的周长=PC+PH+6,要使PC+PH 最小,则C 、P 、H 三点共线,P 点坐标为(3,49),此时PC+PH=5,得到△PAC 的周长的最小值=5+6=11.【答案】(1)设抛物线的解析式:y=ax 2,∵拋物线经过点B (-4,4),∴4=a•42,解得a=41, 所以抛物线的解析式为:y=41x 2; 过点B 作BE ⊥y 轴于E ,过点C 作CD ⊥y 轴于D ,如图,∵点B 绕点A 顺时针方向90°得到点C ,∴Rt △BAE ≌Rt △ACD ,∴AD=BE=4,CD=AE=OE-OA=4-1=3,∴OD=AD+OA=5,∴C 点坐标为(3,5);(2)设P 点坐标为(a ,b ),过P 作PF ⊥y 轴于F ,PH ⊥x 轴于H ,如图,∵点P 在抛物线y= 41x 2上, ∴b=41a 2, ∴d 1= 41a 2, ∵AF=OF-OA=PH-OA=d 1-1= 41a 2-1,PF=a , 在Rt △PAF 中,PA=d 2= 22222)141(a a PF AF +-=+ = 41a 2+1, ∴d 2=d 1+1;(3)由(1)得AC=5,∴△PAC 的周长=PC+PA+5=PC+PH+6,则C 、P 、H 三点共线时,PC+PH 最小,∴此时P 点的横坐标为3,把x=3代入y=41x 2,得到y=49, 即P 点坐标为(3,49),此时PC+PH=5, ∴△PAC 的周长的最小值=5+6=11.【点评】本题考查了点在抛物线上,点的横纵坐标满足二次函数的解析式和顶点在原点的二次函数的解析式为:y=ax 2;也考查了旋转的性质、勾股定理以及两点之间线段最短.本题第(3)小题的关键是将△PAC 的周长转化为PC 与PH 和的关系,从而求出三角形周长的最小值.难度较大.本题第(3)小题与2010年南通市28题的第(3)小题非常类似,如下题,供参考。
乐山市2024年初中学业水平考试数学本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2.在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10个小题,每小题3分,共30分.1.不等式20x -<的解集是A.2x < B.2x > C.2x <- D.2x >-2.下列文物中,俯视图是四边形的是A B C D3.2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为A.8410⨯ B.9410⨯ C.10410⨯ D.11410⨯4.下列多边形中,内角和最小的是A B C D5.为了解学生上学的交通方式,刘老师在九年级800名学生中随机抽取了60名进行问卷调查,并将调查结果制作成如下统计表,估计该年级学生乘坐公交车上学的人数为交通方式公交车自行车步行私家车其它人数(人)3051582A.100B.200C.300D.4006.如图1,下列条件中不能..判定四边形ABCD 为平行四边形的是A.AB DC //,AD BC //B.AB DC =,AD BC =C.AO CO =,BO DO =D.AB DC //,AD BC =7.已知12x <<,化简()212xx -+-的结果为A.1-B.1C.23x - D.32x-8.若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为A.23-B.23C.6-D.69.已知二次函数22y x x =-(11x t -- ),当1x =-时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是A.02t < B.04t < C.24t D.2t 10.如图2,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连结DP 、AQ 交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为A.36 B.33C.32D.3第Ⅱ卷(非选择题共120分)注意事项:1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.4.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分.11.计算:2a a +=▲.12.一名交警在路口随机监测了5辆过往车辆的速度,分别是:66,57,71,69,58(单位:千米/时).那么这5辆车的速度的中位数是▲.13.如图3,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠=▲.14.已知3a b -=,10ab =,则22a b +=▲.15.如图4,在梯形ABCD 中,AD BC //,对角线AC 和BD 交于点O ,若13ABD BCD S S =△△,则AODBOCS S =△△▲.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分9分)计算:()032024π-+--.18.(本小题满分9分)解方程组:4,2 5.x y x y +=⎧⎨-=⎩19.(本小题满分9分)如图5,AB 是CAD ∠的平分线,AC AD =,求证:C D ∠=∠.20.(本小题满分10分)先化简,再求值:22142x x x -,其中3x =.小乐同学的计算过程如下:)小乐同学的解答过程中,第▲步开始出现了错误;(2)请帮助小乐同学写出正确的解答过程.21.(本小题满分10分)乐山作为闻名世界的文化旅游胜地,吸引了大量游客.为更好地提升服务质量,某旅行社随机调查了部分游客对四种美食的喜好情况(每人限选一种),并将调查结果绘制成统计图,如图6所示.根据以上信息,回答下列问题:(1)本次抽取的游客总人数为▲人,扇形统计图中m 的值为▲;(2)请补全条形统计图;(3)旅行社推出每人可免费品尝两种美食的活动,某游客从上述4种美食中随机选择两种,请用画树状图或列表的方法求选到“钵钵鸡和跷脚牛肉”的概率.22.(本小题满分10分)如图7,已知点(1,)A m 、(,1)B n 在反比例函数3(0)y x x=>的图象上,过点A 的一次函数y kx b =+的图象与y 轴交于点(0,1)C .(1)求m 、n 的值和一次函数的表达式;(2)连结AB ,求点C 到线段AB 的距离.我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图8.1,请你根据词意计算秋千绳索OA 的长度;(2)如图8.2,将秋千从与竖直方向夹角为α的位置'OA 释放,秋千摆动到另一侧与竖直方向夹角为β的地方''OA ,两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.24.(本小题满分10分)如图9,O 是ABC △的外接圆,AB 为直径,过点C 作O 的切线CD 交BA 延长线于点D ,点E 为 CB 上一点,且 AC CE=.