八年级下册数学分式方程应用题及答案
- 格式:doc
- 大小:875.50 KB
- 文档页数:8
初二数学分式方程应用题50题1. 一桶水5天可以完全蒸发,如果蒸发速度增加20%,几天可以蒸发完?2. 一辆汽车以每小时60千米的速度行驶,行驶了一定时间后,速度减半,继续行驶同样的距离需要多长时间?3. 一个长方形的花园,长是宽的2倍,如果宽是x米,求花园的面积。
4. 甲乙两人共同完成一项工作,甲单独做需要4天,乙单独做需要6天,两人合作需要多少天?5. 一家电器店购入一批电视机,每台成本2000元,售价2500元,如果卖出了1/4的电视机,求老板的利润。
6. 一个农场有鸡和鸭共100只,鸡的数量是鸭的3倍,求农场里鸡和鸭各有多少只?7. 甲乙两辆汽车从相距360千米的两地同时出发相向而行,甲的速度是每小时60千米,乙的速度是每小时80千米,求两车相遇需要多少时间?8. 一个水池的容量是1200升,每天注入水100升,每天蒸发水40升,求几天后水池的容量是1500升?9. 甲乙两人共同完成一项工作,甲单独做需要5天,乙单独做需要7天,求甲乙合作每天完成工作的几分之几?10. 一个班级有男生和女生共60人,女生是男生的2/3,求女生有多少人?11. 一辆汽车以每小时80千米的速度行驶,行驶了x小时后,速度减少到每小时60千米,再行驶了2小时,求汽车总共行驶了多少千米?12. 一家工厂生产一批产品,每件成本100元,如果售价是每件150元,工厂卖出了300件,求工厂的利润总额。
13. 一个长方形的花园,长比宽多10米,如果宽是x米,求花园的周长。
14. 甲乙两辆火车从相距480千米的两地同时出发相向而行,甲的速度是每小时100千米,乙的速度是每小时120千米,求两火车相遇需要多少时间?15. 一个水池容量是V升,每天注入的水量是a升,蒸发的水量是b升,求几天后水池剩余的水量。
16. 甲乙两人共同完成一项工作,甲单独做需要8天,乙单独做需要10天,求甲乙合作完成工作的效率。
17. 一辆汽车以每小时100千米的速度行驶,行驶了t小时后,速度减少到每小时80千米,再行驶了t小时,求汽车总共行驶的距离。
分式方程应用题训练(有答案)1.(2018•昆明)甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A. =B. =C. =D. =2.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100 B.﹣=100C.﹣=100 D.﹣=1003.(2018•黑龙江)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠24(2018•衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10 B.﹣=10C.﹣=10 D. +=105.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.26.(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A. =B. =C. =D. =7.(2018•黔南州)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=28(2018•淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.9.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.10(2018•齐齐哈尔)若关于x的方程+=无解,则m的值为.11.(2018•嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检测x个,则根据题意,可列出方程:1至11题答案:1A 2B 3.D 4A 5C 6A 7A 8C 9.410.﹣1或5或﹣11. =×(1﹣10%)行程12.(2018•徐州)从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10:7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?解:设A车的平均速度为10xkm/h,则B车的平均速度为7xkm/h,根据题意得:﹣=1,解得:x=15,经检验,x=15是分式方程的根,∴10x=150,7x=105.答:A车的平均速度为150km/h,B车的平均速度为105km/h.行程13. (2018•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.13.解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/行程14.某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?14.解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:﹣=,解得:x=12,经检验,x=12是原分式方程的解,∴3x=36.答:自行车的速度是12km/h,公共汽车的速度是36km/h.行程15.(2018•山西)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.15解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得: =+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.行程.16.“2017年张学友演唱会”于6月3日在我市观山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.17.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,AC=5cm.点D在AC上,AD=1,点P 从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为x cm/s(用含x的代数式表示).(2)求点P原来的速度.解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),答:点P原来的速度为cm/s.任务.18. (2018•桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天解:(1)设二号施工队单独施工需要x天,根据题意得: +=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.任务19.(2018•岳阳)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=600.答:实际平均每天施工600平方米.任务20.(2018•威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件利润21.(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.利润.22.(2018•宁波)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得, =,解得 x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得 a≥20.答:甲种商品按原销售单价至少销售20件.与方程结合23.(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得: =,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.与不等式结合24.(2018•贵阳)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.。
分式方程应用题总汇及答案1、A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,小汽车比公共汽车迟20分钟到达B地,求两车的速度。
【提示】设共交车速度为x,小汽车速度为3x,列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
如果甲工程队单独施工,那么刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,那么刚好如期完成。
问原来规定修好这条公路需多长时间?【提示】设时间为x个月,列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=13、某工人原方案在规定时间恰好加工1500个零件,改良了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原方案提前了五小时,问原方案每小时加工多少个零件?【提示】设原方案每小时加工x个零件,列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校4.5千米的敬老院清扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开场出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的1/3,求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时x千米,那么4.5/3x +0.5=4.5/x5、某质检部门抽取甲、乙两个一样数量的产品进展质量检测,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂合格率比乙厂高5%,求抽取检验的产品数量及甲厂的合格率。
【提示】设抽取检验的产品数量为x,那么(48/x -45/x)*100%=5%6、某车间加工1200个零件后,采用了新工艺,工效提高50%,这样加工同样多的零件就少用10小时,采用新工艺前后每小时分别加工多少个零件?7、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,水流速度为4千米/时,假设设该轮船在静水中的速度为x 千米/时,那么可列方程求解。
