递归数列通项公式的求法
- 格式:doc
- 大小:313.50 KB
- 文档页数:4
求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用)不动点法(递推式是一个数列通项的分式表达式)、 特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
求数列通项公式的11种办法办法总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法(罕用)不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等级差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-演习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n演习2.已知数列}{n a 知足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:裂项乞降n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21nn n a n a S +=,求数列}{n a 的通项公式.解:由已知)(21nn n a na S +=得)(2111---+-=n n n n n S S nS S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n ,又0>n a 2)1(2+=n n s n ,,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}na 的通项公式为(1)12325!.n n n na n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+nn na a , 即11+=+n na a nn ∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1. 评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出na .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c c dλ所以有:)1(11-+=-+-c d a c c d a n n 是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c da 首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c da c d a 即:1)1(11--⋅-+=-c d c c d a a n n .纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法(阶差法):有时我们从递推关系dca a n n +=+1中把n换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21nn a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:n n n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nn nn n q p p q a p a )(111⋅+=++,令n n n p a b =,则n nn q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即: q q a q p q a n n n n 111+⋅=++,令n nn q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列 设)(11n n n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a的通项公式.解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略 演习.(2003天津理) 设a 为常数,且)(2311N n a a n n n ∈-=--.证实对随意率性n≥1,012)1(]2)1(3[51a a n n n n nn ⋅-+⋅-+=-;3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法 经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-;解题根本步调: 1.肯定()f n =kn+b 2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法)解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得2)(311+-=--+n n n n a a a a .令nn n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即13511-⋅=--+n n n a a ② 再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}n a 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为yn x a y xn a n n ++-+=++-)1()(21比较系数可得:x=-6,y=9,上式即为12-=n n b b所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b即:nn n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如cn b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a )根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n na x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列. 例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式. 解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同) 则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案:nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型 例12 已知数列{}n a 知足3(1)2115nn n na aa ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n na a++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式. 例13.(2005江西卷)已知数列:,}{且满足的各项都是正数n a N n a a a a n n n ∈-==+),4(21,110,(1)证实12,;n n a a n N +<<∈ (2)求数列}{n a 的通项公式an.解:(1)略(2)],4)2([21)4(2121+--=-=+n n n n a a a a 所以21)2()2(2--=-+n n a ann nn n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令又b n =-1,所以1212)21(22,)21(---=+=-=n n n n n b a b 即.办法2:本题用归纳-猜测-证实,也很简捷,请试一试.解法3:设c n n b -=,则c2121-=n n c ,转化为上面类型(1)来解五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a例14. 设正项数列{}n a 知足11=a ,212-=n na a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n na a ,设1log 2+=n a n b ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log 12-=-n a n,∴1212--=n na演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nna --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 双方取经常运用对数得1lg 5lg lg3lg 2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg3lg3lg 2,4164x y ==+ 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg3lg3lg 2lg 04164n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +++是认为lg3lg3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n na -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=++=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =≥,则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -==首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++.