(1)求证:DC AE //;(2)若EF 垂直平分OB ,3DA =,求阴影部分的面积.在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A .(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M N 、两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图10.1,在ABC △中,90BAC ∠=︒,AB AC =,点D 、E 在边BC 上,且45DAE ∠=︒,3BD =,4CE =,求DE 的长.解:如图10.2,将ABD △绕点A 逆时针旋转90︒得到ACD '△,连结ED '.由旋转的特征得BAD CAD '∠=∠,B ACD '∠=∠,AD AD '=,BD CD '=.90BAC ∠=︒ ,45DAE ∠=︒,45BAD EAC ∴∠+∠=︒.BAD CAD '∠=∠ ,45CAD EAC '∴∠+∠=︒,即45EAD '∠=︒.DAE D AE '∴∠=∠.在DAE △和D AE '△中,AD AD '=,DAE D AE '∠=∠,AE AE =,∴①.DE D E '∴=.又90ECD ECA ACD ECA B ''∠=∠+∠=∠+∠=︒ ,∴在Rt ECD '△中,②.3CD BD '== ,4CE =,DE D E '∴==③.【问题解决】上述问题情境中,“①”处应填:▲;“②”处应填:▲;“③”处应填:▲.刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.【知识迁移】如图10.3,在正方形ABCD 中,点E F 、分别在边BC 、CD 上,满足CEF △的周长等于正方形ABCD 的周长的一半,连结AE 、AF ,分别与对角线BD 交于M 、N 两点.探究BM 、MN 、DN 的数量关系并证明.【拓展应用】如图10.4,在矩形ABCD 中,点E F 、分别在边BC 、CD 上,且45EAF CEF ∠=∠=︒.探究BE 、EF 、DF 的数量关系:▲(直接写出结论,不必证明).【问题再探】如图10.5,在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D E 、在边AC 上,且45DBE ∠=︒.设AD x =,CE y =,求y 与x 的函数关系式.最后,刘老师总结到:希望同学们在今后的数学学习中,学会用数学的眼光观察现实世界,用数学的思维思考现实世界,用数学的语言表达现实世界.乐山市2024年初中学业水平考试数学参考答案及评分标准第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.题号12345678910答案A D C A D DB AC B第Ⅱ卷(非选择题共120分)二、填空题:本大题共6小题,每小题3分,共18分.11.3a ;12.66;13.120︒;14.29;15.19;16.(1)③;(2)102m -< 或102m < .注:16题第(1)空1分,第(2)空2分.三、解答题:本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17.解:原式313=+-……………………………………………………………………………………6分1=.…………………………………………………………………………………………9分注:第一步含有三个式子的计算,答对一个得2分.18.解:4,2 5.x y x y +=⎧⎨-=⎩①②解法一:①+②,得39x =,解得3x =.……………………………………………………………3分将3x =代入①,得1y =.…………………………………………………………………6分31x y =⎧∴⎨=⎩.……………………………………………………………………………………9分解法二:由①,得4y x =-③.将③代入②,得2(4)5x x --=,解得3x =.…………………………………………3分将3x =代入③,得1y =.…………………………………………………………………6分31x y =⎧∴⎨=⎩.……………………………………………………………………………………9分19.证明:AB 是CAD ∠的平分线,CAB DAB ∴∠=∠.……………………………………………………………………………3分∴在ABC △和ABD △中,AC AD =,CAB DAB ∠=∠,AB AB =,ABC ∴△≌ABD △(SAS ).………………………………………………………………7分C D ∴∠=∠.……………………………………………………………………………………9分20.解:(1)第③步开始出现了错误.……………………………………………………………………3分(2)2212142(2)(2)2x x x x x x x -=---+--……………………………………………………4分22(2)(2)(2)(2)x x x x x x +=-+--+…………………………………………5分22(2)(2)x x x x --=+-……………………………………………………………6分2(2)(2)x x x -=+-……………………………………………………………7分12x =+.……………………………………………………………………8分当3x =时,原式15=.…………………………………………………………………………10分21.解:(1)总人数为240人,m 的值为35.…………………………………………………………2分(2)如下图所示.…………………………………………5分(3)记A :麻辣烫,B :跷脚牛肉,C :钵钵鸡,D :甜皮鸭.解法一:由题可得树状图:…………………………………………8分P (选到“钵钵鸡和跷脚牛肉”)16=.………………………………………………………10分解法二:由题可列表:第一次第二次A B C D A (,)B A (,)C A (,)D A B(,)A B (,)C B (,)D BC(,)A C (,)B C (,)D C D (,)A D (,)B D (,)C D …………………………………………8分P (选到“钵钵鸡和跷脚牛肉”)16=.………………………………………………………10分22.解:(1) 点(1,)A m 、(,1)B n 在反比例函数3y x =图象上,3m ∴=,3n =.…………………………………………………………………………………2分又 一次函数y kx b =+过点(1,3)A ,(0,1)C ,3,1.k b b +=⎧∴⎨=⎩解得2,1.k b =⎧⎨=⎩………………………………………………………………………4分∴一次函数表达式为21y x =+.………………………………………………………………5分(2)如图,连结BC .过点A 作AD BC ⊥,垂足为点D ,过点C 作CE AB ⊥,垂足为点E .(0,1)C ,(3,1)B ,BC x ∴//轴,3BC =.