初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.【考点】1.分式方程的应用;2.一元一次不等式的应用.3.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.试题解析:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【考点】分式方程的应用.4.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?【答案】20.【解析】设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,则实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度为(1+25%)x千米/小时,根据实行潮汐车道前后的时间关系建立方程求出其解即可.试题解析:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴原分式方程的解是x=20.答:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶20千米.考点: 分式方程的应用.5. 2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?(列方程解应用题)【答案】原计划每天铺设10m管道【解析】设原计划每天铺设x米管道,根据实际施工时,每天的工效比原计划增加10%,表示出现在每天铺设的米数,根据现在比原计划提前5天,用全长除以每天铺设的米数分别表示出原计划及现在的时间,两时间相减等于5即可列出所求的方程, -=5,解方程x=10.试题解析:设原计划每天铺设xm的管道,则实际每天铺设(1+10%)xm的管道,由题意列方程:-=5,化简得1.1×550-550=5×1.1x,x =10,检验:当x=10时,1.1x≠0,∴ x=10是原方程的根,答:原计划每天铺设10m管道.【考点】由实际问题抽象出分式方程.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)甲、乙合作完成最省钱【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x的方程有正数解,则k的取值为A.k>1B.k>3C.k≠3D.k>1且k≠3【答案】D【解析】先解方程得到用含k的代数式表示x的形式,再结合方程有正数解及分式的分母不能为0求解即可.解方程得由题意得且解得且故选D.【考点】解分式方程点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.解方程:【答案】x="3"【解析】先去分母,再移项、合并同类项,化系数为1,注意解分式方程最后要写检验.经检验x=3是原方程的解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.9.某超市用5000元购进一批新品种的苹果试销,由于销售状况良好,超市决定再用11000元购进该种苹果,但这次进货价比试销时多了0.5元,购进苹果数量是试销时的两倍。
分式方程应用题1.(11·柳州)某校为了创建书香校园,去年又购进了一批图书.经了解,科普书的单价比文学书的单价多4元,用1200元购进的科普书与用800元购进的文学书本数相等.(1)求去年购进的文学羽和科普书的单价各是多少元?(2)若今年文学书和科普书的单价和去年相比保持不变,该校打算用1000元再购进一批文学书和科普书,问购进文学书55本后至多还能购进多少本科普书?2.(2011江苏徐州,22,6分)徐州至上海的铁路里程为650km。
从徐州乘“G”字头列车A、“D” 字头列车B都可直达上海,已知A车的平均速度为B车的2倍,且行驶的时间比B车少2.5h.(1)设B车的平均速度为x kn/h,根据题意,可列分式方程:;(2)求A车的平均速度及行驶时间.3.(2011辽宁本溪,21,10分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数.商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?4.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.5.(2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:(10.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。
一、选择题1.甲乙两地相距60km ,一艘轮船从甲地顺流到乙地,又从乙地立即逆流到甲地,共用8小时,已知水流速度为5km/h ,若设此轮船在静水中的速度为x km/h ,可列方程为( ) A .6060855x x +=+- B .120120855x x +=+- C .6058x += D .6060855x x +=+- 2.已知一个三角形三边的长分别为5,7,a ,且关于y 的分式方程45233y a a y y++=--的解是非负数,则符合条件的所有整数a 的和为( ) A .24 B .15 C .12 D .73.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( )A .二阶分式B .三阶分式C .四阶分式D .六阶分式6.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2 B .3 C .4 D .57.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m = 9.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .210.已知:x 是整数,12,21x x M N x +==+.设2y N M =+.则符合要求的y 的正整数值共有( )A .1个B .2个C .3个D .4个11.不改变分式的值,下列各式变形正确的是( ) A .11x x y y +=+ B .1x y x y -+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭12.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x 元,则可列出方程为( )A .420420200.5x x -=- B .420420200.5x x -=+ C .420420200.5x x -=+ D .420200.5x =- 二、填空题13.人类进入5G 时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为_____.14.关于x 的分式方程211m x =-+无解,则m 的取值是_______. 15.一艘轮船在静水中的最大航速为60km/h ,它以最大航速沿江顺流航行240km 所用时间与以最大航速逆流航行120km 所用时间相同,则江水的流速为________km/h .16.已知215a a+=,那么2421a a a =++________.17.使式子2x +有意义的x 的取值范围是______. 18.对于实数a 、b ,定义一种运算“⊗”为:2(1)a a b ab a-⊗=-有下列命题: ①1(3)3⊗-=;②a b b a ⊗=⊗;③方程1102x 的解为12x =;④若函数(2)y x =-⊗的图象经过(1,)A m -,(3,)B n 两点,则m n <,其中正确命题的序号是__.(把所有正确命题的序号都填上)19.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .20.如果方程322x m x x-=-- 无解,则m=___________. 三、解答题21.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.计算: (1)()()()3223m n m n mn ⋅-÷-; (2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦; (3)2269243a a a a a-+-⋅--. 24.(1)化简:22121a a a a a--+÷; (2)把(1)中化简的结果记作A ,将A 中的分子与分母同时加上1后得到B ,问:当1a >时,B 的值与A 的值相比变大了还是变小了?试说明理由.25.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 26.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】本题关键描述语是:“共用去8小时”.等量关系为:顺流60千米用的时间+逆流60千米用的时间=5,根据等量关系列出方程即可.【详解】 解:由题意,得:6060855x x +=+-, 故选:D .【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度. 2.B解析:B【分析】根据三角形的三边关系确定a 的取值范围,再根据分式方程的解是非负数确定a 的取值范围,从而求出符合条件的所有整数即可得结论.【详解】 解:45233y a a y y++=-- 去分母得:4526y a a y +-=-移项得:6y a -=-+∴6y a =-∵分式方程的解为非负数,∴60a -≥∴6a ≤,且a≠3∵三角形的三边为:5,7,a ,∴212a <<∴26a <≤,又∵a≠3,且为整数,∴a 可取4,5,6,和为15.故选:B.【点睛】本题考查了三角形的三边关系、分式方程的解,解决本题的关键是根据不等式(组)解集,求出不等式(组)的整数解.3.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x, 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.6.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.7.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.10.C解析:C【分析】先求出y 的值,再根据x ,y 是整数,得出x +1的取值,然后进行讨论,即可得出y 的正整数值.【详解】解:∵12,21x x M N x +==+ ∴42222221111x x y x x x x ++=+==+++++. ∵x ,y 是整数, ∴21x +是整数, ∴x +1可以取±1,±2.