八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. (2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a剖析:把已知关系经由过程11,1,2n nn S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n n n n a p a pk a q a q++--=⋅--,个中a pc k a qc -=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p +=+--,个中2ck a d=+.例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:,725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a , 公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求.例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19nn a -=+-. 演习1:已知{}n a 知足11122,(2)21n n n a a a n a --+==≥+,求{}n a 的通项n a答案:3(1)3(1)n nn nna --∴=+-演习2.已知数列{}n a 知足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a答案:135106n na n -∴=-演习3.(2009陕西卷文)已知数列{}n a 知足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证实:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式.答案:(1){}n b 是以1为首项,12-为公比的等比数列.(2)1*521()()332n n a n N -=--∈.十一:特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列 (已知 a1;a2)形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n nn a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,nn a c nc c c α=+是待定常数)再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n na a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n nn a c c =⋅+⋅, 由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25已知数列{}n a 知足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=演习1.已知数列{}n a 知足*12211,2,441()n n n a a a a a n N ++===--∈,求数列{}n a 的通项演习2.已知数列{}n a 知足*12211,2,444()n n n a a a a a n n N ++===---∈,求数列{}n a 的通项解释:(1)若方程2x px q =+有两不合的解s , t,则)(11-+-=-n n n n ta a s ta a , )(11-+-=-n n n n sa a t sa a ,由等比数列性质可得1121)(-+-=-n n n s ta a ta a , 1121)(-+-=-n n n t sa a sa a ,,s t ≠ 由上两式消去1+n a 可得()()()nn n t t s t sa a s t s s ta a a ..1212-----=.(2)若方程2x px q =+有两相等的解t s =,则()()12121211)(ta a s ta a s ta a s ta a n n n n n n n -==-=-=-----+ ,21211s ta a s a s a n n n n -=-∴++,等于⎭⎬⎫⎩⎨⎧n n s a 等差数列, 由等差数列性质可知()2121.1ssa a n s a s a n n --+=, 所以nn s n s sa a s sa a s a a ⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛--=.2122121. 例26.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}n a 的通项.解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n nn n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg 2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.四种根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.例27. 数列{n a }知足01=a ,n a a n n 21=++,求数列{a n }的通项公式. 剖析 1:结构 转化为)(1n f a a n n =-+型解法1:令n nn a b )1(-=则n a a a a b b n n n n n n n n n n 2)1()()1()1()1(111111⋅-=+-=---=-++++++.2≥n 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=⨯⋅-=--⋅-=--⋅-=-----012)1()2(2)1()1(2)1(112121211a b b b n b b n b b n n n n n n各式相加:[]1)1(2)1()2()1()1()1(2231⋅-+⋅-++--+--=- n n b n n n当n 为偶数时,n n n b n =⎥⎦⎤⎢⎣⎡-⋅-+-=22)1()1(2. 此时n b a n n == 当n 为奇数时,1)21(2+-=--=n n b n 此时n n a b -=,所以1-=n a n .故 ⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n解法2: na a n n 21=++∴2≥n 时,)1(21-=+-n a a n n ,两式相减得:211=--+n n a a . ∴,,,,531 a a a 组成以1a ,为首项,以2为公役的等差数列; ,,,,642 a a a 组成以2a ,为首项,以2为公役的等差数列∴22)1(112-=-+=-k d k a a k k d k a a k 2)1(22=-+=.∴⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n 评注:成果要还原成n 的表达式.例28.(2005江西卷)已知数列{a n }的前n 项和S n 知足 S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n }的通项公式. 解:办法一:因为),3()21(31112≥-⋅=++=-----n a a a a S S n n n n n n n 所以 以下同上例,略答案 ⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=--.,)21(34,,)21(3411为偶数为奇数n n a n n n)(1n f a a n n =⋅+型(1)若p a a n n =⋅+1(p 为常数),则数列{n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项.例29. 已知数列满足}{n a )(,)21(,3*11N n a a a nn n ∈=⋅=+,求此数列的通项公式.注:同上例相似,略.。
递归求解卡特兰数卡特兰数,又称卡塔兰数,是组合数学中一类重要的数列,其通项公式为C(n)=C(n-1)*2*(2n-1)/(n+1),其中n为正整数。
卡特兰数在组合数学、离散数学等领域被广泛应用,如二叉树的数量、括号匹配的方案数、山峰序列等问题。
本文将介绍一种递归求解卡特兰数的方法,以求解C(5)为例进行说明。
递归求解卡特兰数的基本思路是将问题拆分成若干个子问题,然后通过递归的方式进行求解。
具体来说,对于求解C(n),我们可以考虑先将其拆分成C(n-1)和C(n-2)两个子问题,然后通过递归求解这两个子问题,最终将它们的结果结合在一起得到C(n)的值。
下面是求解C(5)的具体步骤:Step1:求解C(4)根据卡特兰数的通项公式,C(4)=C(3)*2*7/5=14。
因此,我们需要先求解C(3)。
Step2:求解C(3)同理,C(3)=C(2)*2*5/4=5。
因此,我们需要先求解C(2)。
Step3:求解C(2)根据卡特兰数的通项公式,C(2)=C(1)*2*3/2=2。
因此,我们需要先求解C(1)。
Step4:求解C(1)C(1)=1,是卡特兰数的起始值。
Step5:结合子问题的结果求解C(2)根据递归的思路,我们已经求得C(1)的值,因此可以使用C(2)=C(1)*2*3/2=2的计算公式求解C(2)的值。
Step6:结合子问题的结果求解C(3)同理,我们已经求得C(2)的值,因此可以使用C(3)=C(2)*2*5/4=5的计算公式求解C(3)的值。
Step7:结合子问题的结果求解C(4)同理,我们已经求得C(3)的值,因此可以使用C(4)=C(3)*2*7/5=14的计算公式求解C(4)的值。