…………………………………………………………………………6分 点(1,3)A ,(3,1)B ,AD BC ⊥,∴点(1,1)D ,2AD =,2DB =.在Rt ADB △中,AB ==.………………………………………………7分又1122ABC S BC AD AB CE =⋅=⋅ △,……………………………………………………8分即113222CE ⨯⨯=⨯,2CE ∴=,即点C 到线段AB 的距离为2.…………………………………………10分23.解:(1)如图,过点A '作A B OA '⊥,垂足为点B .设秋千绳索的长度为x 尺.由题可知,OA OA x '==,4AB =,10A B '=,4OB OA AB x ∴=-=-.在Rt OA B '△中,由勾股定理得:222A B OB OA ''+=22210(4)x x ∴+-=.……………………………………………………………………………3分解得14.5x =.答:秋千绳索的长度为14.5尺.…………………………………………………………………5分(2)能.…………………………………………………………………………………………6分由题可知,90OPA OQA '''∠=∠=︒,OA OA OA '''==.在Rt OA P '△中,cos cos OP OA OA αα'=⋅=⋅.……………………………………………7分同理,cos cos OQ OA OA ββ''=⋅=⋅.…………………………………………………………8分OQ OP h -= ,cos cos OA OA h βα∴⋅-⋅=.…………………………………………………………………9分cos cos h OA βα∴=-.…………………………………………………………………………10分24.证明:(1)如图,连结OC .CD 为O 的切线,点C 在O 上,90OCD ∴∠=︒,即90DCA OCA ∠+∠=︒.…………………………………………………1分又AB 为直径,90ACB ∴∠=︒,即190OCA ∠+∠=︒.1DCA ∴∠=∠.…………………………………………………………………………………2分OC OB = ,12∴∠=∠.………………………………………………………………………………………3分AC CE= ,23∴∠=∠.………………………………………………………………………………………4分3DCA ∴∠=∠.DC AE ∴//.……………………………………………………………………………………5分(2)连结OE 、BE .EF 垂直平分OB ,OE BE ∴=.又OE OB = ,OEB ∴△为等边三角形.60BOE ∴∠=︒,120AOE ∠=︒.………………………………………………………………6分OA OE = ,30OAE OEA ∴∠=∠=︒.DC AE // ,30D OAE ∴∠=∠=︒.又90OCD ∠=︒ ,60DOC ∴∠=︒.OA OC = ,AOC ∴△为等边三角形.60OCA ∴∠=︒,OA OC AC ==.30DCA ∴∠=︒.D DCA ∴∠=∠.3DA AC OA OC OE ∴=====.……………………………………………………………8分33sin 602EF OE ∴=⋅︒=.19324OAE S AO EF ∴=⋅=△.又12093360OAE S ππ︒⨯==︒扇形,34OAE OAE S S S π∴=-=-阴影扇形△.………………………………………………………10分25.解:(1)当1a =时,抛物线2222(1)1y x x x =-+=-+.………………………………………2分∴顶点坐标(1,1).…………………………………………………………………………………3分(2)由题可知(0,2)A a .线段OA 上的“完美点”的个数大于3个且小于6个,∴“完美点”的个数为4个或5个.……………………………………………………………4分∴当“完美点”个数为4个时,分别为(0,0),(0,1),(0,2),(0,3);当“完美点”个数为5个时,分别为(0,0),(0,1),(0,2),(0,3),(0,4).325a ∴< .……………………………………………………………………………………6分∴a 的取值范围是3522a < .…………………………………………………………………7分(3)易知抛物线的顶点坐标为(1,)a ,过点(2,2)P a ,(3,5)Q a ,(4,10)R a .显然,“完美点”(1,1),(2,2),(3,3)符合题意.下面讨论抛物线经过(2,1),(3,2)的两种情况:1当抛物线经过(2,1)时,解得12a =.此时,(2,1)P ,5(3,2Q ,(4,5)R .如图所示,满足题意的“完美点”有(1,1),(2,1),(2,2),(3,3),共4个.…………………………………………………………………9分2当抛物线经过(3,2)时,解得25a =.此时,4(2,)5P ,(3,2)Q ,(4,4)R .如图所示,满足题意的“完美点”有(1,1),(2,1),(2,2),(3,2),(3,3),(4,4),共6个.…………………………………………………………………11分∴a 的取值范围是2152a < .…………………………………………………………………12分26.解:(1)①ADE △≌AD E '△;②222EC CD ED ''+=;③5.…………………………………3分(2)222DN BM MN +=.………………………………………………………………………4分证明:如图,将ABE △绕点A 逆时针旋转90︒,得到ADF '△.过点D 作DH BD ⊥交边AF '于点H ,连结NH .由旋转的特征得AE AF '=,BE DF '=,BAE DAF '∠=∠.由题意得EF EC FC DC BC DF FC EC BE ++=+=+++,EF DF BE DF DF F F ''∴=+=+=.在AEF △和AF F '中,AE AF '=,EF F F '=,AF AF =,AEF ∴△≌AF F '(SSS ).…………………………………………………………………5分EAF F AF '∴∠=∠.又BD 为正方形ABCD 的对角线,45ABD ADB ∴∠=∠=︒.DH BD ⊥ ,45ADH HDB ADB ∴∠=∠-∠=︒.在ABM △和ADH △中,BAM DAH ∠=∠,AB AD =,ABM ADH ∠=∠,ABM ∴△≌ADH △(ASA ).………………………………………………………………6分AM AH ∴=,BM DH =.在AMN △和AHN △中,AM AH =,MAN HAN ∠=∠,AN AN =,AMN ∴△≌AHN △(SAS ).………………………………………………………………7分MN HN ∴=.在Rt HND △中,222DN DH HN +=,222DN BM MN ∴+=.…………………………………………………………………………8分(3)22222BE DF EF +=.