当x +1=1,即x =0时2241y =+=>0; 当x +1=−1时,即x =−2时,2201y =+=-(舍去); 当x +1=2时,即x =1时,2232y =+=>0; 当x +1=−2时,即x =−3时,2212y =+=->0; 综上所述,当x 为整数时,y 的正整数值是4或3或1.故选:C .【点睛】 此题考查了分式的加减法,熟练掌握分式的加减运算法则,求出y 的值是解题的关键. 11.B解析:B【分析】根据分式的基本性质即可求出答案.【详解】解:A 、11x x y y ++≠,不符合题意; B 、=1x y x y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意; 故选:B .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 12.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可.【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x-=-. 故选:A .【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.二、填空题13.8×10-8米【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;解析:8×10-8米【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键.15.20【分析】由顺水船速=静水船速+水速逆水船速=静水船速﹣水速设未知数根据两不同航程时间相同列出方程即可求出答案【详解】解:设江水的流速为根据题意可得:解得:经检验:是原方程的根故答案为20【点睛】 解析:20【分析】由顺水船速=静水船速+水速,逆水船速=静水船速﹣水速,设未知数根据两不同航程时间相同列出方程即可求出答案.【详解】解:设江水的流速为/x km h ,根据题意可得:2401206060x x=+-, 解得:20x ,经检验:20x 是原方程的根,故答案为20.【点睛】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.16.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 17.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 18.①④【分析】根据新定义对①②直接进行判断;根据新定义得解得经检验原方程无实数解可对③进行判断;根据新定义得到然后根据一次函数的性质对④进行判断【详解】解:所以①正确;所以②不正确;由于方程所以解得经解析:①④【分析】根据新定义对①②直接进行判断;根据新定义得2111210122x x x ,解得12x =,经检验原方程无实数解,可对③进行判断;根据新定义得到922y x ,然后根据一次函数的性质对④进行判断.【详解】 解:2(11)1(3)1(3)31,所以①正确; 2(1)a a b ab a-⊗=-,2(1)b b a ab b ,所以②不正确;由于方程1102x ,所以2111210122x x x ,解得12x =,经检验原方程无实数解,所以③错误;函数2(21)9(2)2222y x x x ,因为(1,)A m -,(3,)B n 在函数922y x =-,所以m n <,所以④正确;综上所述,正确的是:①④; 故答案为①④.【点睛】本题考查了命题,新定义下实数的运算,分式方程,一次函数的性质特点,熟悉相关性质是解题的关键.19.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】 (1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.20.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题21.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】 解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++-=22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)72m n -;(2)x y +;(3)32a a --+ 【分析】(1)先根据积的乘方和幂的乘方化简原式中的各项后再进行乘除运算即可得到结果;(2)将中括号内的运用完全平方公式和平方差公式把小括号展开合并后,根据多项式除以单项式的运算法则计算出结果即可;(3)把分式中的分子与分母因式分解后约分即可得到答案.【详解】解:(1)()()()3223m n m n mn ⋅-÷- =()63322m n m n m n ⋅-÷=9422m n m n -÷=72m n -;(2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦ ()222222x xy y x y y =++-+÷()2222xy y y =+÷x y =+;(3)2269243a a a a a-+-⋅-- ()()()232223a a a a a--=⋅+-- 32a a -=-+. 【点睛】此题主要考查了整式的运算和分式的化简,熟练掌握相关运算法则是解答此题的关键. 24.(1)1a a -;(2)B 的值与A 的值相比变小了,理由见解析 【分析】(1)把除变乘,同时将除式的分子分母因式分解,约分即可;(2)由1a A a =-先求出1a B a+=,作差1(1)B A a a -=--,然后判断1(1)a a --符号即可.【详解】 解:(1)原式221(1)a a a a -=⋅-. 1a a =-; (2)B 的值与A 的值相比变小了.理由如下:1,1a a A B a a+==-.∴21(1)(1)11(1)(1)a a a a a B A a a a a a a ++---=-==----. ∵1a >,∴10a ->,∴()11a a >0-, ∴0B A -<.∴B A <.∴B 的值与A 的值相比是变小了.【点睛】本题考查分式的除法,比较分式的大小,掌握分式的除法法则,和比较分式的大小的方法是解题关键.25.原式1x=,1x =时,原式1=;或2x =时原式12=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x <3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭ =2(1)(1)11x x x x x x--++⋅+ =221x x x-+ =1x, ∵x (x+1)≠0,∴x≠0,x≠-1,∵整数x 满足-1≤x <3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键.。
初中数学分式方程的应用基础训练3(附答案详解)1.今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.2.某店准备购进A,B 两种口罩,A 种口罩毎盒的进价比B 种口罩每盒的进价多10 元,用2000 元购进A种口罩和用1500 元购进B 种口罩的数量相同.(1)A 种口罩每盒的进价和B 种口罩每盒的进价各是多少元?(2)商店计划用不超过1770 元的资金购进A,B 两种口罩共50 盒,其中A 种口罩的数量应多于B 种口罩数量,该商店有几种进货方案?3.在“情系灾区”捐款活动中,某同学对甲、乙两班情况进行统计,得到三条信息:①甲班共捐款300元,乙班共捐232元;②甲班比乙班多2人;③乙班平均每人捐款数是甲班平均每人捐款数的45;请你根据以上信息,求出甲班平均每人捐款多少元?4.李叔叔和张阿姨栽树.李叔叔栽6棵树所用的时间与张阿姨栽5棵树所用的时间相同,已知李叔叔比张阿姨平均每天多栽20棵树.(1)求李叔叔平均每天栽树的棵数;(2)由李叔叔和张阿姨同时栽树1540棵,要几天完成?5.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工300个零件所用的时间与乙加工250个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?6.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,•服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?7.在渡江战役胜利70周年之际,合肥市某中学组织九年级学生参观位于市郊的渡江战役纪念馆,全年级从学校同时出发,男生步行,女生骑车,已知骑行的平均速度是步行平均速度的2.5倍,该中学到纪念馆的路程为8千米,结果女生比男生提前40分钟到达,求男生步行的速度.8.某学校举行“青春心向党建功新时代”演讲比赛活动,准备购买甲、乙两种奖品,小昆发现用480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等,已知甲种奖品的单价比乙种奖品的单价多10元.(1)求甲、乙两种奖品的单价各是多少元?(2)如果需要购买甲乙两种奖品共100个,且甲种奖品的数目不低于乙种奖品数目的2倍,问购买多少个甲种奖品,才使得总购买费用最少?9.文昌西路改建工程指挥部要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断,并说明理由.10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.⑴求购进一件甲种礼品、一件乙种礼品各需多少元;⑵元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了20%,一件乙种礼品价格比第一次购进时降低了5元.如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最少可购进多少件甲种礼品?12.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用5天;③若甲乙两队合作4天,余下的工程由乙队单独也正好如期完成.(1)甲、乙单独完成各需要多少天?(2)在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?13.“村村通公路政策,是近年来国家构建和谐社会,支持新农村建设的一项重大公共决策,是一项民心工程,惠民工程某镇政府准备向甲、乙两个工程队发包一段“村村通”工程建设项目,经调查:甲、乙两队单独完成该工程,乙队所需时间是甲队的2倍;甲、乙两队共同完成该工程需30天;若甲队每天所需劳务费用为2400元,乙队每天所需劳务费用为1500元,从节约资金的角度考虑,应选择哪个工程队更合算?14.