……………………………………………………………………10分(4)如图,将BEC △绕点B 逆时针旋转90︒,得到BE C '',连结E D '.过点E 作EG BC ⊥,垂足为点G ,过点E '作EG BC ''⊥,垂足为G '.过点E '作E F BA '//,过点D 作DF BC //交AB 于点H ,E F '、DF 交于点F .由旋转的特征得BE BE '=,CBE C BE ''∠=∠,EG E G ''=,BG BG '=.90ABC ∠=︒ ,45DBE ∠=︒,45CBE DBA ∴∠+∠=︒.45C BE DBA ''∴∠+∠=︒,即45DBE '∠=︒.在EBD △和E BD '△中,BE BE '=,DBE DBE '∠=∠,BD BD =,EBD ∴△≌E BD '△(SAS ).DE DE '∴=.90ABC ∠=︒ ,4AB =,3BC =,∴5AC ==.又AD x = ,CE y=5DE DE x y '∴==--.DF BC// ADH C ∴∠=∠,90AHD ABC ∠=∠=︒.AHD ∴△∽ABC △.5AH HD AD x AB BC AC ∴===,即45AH x =,35HD x =.445HB AB AH x ∴=-=-.同理可得45EG y =,35GC y =.45E G y ''∴=,335BG BG y '==-.E G AB ''⊥ ,90ABC ∠=︒,E G BC FD ''∴////.又E F AB '// ,90FHG AHD '∠=∠=︒,∴四边形FE G H ''为矩形.90F ∴∠=︒,45FH E G y ''==,3455DF DH FH x y =+=+43434(3)15555FE HG HB BG x y x y '''==-=---=-+.在Rt E FD '△中,222E F DF E D ''+=.()2224334(1)()55555x y x y x y ∴-+++=--.解得2160528x y x -=-.………………………………………………………………………………13分。
2011成都中考数学试题及答案本文将为您详细介绍2011年成都中考数学试题及答案。
以下是试题及答案的具体内容:第一部分选择题1. 下列四个数中,一个顶点在数轴原点O处,长度是2个单位,请问这四个数中最小的是:A) -3 B) -1 C) 2 D) 3答案:A) -32. 已知等差数列的前两项分别是-1和5,公差是3,那么该等差数列的第n项是:A) 2n-3 B) 2n-1 C) 3n-4 D) 3n+2答案:C) 3n-43. 在平面直角坐标系中,点P(-3, 2)关于x轴的对称点是:A) (-3, -2) B) (-3, 2) C) (3, 2) D) (2, -3)答案:A) (-3, -2)4. 一个圆的直径长为10cm,那么它的周长是:A) 10cm B) 20cm C) 25cm D) 50cm答案:C) 25cm5. 都知道:1米 = 100厘米 = 1000毫米,那么3米等于多少毫米?A) 30毫米 B) 300毫米 C) 3000毫米 D) 30000毫米答案:C) 3000毫米第二部分解答题6. 设正整数n的个位是3、十位是5,且n小于200,则n的值是多少?解答:由题可知,百位数为1,所以n的值为153。
7. 设二次函数y = ax^2 + bx + c的图象与x轴交于A、B两点,且A、B两点的坐标分别为(-2, 0)和(4, 0)。
求该二次函数的解析式。
解答:因为A、B两点在x轴上,所以函数图象对应的方程的根为x1 = -2 和 x2 = 4。
由韦达定理可得:x1 + x2 = -b/a,所以 -2 + 4 = -b/a,解得 b/a = -2。
再由根与系数的关系可知,a = 1。
代入任意一个点的坐标,可得c = -8。
因此,该二次函数的解析式为 y = x^2 - 2x - 8。
8. 在平面直角坐标系中,点A(3, 2)和点B(-1, 4)的中点坐标为多少?解答:点A和点B的横坐标分别为3和-1,纵坐标分别为2和4。
、选择题 20XX 年全国各地中考数学试卷试题分类汇编分式与分式方程1. ( 2011浙江金华, 7, 3分)计算 1 a-11+a 代a —i B. aa-1C.D.1【答案】C 2. (2011山东威海, 8, 3分)计算: (m 2 -1)的结果是2 A . -m -2m -1 2 B. -m 2m -1 C.D. m 2-1【答案】B 3. (2011四川南充市,8, 3分) 当& X —1分式 ----- 1的值为0时,x 十2 x 的值是( (A ) 0 (B ) 1 (C )— 1(D )— 2【答案】B 4. (2011浙江丽水, 1 7, 3分)计算髙aa-1的结果为(B.aa-1 C. — 1D.1 — a【答案】C 5. (2011江苏苏州, 7,3 分) 1 已知 - a 1,则 a ab的值是 -bA.1B. 2C.2D. 【答案】D 6. ( 2011重庆江津, 4分) F 列式子是分式的是 A. - B. 2 C. D. 【答案】B. 7. (2011江苏南通,10 ,3分)设 m > n > 0, m + n 2= 4mr ,2-的值等于mnA. 2 3B.C. 6D. 3【答案】A8. (2011山东临沂,2x-1 1 .............5, 3分)化简(x—)+ ( 1 —)的结果是()x xA.-B. x — 1 C x -1 D. Xx x x-1【答案】B9. (2011广东湛江11,3分)化简2 ab2b的结果是a - b a - bA a bB a -bC 2 ‘ 2a-b D1【答案】A二、填空题1. (2011浙江省舟山,11, 4分)当x时,分式1有意义.3_x【答案】x = 32. (2011福建福州,14, 4分)化简(1 L)(m 1)的结果是m +1【答案】m2x x x3. (2011山东泰安,22 , 3分)化简:(x+2-花)十£二的结果为________________________ 。
2019年四川省乐山市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B. −3C. 13D. −132.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. 15B. 14C. 13D. 124.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. 45∘B. 50∘C. 55∘D. 60∘6.不等式组{2x−6<3xx+25−x−14≥0的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. 16B. 13C. 15D. 149.如图,在边长为√3的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. √3−1B. 1C. 12D. √3210.如图,抛物线y=14x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B. √412C. 72D. 4二、填空题(本大题共6小题,共18.0分)11.-12的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=35.则AB边的长为______.15.如图,点P是双曲线C:y=4x(x>0)上的一点,过点P作x轴的垂线交直线AB:y=12x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:(12)-1-(2019-π)0+2sin30°.18.如图,点A、B在数轴上,它们对应的数分别为-2,xx+1,且点A、B到原点的距离相等.求x的值.19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20. 化简:x 2−2x +1x 2−1÷x 2−x x +1.21. 如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (-1,a ).(1)求直线l 1的解析式;(2)求四边形PAOC 的面积.22. 某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23. 已知关于x 的一元二次方程x 2-(k +4)x +4k =0.(1)求证:无论k 为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x 1、x 2,满足1x 1+1x 2=34,求k 的值; (3)若Rt △ABC 的斜边为5,另外两条边的长恰好是方程的两个根x 1、x 2,求Rt △ABC 的内切圆半径.24. 如图,直线l 与⊙O 相离,OA ⊥l 于点A ,与⊙O 相交于点P ,OA =5.C 是直线l 上一点,连结CP 并延长交⊙O 于另一点B ,且AB =AC .(1)求证:AB 是⊙O 的切线;(2)若⊙O 的半径为3,求线段BP 的长.25. 在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F . (1)如图1,当EF ∥BC 时,求证:xx xx +xx xx =1;(2)如图2,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,.设抛物线的顶点为M,对称轴交x轴于点N.且tan∠CAB=32(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.5.【答案】C【解析】解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP,如图,当y=0时,x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】12【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】165【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k 的几何意义:从反比例函数y=(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|. 16.【答案】10+2√3 【解析】解:∵∠B=30°,直线l ⊥AB , ∴BE=2EF , 由图可得, AB=4cos30°=4×=2,BC=5, AD=7-4=3,当EF 平移到点F 与点D 重合时,如右图所示, ∵∠EFB=60°, ∴∠DEC=60°, ∵DE=CE=2,∴△DEC 为等边三角形, ∴CD=2.∴四边形ABCD 的周长是:AB+BC+AD+CD=2+5+3+2=10+2, 故答案为:10+2.根据题意和函数图象中的数据,可以得到AB 、BC 、AD 的长,再根据平行线的性质和图形中的数据可以得到CD 的长,从而可以求得四边形ABCD 的周长. 本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答. 17.【答案】解:原式=2−1+2×12,=2-1+1, =2. 【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:xx +1=2, 去分母,得x =2(x +1), 去括号,得x =2x +2, 解得x =-2经检验,x =-2是原方程的解. 【解析】根据题意得出分式方程解答即可. 此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB 和△DEC 中, ∵{xx =xx∠xxx =∠xxx xx =xx ∴△AEB ≌△DEC ,∴∠B =∠C . 【解析】根据AE=DE ,∠AEB=∠DEC ,BE=CE ,证出△AEB ≌△DEC ,即可得出∠B=∠C . 此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.20.【答案】解:原式=(x −1)2(x +1)(x −1)÷x (x −1)x +1, =(x −1)(x +1)×x +1x (x −1), =1x .【解析】首先将分式的分子与分母分解因式,进而约分得出答案. 此题主要考查了分式的乘除运算,正确分解因式是解题关键. 21.【答案】解:(1)∵点P (-1,a )在直线l 2:y =2x +4上, ∴2×(-1)+4=a ,即a =2, 则P 的坐标为(-1,2),设直线l 1的解析式为:y =kx +b (k ≠0), 那么{−x +x =2x +x =0,解得:{x =1x =−1.∴l 1的解析式为:y =-x +1.(2)∵直线l 1与y 轴相交于点C , ∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB =3, 而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =12×3×2−12×1×1=52.【解析】 (1)由点P (-1,a )在直线l 2上,利用一次函数图象上点的坐标特征,即可求出a 值,再利用点P 的坐标和点B 的坐标可求直线l 1的解析式; (2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题. 22.