某市为了美化环境,计划在一定的时间内完成绿化面积40万亩的任务.后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前2年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多3万亩,求原计划平均每年的绿化面积.15.在创建文明城市的进程中.某市为美化城市环境,计划种植树木6000棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前5天完成任务,求原计划每天植树的棵数.16.为迎接2019年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为22400m 运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面400m的改造时,甲队比乙积是乙队每天能改造面积的2倍,并且在独立完成面积为2队少用4天.(1)求甲、乙两工程队每天能完成塑胶改造的面积;(2)设甲工程队施工x天,乙工程队施工y天,刚好完成改造任务,求y与x的函数解析式;(3)若甲队每天改造费用是0.55万元,乙队每天改造费用是0.2万元,且甲、乙两队施工的总天数不超过30天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.17.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?18.徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐徐州号高铁A与复兴号高铁B前往北京.已知A车的平均速度比B车的平均速度慢70km/n,A车的行驶时间比B车的行驶时间多25%,两车的行驶时间分别为多少?19.某服装厂接到一份加工3000件校服的订单.在实际生产之前,接到学校要求需提前供货.该服装厂决定提高加工效率,实际每天加工的件数是原计划的1.2倍,结果提前5天完工,求原计划每天加工校服的件数.20.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.21.2018年,某县为改善环境,方便居民出行,进行了路面硬化,计划经过几个月使城区路面硬化面积新增400万平方米.工程开始后,实际每个月路面硬化面积是原计划的2倍,这样可提前5个月完成任务.(1) 求实际每个月路面硬化面积为多少万平方米?(2) 工程开始2个月后,随着冬季来临,气温下降,县委、县政府决定继续加快路面硬化速度,要求余下工程不超过2个月完成,那么实际平均每个月路面硬化面积至少还要增加多少万平方米?22.为了加快城镇化建设,某镇对一条道路进行改造,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作施工y天,完成此项工程,试用含a的代数式表示y;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?23.合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?24.某商厦进货员预测一种应季衬衫能畅销市场,试用10000元购进这种衬衫,面市后果然供不应求.于是,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元.求这种衬衫原进价为每件多少元?25.我市为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作8天后,余下的工程由甲工程队单独来做还需3天完成.(1)问我市要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资2万元.两个工程队在完成这项工程后,共获得工程工资款总额65万元,请问该工程甲、乙两工程队各做了多少天?26.列方程解应用题.2019年9月25日,被誉为“世界新七大奇迹”之首的北京大兴国际机场正式投运.某校组织初二年级同学到距学校30公里的北京大兴国际机场进行参观.同学们乘坐大巴车前往,张老师因学校有事晚出发了5分钟,开私家车沿相同路线行进,结果和同学们同时到达.已知私家车的速度是大巴车速度的1.2倍.求大巴车的速度是多少?27.书店老板去图书批发市场购买某种图书,第一次用1200 元购买若干本,按每本10 元出售,很快售完.第二次购买时,每本书的进价比第一次提高了20%,他用1500 元所购买的数量比第一次多10 本.(1)求第一次购买的图书,每本进价多少元?(2)第二次购买的图书,按每本10 元售出200 本时,出现滞销,剩下的图书降价后全部售出,要使这两次销售的总利润不低于2100 元,每本至多降价多少元?(利润=销售收入一进价)28.4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.(1)求甲、乙两种图书的单价各是多少元?(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?29.六•一前夕某幼儿园园长到厂家选购A、B两种品牌的儿童服装每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍,求A、B两种品牌服装每套进价分别为多少元?30.为支援困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?31.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?32.学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?33.某县冬季流感严重,学生感染较多,造成不少学校放假,为了预防流感,县教体局要求各校进行防控.某学校计划利用周末将教室及公共环境进行“喷药消毒”,现有甲、乙两位老师主动承接该工作,若甲、乙两老师合作6小时可以完成全部工作;若甲老师单独做4小时后,剩下的乙老师单独做还需9小时完成.求甲、乙两老师单独完成该工作各需多少小时?34.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)35.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B种图书25本,共花费多少元?36.(列分式方程解应用题)为加快西部大开发,某自治区决定新修一条公路,甲.乙两工程队承包此项工程,若甲工程队单独施工,则刚好如期完成;若乙工程队单独施工就要超过3个月才能完成,现甲乙两队先共同施工2个月,剩下的由乙队单独施工,则刚好如期完成.问:原来规定修好这条公路需多长时间?解:设原来规定修好这条公路需要x个月,设工程总量为1.37.某中学为了创建书香校园,去年购买了一批图书,其中科普书的单价比文学书的单价多4元,用1200元购买的科普书与用800元购买的文学书数量相等.(1)求去年购买的文学书和科普书的单价各是多少元?(2)若今年文学书的单价比去年提高了25%,科普书的单价与去年相同,这所中学今年计划再购买文学书和科普书共200本,且购买文学书和科普书的总费用不超过2135元,这所中学今年至少要购买多少本文学书?38.为响应低碳号召,张老师上班的交通工具由自驾车改为骑自行车,张老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以张老师每天比原来早出发23小时,才能按原来时间到校,张老师骑自行车每小时走多少千米?39.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?40.制文中学2019年秋季在政大商场购进了A、B两种品牌的冰鞋,购买A品牌冰鞋花费了8000元,购买B品牌冰鞋花费了6000元,且购买A品牌冰鞋的数量是购买B品牌冰鞋数量的2倍,已知购买一双B品牌冰鞋比购买一双A品牌冰鞋多花100元.(1)求购买一双A品牌,一双B品牌的冰鞋各需多少元?(2)为开展好“冰雪进校园”活动,制文中学决定再次购买两种品牌冰鞋共50双,如果这所中学这次购买A、B两种品牌冰鞋的总费用不超过13100元,那么制文中学最多购买多少双B品牌冰鞋?参考答案1.环卫局每个月实际改造类垃圾箱房2250个.【解析】【分析】设原计划每个月改造垃圾房x 万个,然后根据题意列出分式方程,解方程即可得出答案.【详解】设原计划每个月改造垃圾房x 万个,则实际每月改造()0.025x +万个.1.8 1.810.025x x -=+. 化简得:2200590x x +-=. 解得:115x =,2940x =-. 经检验:115x =,2940x =-是原方程的解. 其中115x =符合题意,2940x =-不符合题意舍去. 10.0250.2255+=万个,即2250个. 答:环卫局每个月实际改造类垃圾箱房2250个.【点睛】本题主要考查分式方程的应用,能够根据题意列出分式方程是解题的关键.2.(1)A 种口罩每盒的进价为40元,B 种口罩每盒的进价是30元;(2)该商店有2种进货方案【解析】【分析】(1)设A 种口罩每盒的进价为x 元,则B 种口罩每盒的进价是(10x -)元,由题意得出关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A 种口罩a 盒,则购进B 种口罩(50a -)盒,由题意得关于a 的不等式组,解得a 的取值范围,再取整数解,则方案数可得.【详解】 (1)设A 种口罩每盒的进价为x 元,则B 种口罩每盒的进价是(10x -)元,由题意得:2000150010x x =-, 解得:40x =,经检验,40x =是原方程的解,且符合实际意义,401030-=(元),答:A 种口罩每盒的进价为40元,B 种口罩每盒的进价是30元;(2)设购进A 种口罩a 盒,则购进B 种口罩(50a -)盒,由题意得:()403050177050a a a a ⎧+-≤⎨>-⎩, 解得:2527a <≤,∵a 取整数,∴a 可为26,27,答:该商店有2种进货方案.【点睛】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.3.甲班平均每人捐款5元.【解析】【分析】设甲班有x 人,根据乙班平均每人捐款数是甲班平均每人捐款数的45列出方程求解. 【详解】解:设甲班有x 人,由题意得,,解得,x =60, 经检验x =60是原方程的解,∴x =60.∴甲班平均每人捐款数为元.答:甲班平均每人捐款5元.【点睛】本题考查了分式方程的应用,仔细审题,找出列方程所需的等量关系是解答本题的关键,解分式方程要注意验根.4.(1)李叔叔平均每天栽树120棵;(2)由李叔叔和张阿姨同时栽树1540棵,要7天完成.【解析】【分析】(1)设李叔叔平均每天栽树x 棵,则张阿姨平均每天栽树(20x -)棵,根据题意列出方程,求出方程的解即可得到结果;(2)由第一问求出的李叔叔平均每天栽树的棵数,得到张阿姨平均每天栽树的棵数,根据工作总量除以工作效率=工作时间,求出即可.【详解】(1)设李叔叔平均每天栽树x 棵,则张阿姨平均每天栽树(20x ﹣)棵, 根据题意得:6520x x =-, 解得:x =120,经检验,x =120是原分式方程的解.答:李叔叔平均每天栽树120棵;(2)1540÷(120+100)=7(天).答:由李叔叔和张阿姨同时栽树1540棵,要7天完成.【点睛】本题考查了分式方程的应用,弄清题意是解本题的关键.5.甲每小时加工60个零件,乙每小时加工50个零件.【解析】【分析】甲加工300个零件所用的时间与乙加工250个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.【详解】解:设乙每小时加工机器零件x 个,则甲每小时加工机器零件()10x +个, 根据题意得:30025010x x=+, 解得50x =,经检验,50x=是原方程的解.10501060x+=+=.答:甲每小时加工60个零件,乙每小时加工50个零件.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系列出方程是解决问题的关键.6.(1)该服装店第一次购买了此种服装30件;(2)868元【解析】【分析】(1)设该服装店第一次购买了此种服装x件,根据“第二次比第一次进价多5元的价格购进服装”列出分式方程即可求出结论;(2)根据“总利润=总售价-总成本”即可求出结论.【详解】解:(1)设该服装店第一次购买了此种服装x件,则第二次购买了此种服装2x件根据题意可得22209605 2-= x x解得:x=30经检验:x=30是原方程的解答:该服装店第一次购买了此种服装30件.(2)第二次购买了此种服装30×2=60件46×(30+60-20)+46×90%×20-960-2220=868(元)答:两次出售服装共盈利868元.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.7.男生步行的平均速度为7.2千米/小时.【解析】【分析】设男生步行的速度为x千米/小时,则女生骑车的速度为2.5x千米/小时,根据时间=路程÷速度结合女生比男生提前40分钟到达,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设男生步行的平均速度为x 千米/小时,则女生骑行的平均速度为2.5x 千米/小时 由题意得,8822.53x x -= 解得,7.2x =经检验,7.2x =是原方程的根,并且符合题意答:男生步行的平均速度为7.2千米/小时【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.8.(1) 甲种奖品的单价为40元,乙种奖品的单价为30元;(2)购买甲种奖品67个时,总费用最少【解析】【分析】(1)设甲种奖品的单价为x 元,则乙种奖品的单价为()10x -元,利用“480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等”为等量关系列方程求解即可;(2)设购买甲种奖品m 个,则购买乙种奖品()100m -个,购买奖品的总费用为w 元,由甲种奖品的数目不低于乙种奖品数目的2倍可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,根据总价=单价×数量可得出w 关于m 的一次函数关系式,再利用一次函数的性质即可解决最值问题.【详解】(1)设甲种奖品的单价为x 元,则乙种奖品的单价为()10x -元. 由题意得48036010x x =-, 解得40x =,经检验得40x =是原方程的解,∴1030x -=,答:甲种奖品的单价为40元,乙种奖品的单价为30元;(2)设购买甲种奖品m 个,则购买乙种奖品()100m -个,。
增长率问题公式:2(1)a x b ±=其中a 为初始值即变化前值,b 为变化后值,x 为增长率或者降低率.【例1】一种药品经过两次降价后,每盒的价格从原来的60元降到现在的48.6元,设平均每次的降低率是x 元,则可以列方程:_____________,降低率是________. 【答案】()260148.6x -=,10%.【解析】设平均每次的降低率为x ,依题意可得:()260148.6x -=,解得:10.1x =,2 1.9x =(舍),即得降低率是10%.列方程解应用题知识结构例题解析知识精讲模块一:增长(降低)率【总结】考查降低(增长)率问题的应用.【例2】某公司2014年各项经营收入中,经营电脑配件收入为500万元,占全部经营总收入的13,该公司预计2016年经营总收入达到2160万元,求从2014年到2016年每年经营总收入的平均年增长率.【答案】()2150012160x +=,20%.【解析】设从2014年到2016年每年经营总收入的平均年增长率为x ,依题意可得: ()2150012160x +=,解得:10.2x =,2 2.2x =-(舍),即得平均增长率是20%. 【总结】考查降低(增长)率问题的应用.【例3】一辆汽车,新车的购买价是20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后的价值是 11.56万元,求这辆车第二、三年的折旧率. 【答案】15%.【解析】设这辆车第二、三年的折旧率为x ,依题意可得:()()220120%111.56x --=, 解得:10.15x =,2 1.85x =(舍),即得这辆车第二、三年的折旧率是15%. 【总结】考查降低(增长)率问题的应用.【例4】某工厂甲、乙两个车间在6月份共生产231台仪器,每个车间都比上月增产,且增产的百分率相同,已知甲车间上个月月产量不少于100台,6月份比上个月增产5台,乙车间上月生产120台.问:甲车间上月生产多少台?6月份每个车间增产的百分率是多少? 【答案】甲车间上月生产100台,增产百分率是5% 【解析】设甲车间上月生产x 台,则6月份生产()5x +台,依题意可得:551201231x x ⎛⎫+++= ⎪⎝⎭,整理得21066000x x -+=,解得:1100x =,26x =(舍),即得甲车间上月生产100台,每个车间增产百分率为5100%5%100⨯=. 【总结】考查降低(增长)率问题的应用.【例5】某农户种植花生,原来种植的亩产量为200千克,出油率为50%,现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量增长率的12,求新产品花生亩产量的增长率? 【答案】20%.【解析】设新产品花生亩产量的增长率x ,则出油率增长率为12x ,依题意可得:()1200150%11322x x ⎛⎫+⨯+= ⎪⎝⎭,整理得22575160x x +-=,解得:10.2x =,2 3.2x =-(舍),即得新产品花生亩产量增长率是20%. 【总结】考查降低(增长)率问题的应用.【例6】某工厂今年头三个月生产甲、乙两种产品,已知甲种产品1月份生产16件,以后每月比上月增长相同的百分率;乙种产品每月比上月增产10件.又知2月份的甲、乙两种产品的产量之比为2:3,且3月份的两种产品的产量之和为65件,求甲种产品每月的增长率和乙种产品1月份的产量.【答案】甲产品每月产量增长率是25%,乙产品1月份的产量为20件.【解析】设甲种产品每月的增长率为x ,则甲2月份的产量为()161x +,3月份的产量为()2161x +,则乙3月份产量为()265161x -+,2月份的产量为()26516110x -+-,依题意可得:()()2161:65161102:3x x ⎡⎤+-+-=⎣⎦,整理得21656150x x +-=,解得:10.25x =,2 3.75x =-(舍),即得甲产品每月产量增长率是25%, 乙产品1月份的产量为()26516125%101020-⨯+--=件. 【总结】考查降低(增长)率问题的应用,注意各个月份产量的表示.工作效率问题:工作总量=工作效率⨯工作时间; 假设工作总量是1,则工作效率是1工作时间.【例7】(1)一项工程甲单独做需要a 天完成,乙单独做需要b 天完成,则甲乙合作需要_____天完成;(2)甲、乙两个工程队合作修筑一条通道,已知甲工程队比乙工程队每天多修5米,甲工程队修筑80米所用的时间与乙工程队修筑70米所用的时间相同,那么甲工程队每天修________米,如果设甲工程队每天修x 米,则可列出方程__________.【答案】(1)ab a b +;(2)40,80705x x =-.【解析】(1)设工程量为1,则甲的工作效率为1a ,乙的工作效率为1b, 合作完成需要的天数为111aba ba b=++; (2)依题意可得80705x x =-,解得:40x =,经检验40x =是原方程的解,且符合题意, 故甲工程队每天修40米.【总结】考查工程问题和相应工作效率的表示,注意分式方程解完要检验.例题解析知识精讲模块二:工作效率【例8】某服装厂准备加工300套演出服,在加工了60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用了9天完成任务,求该厂原来每天加工多少套演出服. 【答案】20【解析】设该厂原来每天加工x 套演出服,依题意可得:603006092x x-+=, 解得:20x =,经检验20x =是原方程的解,且符合题意, 即该厂原来每天加工20套演出服.【总结】考查工程问题一个量作设一个量列式,注意分式方程要检验.【例9】汛期到来之前,某施工队承接了一段长300米的河提加固任务,加固80米后,接到防汛指挥部的指示,要求加快施工速度,为此施工队在保证质量的前提下,每天多加工15米,这样一共用了6天完成了任务,问接到指示后,施工队每天加固河堤多少米. 【答案】55.【解析】设指示后施工队每天加固河堤x 米,则指示前每天加工()15x -米,依题意可得:8030080615x x-+=-,解得:55x =, 经检验55x =是原方程的解,且符合题意,故接到指示后施工队每天加固河堤55米. 【总结】考查工程问题一个量作设一个量列式,注意分式方程要检验.【例10】有一项工程,甲单独做比甲、乙合作的天数多5天,如果甲、乙先合作4天,再由乙单独做3天,才能完成全部工作的一半,问甲、乙单独完成此项工程各需要多少天. 