【答案】40 40 27 【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人) 女生:1+1+2+3+11++13+7+1+1=40(人) 故答案为40,40;(2)女生成绩27的人数最多,所以众数为27, 故答案为27; (3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人); (2)女生成绩27的人数最多,所以众数为27; (3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k +4)2-16k =k 2-8k +16=(k -4)2≥0, ∴无论k 为任何实数时,此方程总有两个实数根; (2)解:由题意得:x 1+x 2=k +4,x 1•x 2=4k , ∵1x 1+1x 2=34,∴x 1+x 2x1⋅x 2=34, 即x +44x =34,解得:k =2;(3)解:解方程x 2-(k +4)x +4k =0得:x 1=4,x 2=k , 根据题意得:42+k 2=52,即k =3,设直角三角形ABC 的内切圆半径为r ,如图, 由切线长定理可得:(3-r )+(4-r )=5, ∴直角三角形ABC 的内切圆半径r =3+4−52=1.【解析】(1)根据根的判别式△=(k+4)2-16k=k 2-8k+16=(k-4)2≥0,即可得到结论; (2)由题意得到x 1+x 2=k+4,x 1•x 2=4k ,代入,解方程即可得到结论;(3)解方程x 2-(k+4)x+4k=0得到x 1=4,x 2=k ,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC 的内切圆半径为r ,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键. 24.【答案】(1)证明:如图,连结OB ,则OP =OB , ∴∠OBP =∠OPB =∠CPA , AB =AC ,∴∠ACB =∠ABC ,而OA ⊥l ,即∠OAC =90°, ∴∠ACB +∠CPA =90°, 即∠ABP +∠OBP =90°, ∴∠ABO =90°, OB ⊥AB ,故AB 是⊙O 的切线;(2)解:由(1)知:∠ABO =90°, 而OA =5,OB =OP =3,由勾股定理,得:AB =4,过O 作OD ⊥PB 于D ,则PD =DB ,∵∠OPD =∠CPA ,∠ODP =∠CAP =90°,∴△ODP ∽△CAP , ∴xx xx =xx xx ,又∵AC =AB =4,AP =OA -OP =2, ∴xx =√xx 2+xx 2=2√5, ∴xx =xx ⋅xx xx=35√5, ∴xx =2xx =65√5.【解析】 (1)连接OB ,由AB=AC 得∠ABC=∠ACB ,由OP=OB 得∠OPB=∠OBP ,由OA ⊥l 得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP ,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB 是⊙O 的切线; (2)根据勾股定理求得AB=4,PC=2,过O 作OD ⊥PB 于D ,则PD=DB ,通过证得△ODP ∽△CAP ,得到,求得PD ,即可求得PB .本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G 是△ABC 重心, ∴xxxx =12, 又∵EF ∥BC ,∴xxxx =xxxx =12,xxxx =xxxx =12, 则xxxx +xxxx =12+12=1;(2)解:(1)中结论成立,理由如下:如图2,过点A 作AN ∥BC 交EF 的延长线于点N ,FE 、CB 的延长线相交于点M , 则△BME ∽△ANE ,△CMF ∽△ANF , xx xx =xx xx ,xx xx =xxxx , ∴xx xx +xx xx =xx xx +xx xx =xx +xxxx , 又∵BM +CM =BM +CD +DM ,而D 是BC 的中点,即BD =CD , ∴BM +CM =BM +BD +DM =DM +DM =2DM , ∴xxxx +xxxx =2xxxx , 又∵xxxx =xxxx =12, ∴xxxx +xxxx =2×12=1,故结论成立;(3)解:(1)中结论不成立,理由如下: 当F 点与C 点重合时,E 为AB 中点,BE =AE , 点F 在AC 的延长线上时,BE >AE ,∴xxxx >1,则xxxx+xxxx>1,同理:当点E在AB的延长线上时,xxxx +xxxx>1,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵xxx∠xxx=xxxx =32,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a(x+2)(x-6)得:x=−14,抛物线解析式为:x=−14(x+2)(x−6);整理得:y=-14x2+x+3故抛物线解析式为:得:y=-14x2+x+3;(2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P点坐标为(2,m)(其中0≤m≤4),则PC2=22+(m-3)2,PQ2=m2+(n-2)2,CQ2=32+n2,∵PQ⊥PC,∴在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,即22+(m-3)2+m2+(n-2)2=32+n2,整理得:x=12(x2−3x+4)=12(x−32)2+78(0≤m≤4),∴当x=32时,n取得最小值为78;当m=4时,n取得最大值为4,所以,78≤x≤4;②由①知:当n取最大值4时,m=4,∴P(2,4),Q(4,0),则xx=√5,xx=2√5,CQ=5,设点P到线段CQ距离为h,由x△xxx=12xx⋅x=12xx⋅xx,得:x=xx⋅xxxx=2,故点P到线段CQ距离为2;③由②可知:当n取最大值4时,Q(4,0),∴线段CQ的解析式为:x=−34x+3,设线段CQ 向上平移t 个单位长度后的解析式为:x =−34x +3+x ,当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点,此时对应的点Q '的纵坐标为:−14(4+2)(4−6)=3, 将Q '(4,3)代入x =−34x +3+x 得:t =3,当线段CQ 继续向上平移,线段CQ 与抛物线只有一个交点时,联解{x =−14(x +2)(x −6)x =−34x +3+x得:−14(x +2)(x −6)=−34x +3+x ,化简得:x 2-7x +4t =0,由△=49-16t =0,得x =4916,∴当线段CQ 与抛物线有两个交点时,3≤x<4916. 【解析】(1)由函数解析式,可以求出点A 、B 的坐标分别为(-2,0),(6,0),在Rt △OAC 中由tan ∠CAB=,可以求出点C 的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M (2,4),在Rt △PCQ 中,由勾股定理得:PC 2+PQ 2=CQ 2,把三角形三边长用点P ,Q 的坐标表达出来,整理得:,利用0≤m≤4,求出n 的取值范围;②由,得:,求出点P 到线段CQ 距离为2;③设线段CQ 向上平移t 个单位长度后的解析式为:,联立抛物线方程,可求出x 2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ 与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。