【答案】甲单独完成需要15天,乙单独完成需要30天.【解析】设甲单独完成需要x 天,则甲乙合作完成需要()5x -天,乙单独完成需要2151155x x x x -=--天,依题意可得215143552x x x ⋅+⋅=--,整理得213300x x -+=,解得:115x =,22x =-(舍),经检验均是原方程的解,但22x =-不符合题意,舍去,即甲单独完成需要15天,乙单独完成需要215515305-⨯=天. 【总结】考查工程问题一个量作设一个量列式,注意分式方程要检验.【例11】某工厂甲、乙两个车间各生产300个零件,按原来的工效,乙车间需要比甲车间多用一天的时间完成,现在甲、乙两车间都提高了工效,其中甲车间工效提高了20%,而乙车间提高了一倍,结果生产同样的300个零件,乙车间比甲车间少用了2天就可完成,问甲、乙两车间原来生产300个零件各需要多少天?【答案】甲车间原来生产300个零件需要7.5天,乙车间需要8.5天. 【解析】设甲原来需要x 天,则乙原来需要()1x +天,依题意可得:12120%2x x +-=+,解得:7.5x =,即甲车间原来生产300个零件需要7.5天,乙车间需要8.5天. 【总结】考查工程问题一个量作设一个量列式.【例12】已知甲、乙、丙三人做某项工作,甲独做所需要的时间是乙、丙两人合做这件工作的a 倍,乙独做需要的时间是甲、丙两人合做这件工作的b 倍,求丙独做所用的时间是甲、乙两人合做此工作的几倍.【答案】21a b ab ++-.【解析】设甲、乙、丙需要的工作时间分别为x ,y ,z ,依题意可得111x a y z=⋅+,111y b x z=⋅+,分别整理可得()111a x ab z +=-,()111b y ab z+=-, 相加得()1121a b x y ab z+++=-,由此得2111a b z ab x y ⎛⎫++=+ ⎪-⎝⎭.【总结】考查工程问题的应用,注意找准字母之间的关系.【例13】一个水池有甲、乙两个进水管,单独开放甲管注满水池比单独开放乙管少用10小时,如果单独开放甲管10个小时后,加入乙管,需要6个小时把水池注满,那么单独开放一个水管,需要多少小时才可以把水池注满?【答案】单独开放甲注水管需要20小时注满水池,单独开放乙注水管需要30小时注满水池.【解析】设甲需要xh ,则乙需要()10x h +,依题意可得10116110x x x ⎛⎫++= ⎪+⎝⎭,整理得2121600x x --=,解得:120x =,28x =-, 经检验均是原方程的解,但28x =-不符合题意,舍去,故单独开放甲注水管需要20小时注满水池,单独开放乙注水管需要30小时注满水池. 【总结】考查工程问题的应用,合作加独做合为单位“1”,注意分式方程要检验..单件利润=售价-成本; 总利润=单件利润⨯销售件数.【例14】某各个体户以2元/kg 的价格购进一种食品,以3元/kg 的价格出售,每天可售出200kg ,为促销,该个体户决定降价销售,经调查,这种食品每降价0.1元/kg ,每天可多售出40kg ,另外每天房租等固定成本24元,此人想每天盈利200元,应将售价降低为多少元/kg ? 【答案】应将售价降低为2.7元/千克.【解析】设应将售价降低为x 元/kg ,依题意可得:()3220040242000.1x x -⎛⎫-+⋅-= ⎪⎝⎭, 整理得2502753780x x -+=,即()()51410270x x --=,解得:1 2.7x =,2 2.8x =, 因为是促销,即应将售价每千克应降低为2.7元. 【总结】考查利润问题的应用,总利润=单个利润×总销量.例题解析知识精讲模块三:利润【例15】甲、乙两家便利店到批发站采购一批饮料,共25箱,由于两店所处的地理位置不同,因此甲店的销售价格比乙店的销售价格每箱多10元.当两店将所进的饮料全部售完后,甲店的营业额为1000元,比乙店少350元,求甲乙两店各进货多少箱饮料? 【答案】甲店进货10箱饮料,乙店进货15箱饮料. 【解析】设甲店进货x 箱饮料,则乙店进货()25x -箱饮料,依题意可得100010003501025x x+-=-,整理得226025000x x -+=, 解得:110x =,2250x =,经检验均是原方程的解,但2250x =不符合题意,舍去, 故甲店进货10箱饮料,乙店进货15箱饮料. 【总结】考查销售问题,注意对题意的准确理解.【例16】某水果店在水果批发市场用100元购进一批甲种水果,再用100元购进一批乙种水果,已知购进的乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价低 0.5元/千克.(1) 求甲乙两种水果各购进了多少千克?(2) 购进水货当天,甲乙两种水果都按照2.8元/千克出售,乙种水果很快售完,而甲种水果先售出35,剩余的按售价打5折出售,这一天的水果买卖是否赚钱?如果赚钱了,赚多少?如果不赚钱,那么赔了多少?【答案】(1)甲种水果购进40千克,乙种水果购进50千克;(2)赚了29.6元【解析】(1)设购进甲种水果x 千克,乙种水果x +10千克,由题意得1001000.510x x -=+,解得:x =40,经检验x =40是原方程的解,且符合题意,故购进甲种水果是40千克,乙种水果是40+10=50千克;(2)利润为:3250(2.82)40(2.8 2.5)40(1.4 2.5)29.6055⨯-+⨯-+⨯-=>,故赚了29.6元.【总结】本题主要考察了利润问题,找出题目中的等量关系再列方程.【例17】某中学库存960套旧课桌椅,准备修理后捐助给贫困山区学校,现在有甲乙两个木工小组都希望承揽这项业务,经协商研究得知:甲小组单独修理这批桌椅比乙小组单独修理要多用20天;乙小组每天比甲小组多修理8套;学校每天需要付甲乙小组修理费分别是80元和120元;(1) 求甲乙两个小组每天各修理课桌椅多少套?(2) 在修理桌椅的过程中,学校委派一名维修工进行质量监控,由学校每天发出10元钱作为生活补贴;现在有三种修理方案:方案一由甲单独修理;方案二由乙单独修理;方案三由甲乙共同修理;选择哪种方案,更省钱?【答案】(1)甲小组每天修理16套旧桌椅,则乙小组每天修理24套旧桌椅;(2)方案三. 【解析】(1)设甲小组每天修理x 套旧桌椅,则乙小组每天修理()8x +套旧桌椅,依题意可得960960208x x -=+,整理得283840x x +-=,解得:116x =,224x =-, 经检验均是原方程的解,但224x =-不符合题意,舍去,即得甲小组每天修理16套旧桌椅,则乙小组每天修理24套旧桌椅; (2)方案一需要的费用为(8010)960165400+⨯÷=元; 方案二需要的费用为(12010)960245200+⨯÷=元;方案三需要的费用为(8012010)960(1624)5040++⨯÷+=元,可知方案三更省钱. 【总结】考查工程问题的应用,注意分式方程要检验.行程问题中三个变量:路程、速度和时间,关系如下: 路程=速度⨯时间可以通过等式的相关计算推导出速度、和时间的相关计算公式.知识精讲模块四:行程【例18】小王从甲地到乙地需要m 分钟,若小李同时从乙地到甲地,则两人经过n 分钟相遇,则小李从乙地到甲地需要_________分钟(用含m 、n 的代数式表示).【答案】mnm n -.【解析】小李需要的分钟数为111mnm nn m=--. 【总结】考查行程问题的应用,注意平均速度的求解.【例19】甲、乙二人同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时,二人每小时各走多少米?【答案】甲每小时走6千米,乙每小时走5千米.【解析】设甲每小时走x 千米,则乙每小时走()1x -千米,依题意可得:1515112x x -=-, 整理得2300x x --=,解得:16x =,25x =-(舍), 经检验均是原方程的解,但25x =-不符合题意,故舍去, 所以甲每小时走6千米,乙每小时走5千米. 【总结】考查行程问题的应用,注意分式方程要检验..【例20】已知A 、B 两地相距125km ,甲乙两人同时A 、B 两地出发,相向而行,每走10km 甲比乙快36分钟,经5小时两人相遇,求甲乙两人的速度.【答案】甲的速度为50/3km h ,乙的速度为25/3km h .【解析】设甲的速度为/xkm h ,依题意可得1051251035x x +=+(),整理得232512500x x +-=, 解得:1503x =,225x =-,经检验均是原方程的解,但225x =-不符合题意,故舍去, 所以甲的速度为50/3km h ,乙的速度为1255025/533km h -=. 【总结】考查行程问题的应用,注意分式方程要检验.【例21】甲、乙两人分别从相距27千米的A 、B 两地同时出发,相向而行,3小时相遇,随后两人按照原来的速度继续前进,甲到达B 地比乙到达A 地少用1小时21分钟,求两人的速度.例题解析【答案】甲的速度为5/km h ,乙的速度为4/km h . 【解析】设甲的速度为/xkm h ,乙的速度为/ykm h .依题意可得()32727272720x y y x ⎧+=⎪⎨-=⎪⎩,解得:54x y =⎧⎨=⎩,经检验54x y =⎧⎨=⎩是原方程组的解,且符合题意,故甲的速度为5/km h ,乙的速度为4/km h .【总结】考查行程问题的应用,,注意分式方程组要检验..(1) 关于线段长度类问题,主要列无理方程求解; (2) 与面积相关的问题; (3) 图形中的动点问题.【例22】函数y =2x 图像上一点P 到点A (5,0)的距离是5,求点P 的坐标.【答案】()124P ,,()200P ,. 【解析】设()2P x x ,,依题意可得()()22525x x -+=,解得:12x =,20x =,经检验12x =,20x =均是原方程的解,故得()124P ,或()200P ,. 【总结】考查点坐标的求取,根据点所在的直线设点坐标,注意无理方程要验根.【例23】已知直角三角形的两条直角边的差是2cm ,它的面积是12cm 2,求这两条直角边的长. 【答案】两直角边长分别为6cm 和4cm 、【解析】设较长一边为xcm ,则另一直角边为()2x cm -,依题意可得()12122x x -=,整理得22240x x --=,解得:16x =,24x =-(舍),例题解析知识精讲模块五:几何图形即得一边长为6cm ,另一边长为624cm -=. 【总结】考查根据面积的相应表示进行列方程求解.【例24】将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度围成一个正方形,两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度,若不能,请说明理由. 【答案】不能.