2011成都中考数学试题及答案2011年成都中考数学试题及答案一、选择题1. 求解等式:2x - 5 = x - 1。
A. x = 2B. x = 4C. x = 3D. x = 6答案:C. x = 32. 下列选项中,哪一个是方程x + 4 = 15的解?A. -5B. 0C. 11D. 11/2答案:C. 113. 若a = -2,则方程x + a = -3的解是:A. -5B. -4C. 1D. -1/2答案:D. -1/24. 设x = 2时,y = 3;则y = kx的k等于:A. 6B. 3C. 1/2D. -1答案:B. 35. 右图中,画的是函数y = kx的图象。
则k等于:A. 5B. 1C. -2D. 0答案:A. 5二、填空题1. 计算:2 + (-8) + (-2) + 5 = _____答案:-32. 计算:43 - 15 - (-5) = _____答案:333. 计算:(-3) × (-5) ÷ 3 = _____答案:54. 若x = -4,则x² + 3x - 10 = _____答案:185. 若x = 2,则(x - 3)² = _____答案:1三、解答题1. 某书店卖出一本书获利5元,如果把书的售价提高10元,那么获利将提高到6元。
原来这本书的售价是多少元?解:设原售价为x元,根据题意可得方程:(x + 10) - x = 6 - 510 = 1由此可知,无论原售价为多少,无法满足题意。
因此,无解。
2. 解方程2x + 3 = -5x + 9。
解:将方程移项得:2x + 5x = 9 - 37x = 6将x的系数移动到一边后,得到:x = 6/7所以方程的解为x = 6/7。
3. 若x² + kx + 3 = 0的一个解为x = 2,则k的值是多少?解:将x = 2代入方程,得到:2² + 2k + 3 = 04 + 2k + 3 = 02k + 7 = 02k = -7k = -7/2所以k的值为-7/2。
乐山市XXXX中考数学试题及答案(word版)乐山XXXX高中招生统考数学第一部分(选择题30分)1、选择题:共10题,30分,四分之一1-5的倒数是11a-5b。
-c.5d.55(b) 2。
大佛XXXX五月最高气温分别为29,31,23,26,29,29,29这组数据的范围是a29 b . 28 C . 8d . 6 (C)3。
如图1所示,直线a//b,a . 390 b . 410 c . 490d . 590(d)4。
如果a>b,那么下面的不等式变形误差是..aba.a+1 > b+1b。
> c . 3a-4 > 3 b-4d . 4-3a > 4-3b22(d)5。
如图2所示,点e是平行四边形ABCD的边CD的中点。
如果AD和BE的延长线在点f相交,df = 3且de = 2,则平行四边形ABCD 的周长为a . 5b . 7c . 10d . 14(a)6。
如图3所示,在平面直角坐标系中,点P(3,M)是的第一象限中的一点,OP与x轴正半轴之间的角度α的正切值为4 ,则sinα的值为34535 a . b . c . d .5453(a)7.a和b ride众所周知,a和C之间的距离是110公里,b和c之间的距离是100公里。
骑自行车的人的平均速度比b快2公里/小时,因此,他们两人同时到达c处,并计算出他们两人的平均速度。
为了解决这个问题,假设b型自行车的平均速度是x公里/小时,方程式按标题列出,其中正确的是.. (d) 8。
三维图形的三个视图在图4中示出。
根据图中数据,该三维图形的表面积为a . 2πb . 6сc . 7сd . 8с(c)9。
如图5所示,圆的中心在y轴的负半轴上,半径为5的≧B在点A(0,1)与y轴的正半轴相交,通过点P(0,-7)的直线l在点c和d 与≧B相交,则弦长CD的所有可能的整数值为()A.1b.2 c.3 d.4 (CD = 8,9,10) 2(b) 10。
梦立方教育 第 1 页 一、选择题:本大题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个选项符合题目要求。 1. 小明家冰箱冷冻室的温度为5℃,调高4℃后的温度为 A. 4℃ B. 9℃ C. 1℃ D.9℃ 2.如图1,在4×4的正方形网格中,tanα=
A. 1 B. 2 C. 12 D. 52 3.下列函数中,自变量x的取值范围为1x的是 A. 11yx B. 11yx C. 1yx D. 11yx 4.如图2,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、BB1、BC的中点,沿EG、EF、FG将这个正方体切去一个角后,得到的几何体的俯视图是
图2 A B C D 5.将抛物线2yx向左平移2个单位后,得到的抛物线的解析式是 A. 2(2)yx B. 22yxC. 2(2)yx D. 22yx 6.如图3,CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD= A. 40° B. 60° C. 70° D. 80°
7、如图4,直角三角板ABC的斜边AB=12㎝,∠A=30°,将三角板ABC绕C顺时针旋转90°至三角板ABC的位置后,再沿CB方向向左平移,使点落在原三角板ABC的斜边AB上,则三角板平移的距离为
A. 6㎝ B. 4㎝ C. (6-23 )㎝ D. (436)㎝ 8、已知一次函数yaxb的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式(1)0axb的解集为
图3 图4
图1 梦立方教育
第 2 页 图6
图5
A. 1x B. 1x C. 1x D.1x 9.如图5,在正方形ABCD中,E、F分别是边BC、CD的中点,AE交BF于点H,CG∥AE交BF于点G。下
列结论:①tan∠HBE=cot∠HEB ② CGBFBCCF ③BH=FG ④22BCBGCFGF.其中正确的序号是 A. ①②③ B. ②③④ C. ①③④ D. ①②④
10.如图6,直线 6yx 交x轴、y轴于A、B两点,P是反比例函数4(0)yxx图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F。则AFBE A. 8 B.6 C. 4
D. 62
二、填空题:本大题共6小题,每小题3分,共18分。把答案填在题中的横线上。 11.当x= 时,112x 12.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元。则代数式50032ab表示的数为 。 13.数轴上点A、B的位置如图7所示,若点B关于点A的对称点为C,则点C表示的数为
图7 14、图8是小强同学根据乐山城区某天上午和下午四个整时点的气温绘制成的折线图。请你回答:该天上午和下午的气温哪个更稳定?