【解析】设一个正方形边长为xcm ,则另一个边长为()5x cm -,依题意可得()512x x -=, 方程无解,即不可能.【总结】考查面积问题的应用,一边作设,一边相应表示出来列方程求解即可.【例25】如图,笔直公路上A 、B 两点相距10千米,C 、D 为两居民区,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =6千米,CB =8千米,现要在公路AB 段上建一超市E ,使C 、D 两居民区到E 的距离相等,则超市E 应建在离A 处多远处. 【答案】离A 处处【解析】设AE xkm =,则10BE x =-,6.4x =, 经检验 6.4x =是原方程的解, 故超市应建在离A 处6.4km 处.【总结】考查根据勾股定理确定相应长度表示进行求解.ABCDE【例26】有一块长x 米,宽120米(x >120)的长方形,投资方计划将它分成甲乙丙三部分,其中甲和乙为正方形,甲为住宅区,乙为商场,丙为公司,若已知丙地的面积为3200米,求x 的值. 【答案】160或200.【解析】依题意可得()()1201201203200x x ---=⎡⎤⎣⎦,整理得2360320000x x -+=,解得:1160x =,2200x =,即x 的值为160或200. 【总结】考查根据面积的相应表示进行列方程求解.【例27】有一块长为80米,宽为50米的长方形绿地,其中有三条直路(图中的阴影部分,道路的一边AD 与长方形绿地的一边平行,且道路的出入口AB 、CD 、EF 、KI 、GH 、IJ 的长度都相等,其余部分种植绿化).已知道路的面积为352平方米,求道路出入口的边的长度【答案】2m【解析】设边的长度为xm ,依题意可得2802502352x x x +⋅-=,整理得2901760x x -+=,解得:12x =,288x =(舍), 即得路宽为2m .【总结】考查根据面积的相应表示进行列方程求解.【例28】等腰Rt △ABC 中,8 cm AB BC ==,动点P 从点A 出发,沿AB 向点B 移动.通过点P引平行于BC 、AC 的直线与AC 、BC 分别交于点R 、Q ,问:AP 等于多少厘米时,平行四边形PQCR 的面积等于16cm 2. 【答案】4cm【解析】设AP xcm =,则8BP x =-,由题意可知APR ∆和PBQ ∆ 均为等腰直角三角形,依题意可得()816x x -=, 解得:124x x ==,即AP 长为4cm . 【总结】考查动点问题的应用求解.【例29】m 、n 为两条互相垂直的笔直公路,工厂A 在公路n 上,距公路m 为1千米,B 与工厂A 在公路m 的同侧,且距公路m 为2千米,距公路n 为3千米.现要在公路m 上建造一个ABC PQRA B甲乙丙n m车站P ,使它与A 、B 的距离之和为P 的位置.【答案】点P 在两道路交点上下方2km 或211km 处.【解析】以公路n 、m 分别为x 、y 轴建立平面直角坐标系,依题意得()10A ,,()123B ,或()23B -,,设()0P y ,,=, 整理得2112440y y -+=或2112440y y ++=, 解得:12y =,2211y =,32y =-,4211y =-,经检验均是原方程的解,但32y =-,4211y =-不符合题意,故舍去, 所以点P 在两道路交点上下方2km 或211km 处. 【总结】考查根据题目条件建立平面直角坐标系进行点坐标的确定进而确定相应位置.【例30】已知A (0,-1),B (0,4),点P 在坐标轴上,且P A +PB =P 的坐标.【答案】()120P ,,()220P -,,30P ⎛ ⎝⎭,40P ⎛ ⎝⎭.【解析】当P 在x 轴上时,设()0P x ,= 解得:12x =,22x =-,即得()120P ,,()220P -,;当P 在y 轴上时,设()0P x ,,依题意可得41x x -++=解得:1x 2x =30P ⎛ ⎝⎭,40P ⎛ ⎝⎭. 【总结】考查根据题目条件进行相应作设求解,注意分类讨论.【例31】有一个非零数,它与4的和的正平方根再加上2后恰好等于它本身,求这个数. 【答案】5【解析】设这个数为x ,依题意可得42x x ++=,解得:15x =,20x =(舍),即这个数是5. 【总结】考查数位问题根据题目条件作设求解.【例32】有一个两位数,如果个位上的数与十位上的数的和是5,并且个位上的数的平方比十位上的数大1,求这个两位数. 【答案】32.【解析】设十位数为x ,则个位数为5x -,依题意可得()251x x --=,整理得211240x x -+=,解得:13x =,28x =(舍), 则这个数个位上是2,这个数是32. 【总结】考查数位问题根据题目条件作设求解.【例33】某剧场有座位800个,每排的座位数一样多,在每排增加5个座位,并增加2排后就有座位1020个,问原来座位多少排?原每排多少个座位.【答案】这个剧院有10排,每排有80个座位;或这个剧院有32排,每排有25个座位.【解析】设原来有x 排,则每排有800x 个座位,依题意可得()800251020x x ⎛⎫++=⎪⎝⎭, 整理得2423200x x -+=,解得:110x =,232x =,经检验均是方程的解且符合题意. 即这个剧院有10排,每排有8008010=个座位; 或这个剧院有32排,每排有8002532=个座位. 【总结】考查根据题目条件进行相应方程求解列式的应用,注意两种解都成立,另分式方程解完别忘记检验.【例34】植树节前,园林局把植数1600棵的任务交给了一个小队,小队被分成若干个组,计划每个组植树的棵树相同,但后来又4个组另有任务不能参加,所以其他组就要比原计划多例题解析模块六:其他植树20棵,每个小分队共分成了多少个组. 【答案】20【解析】设共分成了x 个小组,依题意可得16001600204x x-=-, 整理得243200x x --=,解得:120x =,216x =-(舍),即共分成了20个小组. 【总结】考查工程问题的应用,解完别忘记检验.【例35】学校甲、乙、丙三个摄影兴趣小组进行了一次摄影作品交流活动,活动时,每位同学向不同组的每个组员送一张摄影作品,这样互相交流的摄影作品共310张,已知甲组人数是丙组人数的2倍,乙组比甲组少3人,这三个摄影小组各有多少人? 【答案】甲组有10人,乙组有7人,丙组有5人.【解析】设丙组有x 人,则甲组有2x 人,乙组有()23x -人,依题意可得()()()()223232232310x x x x x x x x x +-+-++-+=,整理得2891550x x --=,即()()58310x x -+=,解得:15x =,2318x =-(舍), 即丙组有5人,甲组有10人,乙组有7人. 【总结】考查握手问题的应用.【例36】小强放学回家后,向爸爸、妈妈询问火箭队与雄鹿队的当天的篮球比赛的结果,妈妈说:“本场比赛火箭队的姚明比雄鹿的易建联多得了12分”.爸爸说:“如果把姚明的分数乘以易建联的得分再加上36分,恰好等于他们两人的得分之和的15倍,并且,如果姚明的得分不超过30分,则雄鹿队胜,否则,火箭队胜”,请你帮小强算一下,这场比赛,究竟是哪个队胜了?姚明和易建联各得了多少分?【答案】姚明得分为36分,易建联得分为24分,火箭队获胜. 【解析】设姚明得分为x 分,则易建联得分为()12x -分,依题意可得()()12361512x x x x -+=+-,整理得242+2160x x -=, 解得:136x =,26x =(舍),即姚明得分为36分,则易建联得分为24分,可知火箭队获胜.【总结】考查根据题意列方程进行方程的求解.【习题1】某公司1996年出口创收135万元,1997年、1998年每年都比上一年增加a%,那么1998年这个公司出口创收_________元.【答案】()21351%a+.【解析】考查增长率问题的应用.【习题2】甲、乙两个工程队合修一条路要6天完成,如果各队单独修路,则甲队比乙队少用5天,设甲、乙两队单独修路所需天数分别为x天和y天,则可列方程组为()A.65x yx y+=⎧⎨=-⎩B.65x yx y+=⎧⎨=+⎩C.11165x yx y⎧+=⎪⎨⎪=-⎩D.11165x yx y⎧+=⎪⎨⎪=+⎩【答案】C【解析】考查工程问题的应用.随堂检测【习题3】 已知点A (12,2),B (3,-1),在x 轴上找一点P ,使P A =2PB .【答案】()160P ,,()260P -,【解析】设()0P x ,=,整理得236x =,解得:16x =,26x =-,即得()160P ,或()260P -,. 【总结】考查满足一定条件的点坐标求取的应用.【习题4】 甲、乙两组工人合做某项工作,10天以后,因甲组另有任务,乙组再单独做2天才完成,如果单独完成这项工作,甲组比乙组可以快4天,求各组单独完成这项工作所需要的天数.【答案】甲单独做需要20天,则乙单独做需要24天. 【解析】设甲单独做需要x 天,则乙单独做需要()4x +天,依题意可得111102144x x x ⎛⎫++⋅= ⎪++⎝⎭,整理得218400x x --=, 解得:120x =,22x =-,经检验均是原方程的解,但22x =-不符合题意,故舍去. 即甲单独做需要20天,则乙单独做需要20424+=天. 【总结】考查工程问题的应用,注意分式方程解完要检验.【习题5】 有一面积为150平方米的长方形饲养场,饲养场一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米,求饲养场的长和宽. 【答案】饲养场长为15m ,宽为10m .【解析】设饲养场长为xm ,依题意可得351502xx -⋅=,整理得2353000x x -+=,解得:115x =,220x =(舍), 即饲养场长为15m ,宽为10m . 【总结】考查面积问题的应用.【习题6】 修建360米长的一段高速公路,甲工程队单独修建比乙工程队多用10天,甲工程队每天比乙工程队少修建6米.甲工程队每天修建的费用为2万元,乙工程队每天修建的费用为3.2万元.(1)求甲、乙两个工程队每天各修建多少米;(2)为在35天内完成修建任务应请哪个工程队修建这段高速公路才能在按时完成任务的前提下所花费用较少?并说明理由【答案】(1)甲每天修12m ,则乙每天修18m ;(2)甲. 【解析】(1)设甲每天修xm ,则乙每天修()6x m +,依题意可得360360106x x -=+,整理得262160x x +-=, 解得:112x =,218x =-(舍), 即甲每天修12m ,则乙每天修18m ;(2)甲需要30天,乙需要20天,所以在35天内都可以完成.甲所需的费用为30260⨯=万元,乙所需的费用为20 3.264⨯=万元,6064<,所以选择甲. 【总结】考查工程问题的应用.【习题7】 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛. 