图8 答: ;理由是 。 梦立方教育 第 3 页 15.若m为正实数,且13mm,221mm则= 16、如图9,已知∠AOB=,在射线OA、OB上分别取点OA1=OB1,连结A1B1,在B1A1、B1B上分别取点A2、B2,使B1 B2= B1 A2,连结A2 B2…按此规律上去,记∠A2 B1 B2=1,∠3232ABB,…,∠n+11AnnnBB
则(1)1= ; n= 。
图9 图10 三、本大题共3小题,每小题9分,共27分。 17.计算:131|2|()12cos303
18.如图10,在直角△ABC中,∠C=90,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数。
19.已知关于xy、的方程组326xyxya的解满足不等式3xy,求实数a的取值范围。
四、本大题共3小题,每小题10分,共30分。 20.如图11,E、F分别是矩形ABCD的对角线AC和BD上的点,且AE=DF。求证:BE=CF
图11 梦立方教育 第 4 页 21.某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表: x(页) 100 200 400 1000 … y(元) 40 80 160 400 (1) 若y与x满足初中学过的某一函数关系,求函数的解析式; (2) 现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费。则乙复印社每月收费y(元)与复印页数x(页)的函数关系为 ; (3) 在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?
22、在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同。小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y。
(1)计算由x、y确定的点(x,y)在函数6yx图象上的概率;
(2)小明、小红约定做一个游戏,其规则是:若x、y满足6xy,则小明胜;若x、y满足6xy,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?
五、本大题共2小题,每小题10分,共20分,其中第23题为选做题 23.选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分。
题甲:已知关于x的方程222(1)740xaxaa的两根为1x、2x,且满足12123320xxxx.
求242(1)4aaa的值。
题乙:如图12,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,AD=2,BC=BD=3,AC=4. (1) 求证:AC⊥BD (2) 求△AOB的面积 我选做的是 题 梦立方教育 第 5 页 图12 24.如图13,D为O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)求证:CD是O的切线;
(2)过点B作O的切线交CD的延长线于点E,若BC=6,tan∠CDA=23,求BE的长
图13 六、本大题共2小题,第25题12分,第26题13分,共计25分 25.如图(1),在直角△ABC中, ∠ACB=90,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若AC=mBC,CE=nEA(m,n为实数). 试探究线段EF与EG的数量关系.
(1) 如图(2),当m=1,n=1时,EF与EG的数量关系是 证明: (2) 如图(3),当m=1,n为任意实数时,EF与EG的数量关系是 证明 (3) 如图(1),当m,n均为任意实数时,EF与EG的数量关系是 (写出关系式,不必证明) 梦立方教育 第 6 页 26.已知顶点为A(1,5)的抛物线2yaxbxc经过点B(5,1). (1)求抛物线的解析式; (2)如图(1),设C,D分别是x轴、y轴上的两个动点,求四边形ABCD周长的最小值;
(3)在(2)中,当四边形ABCD的周长最小时,作直线CD.设点P(xy,)(0x)是直线yx上的一个动点,Q是OP的中点,以PQ为斜边按图(2)所示构造等腰直角三角形PRQ. ①当△PBR与直线CD有公共点时,求x的取值范围; ②在①的条件下,记△PBR与△COD的公共部分的面积为S.求S关于x的函数关系式,并求S的最大值。
梦立方教育
第 7 页 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 C B D B A C C A D A
二、填空题 注:第14题第一空1分,第二空2分,第16题第一空1分,第二空2分. 11. 3 12. 体育委员买了3个足球、2个篮球,剩余的经费 13. 5 14. 下午,因为上午的方差大于下午的方差(或标准差)
15. 313 16. (1)1802 (2) (21)1802nn 18. 解:∵DE垂直平分AB,∴∠DAE=∠B, ∵在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,
∴∠DAE=12(90°-∠B)=∠B,∴3∠B=90°, ∴∠B=30°.答:若DE垂直平分AB,∠B的度数为30°. 19. 解:两式相加得,363xa解得21xa
错误!未找到引用源。将21xa代入,求得:22ya∵3xy ∴21223aa即44a,∴1a。 三、解答题 20. 证明:∵E、F分别是矩形ABCD的对角线AC和BD上的点,AE=DF, ∴EO=FO,BO=CO,∠BOE=∠COF,∴△BOE≌△COF,∴BE=CF.
21. 解:(1)设解析式为ykxb,∴1004020080kbkb 解得0.40kb
∴0.4yx; (2)乙复印社每月收费y(元)与复印页数x(页)的函数关系为:0.15200yx. (3)作图如下,由图形可知每月复印页数在1200左右应选择乙复印社.
22. 解:(1)画树形图: 所以共有12个点:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),
其中满足6yx的点有(2,4),(4,2),