【答案】8【解析】设应邀请需要x 个队参赛, 依题意可得()1472x x -=⨯,整理得2560x x --=,解得:18x =,27x =-(舍), 即应邀请6个队参赛.【总结】考查比赛问题,注意赛制是单循环还是双循环.【习题8】 初二(1)班班委会主动为班级上一位生病住院的同学筹集部分医药费,计划筹集600元,由全体班委同学分担,后来又6位同学知道消息后也自愿参加了捐助和班委同学一起分担,因此每个班委的同学比原来少分担了50元,问:该班委有几个人?按照原计划每个班委平均分摊多少元.【答案】班委有6个人,原计划每个班委分摊100元【解析】设班委有x 个人, 依题意可得600600506x x -=+,整理得26720x x +-=,解得:16x =,212x =-, 经检验均是原方程的解,但212x =-不符合题意,故舍去.即班委有6个人,原计划每个班委分摊6001006=元. 【总结】考查列方程解应用题的应用,注意分式方程解完要检验.【习题9】 制造一种产品,原来每件的成本是500元,销售价是625元,经市场预测,该产品销售价第一个月将降低20%,第二个月将比第一个月提高6%,为了使两个月后的原销售利润不变,该产品的成本价平均每月应降低多少?【答案】10%【解析】设成本价平均每月降低x ,依题意可得:()()()2625120%16%5001625500x -+--=-,解得:10.1x =,2 1.9x =(舍),即成本价平均每月降低10%.【总结】考查利润问题的应用,根据题目条件找到等量关系.【习题10】 一汽艇用一定速度驶完一段路程,若汽艇每小时少走8千米,则走完全程要多用4小时,若汽艇每小时多走8千米,则走完全程可少用2小时,试求这段路的长度以及汽艇原来的速度.【答案】这段路长192km ,汽艇原来速度为24/km h .【解析】设这段路长为xkm ,汽艇原来的速度为/ykm h ,。
1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。问:乙单独整理需多少分钟完工? 解:设乙单独整理需x分钟完工,则
120204020x 解,得x=80
经检验:x=80是原方程的解。 答:乙单独整理需80分钟完工。 2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克? 解:设第一块试验田每亩收获蔬菜x千克,则
3001500900xx 解,得x=450 经检验:x=450是原方程的解。 答:第一块试验田每亩收获蔬菜450千克。 3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。已知这个人骑自行车的速度是步行速度的4倍。求步行的速度和骑自行车的速度。 解:设步行速度是x千米/时,则
247197xx 解,得x=5
经检验:x=5是原方程的解。进尔4x=20(千米/时) 答:步行速度是5千米/时,骑自行车的速度是20千米/时。 4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶? 解:⑴设她第一次在供销大厦买了x瓶酸奶,则
2.053140.185.12xx 解,得x=5
经检验:x=5是原方程的解。 答:她第一次在供销大厦买了5瓶酸奶。 5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。 ⑴ 求这种纪念品4月份的销售价格。 ⑵ 若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元? 解:⑴设4月份销售价为每件x元,则
xx9.07002000202000 解,得x=50
经检验:x=50是原方程的解。 ⑵4月份销售件数:2000÷50=40(件) 每件进价:(2000-800)÷40=30(元) 5月份销售这种纪念品获利:(2000+700)-30×(40+20) =900(元) 答:4月份销售价为每件50元,5月份销售这种纪念品获利900元。 6、王明和李刚各自加工15个零件,王明每小时比李刚多加工1个,结果比李刚少用半小时完成任务,问:两人每小时各加工多少个零件?
解:设李刚每小时加工x个,则列方程为:xx155.0115 (注:此方程去分母后化为一元二次方程) 7、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: 方案一:甲队单独完成这项工程刚好如期完成; 方案二:乙队单独完成这项工程要比规定日期多用5天; 方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。 试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。 解:设规定时间为x天,则
154xxx 解,得x=20
经检验:x=20是原方程的解。 方案一付款:1.5×20=30(万元) 方案二:耽误工期不预考虑。 方案三付款:1.5×4+1.1×20=28(万元) 答:方案三节省工程款。 8、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。 解:设原分数为x,则
xxxx74717 解,得x=3
经检验:x=3是原方程的解。 原分数为:1037xx 答:原分数为103。 9、今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。某校师生也行动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少? 解:设第一天有x人,则
5060004800xx 解,得x=200 经检验:x=200是原方程的解。 x+x+50=450(人) 答:两天共参加捐款的人数是450人。 10、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。 ⑴ 试销时该品种苹果的进价是每千克多少元? ⑵ 如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元? 解:⑴设试销时进价为每千克x元,则
5.01100050002xx 解,得x=5 经检验:x=5是原方程的解。
⑵ 1100050004007.074005.0511000550007=4160(元) 答:试销时进价为每千克5元,超市在这两次苹果销售中共盈利4160元。 11、某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导。 ⑴ 甲、乙两个工厂每天各能加工多少件产品? ⑵ 该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品? 解:⑴设甲每天加工件产x品,乙每天加工(x+8)件,则
87248xx 解,得x=16 经检验:x=16是原方程的解。x+8=24(件) ⑵设乙工厂向公司报加工费每天最多为y元,则 249605024960169605016960800y 解,得y≤1225
答:甲每天加工16件产品,乙每天加工24件;乙工厂向公司报加工费每天最多为1225元。 12、用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克的售价。 解:设新涂料每千克x元,则
xxx24010012403100 解,得x=17 经检验:x=17是原方程的解。 答:这种新涂料每千克的售价是17元。 13、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。问原来规定修好这条公路需多长时间? 解:设原来规定修好这条公路需要x个月才能如期完成,则甲单独修好这条公路需要x个月才能完成,乙单独修好这条公路需要(x+6)个月才能完成,由题意得: 4x + xx+6 = 1 解之得: x =12
经经验:x=12是原方程的根且符合题意 ∴ 原方程的根是x=12 答:原来规定修好这条公路需要12个月的时间才能如期完成。
14、某中学到离学校15千米的西山春游,先遣队与大队同时出发,行进速度是大队的1.2倍,以便提前21 小时到达目的地做准备工作,求先遣队与大队的速度各是多少? 解:设大队的速度是x千米/时,则先遣队的速度是1.2x千米/时,由题意得:
15x - 151.2x = 12
解之得:x=5 经检验:x=5是原方程的根且符合题意 ∴原方程的根是x=5 ∴ 1.2x=1.2×5=6(千米/时) 答:先遣队的速度是6千米/时,大队的速度是5千米/时 15、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?(本题5分) 解:设规定日期是x天,则甲队独完成需要x天,乙队独完成需要(x+3)天, 由题意得: 2x + xx+3 = 1
解之得:x=6 经检验:x=6是原方程的根且符合题意 ∴原方程的根是x=6 答:规定日期是6天 16、某市今年1月1日起调整居民用水价格,每立方米水费上涨25%.小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格. 解:设该市去年居民用水的价格为x元/m3,则今年用水价格为(1+25%)x元/m3 根据题意得:
36186(125%)xx
………………………………………4分 解得:x=1.8 经检验:x=1.8是原方程的解
(125%)2.25x 答:该市今年居民用水的价格为2.25元/m3 …………………………………7分 17.小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米/时? 解:设王老师的步行速度为x千米/时, 则骑自行车速度为3x千米/时。(1分)
依题意得:315.035.033xx (4分) 20分钟=31小时 解得:x=5 (5分) 经检验:x=5是所列方程的解 ∴3x=3×5=15 (6分) 答:王老师的步行速度及骑自行车速度各为5千米/时 和15千米/时 (7分) 18、在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾? 解:设“青年突击队”原计划每小时清运x吨垃圾,由题意得: 100x ―4 = 1002x
解之得:x= 1212
经检验x= 1212 是原方程的根,且符合题意 ∴原方程的根是:x= 1212 答:“青年突击队”原计划每小时清运 1212 吨垃圾。 19、(2007福建宁德课改,10分)我国“八纵八横”铁路骨干网的第八纵通道——温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时). 解:设通车后火车从福州直达温州所用的时间为x小时. 1分