Step8:结合子问题的结果求解C(5)同理,我们已经求得C(4)的值,因此可以使用C(5)=C(4)*2*9/6=42的计算公式求解C(5)的值。
通过上述步骤,我们成功地使用递归的方法求解了C(5)的值,即C(5)=42。
求数列通项公式的十一种办法(办法全,例子全,归纳细)总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法.不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21n n n a na S +=,求数列}{n a 的通项公式.解:由已知)(21n n n a n a S +=得)(2111---+-=n n n n n S S n S S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n,又0>n a ,2)1(2+=n n s n ,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n n a a n n∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1.评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出n a .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c d a 首项,以c 为公比的等比数列,所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c d a c c d a n n 逐项相减法(阶差法):有时我们从递推关系d ca a n n +=+1中把n 换成n-1有d ca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:nn n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nnn n n q p p q a p a )(111⋅+=++,令n n n pa b =,则nn n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即:q q a q p q a n n n n 111+⋅=++,令nn n q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列设)(11nn n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式. 解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-; 解题根本步调: 1.肯定()f n =kn+b2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法) 解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得 2)(311+-=--+n n n n a a a a .令n n n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即 13511-⋅=--+n nn a a ②再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}na 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为y n x a y xn a n n ++-+=++-)1()(21 比较系数可得:x=-6,y=9,上式即为12-=n n b b 所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b 即:n n n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如c n b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a ) 根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---. 21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列.例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式.解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同)则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案: nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型例12 已知数列{}n a 知足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式. 解:因为3(1)21nn n n a a ++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式.五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a 例14. 设正项数列{}n a 知足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a nb ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n ,12log 12-=-n a n ,∴1212--=n n a演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nn a --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.双方取经常运用对数得1lg 5lg lg3lg2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg 3lg 3lg 2,4164x y ==+ 由1lg 3lg 3lg 2lg 3lg 3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg 3lg 3lg 2lg 04164n a n +++≠,所以数列lg 3lg 3lg 2{lg }4164n a n +++是认为lg 3lg 3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =,则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -===首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++. 八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立.(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a 剖析:把已知关系经由过程11,1,2n n n S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-=则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n nn n a p a pk a q a q++--=⋅--,个中a pck a qc-=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p+=+--,个中2c k a d =+. 例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a , 令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得 721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a ,公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求. 例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19n n a -=+-.十一.特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}na 的通项. 解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n n n n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.。
(完整版)递归关系法求数列通项引言数列是数学中常见的概念,它是由一列按照一定顺序排列的数字组成的序列。
而求数列通项则是指通过已知的数列项之间的递归关系,来计算出数列中的任意项的方法。
本文将介绍递归关系法求数列通项的基本原理及应用。
基本原理递归关系法求数列通项的基本思想是通过已知数列中某一项与前几项的关系,找到递推公式,从而可以根据已知数列项的值计算出数列中任意项的值。
在具体操作时,可以通过观察数列的特点,寻找规律,并通过数学归纳法进行证明。
求数列通项的步骤1. 观察数列的前几项,寻找规律;2. 建立递归关系,即找到数列项与前几项之间的关系;3. 利用递归关系,得到递推公式;4. 利用递推公式,计算数列中任意项的值。
举例说明假设我们已知数列的前两项为1和2,且每一项与前一项的差等于与前两项的和的平方。
现在我们需要求这个数列的通项。
首先,我们观察数列的前几项,已知数列的第一项为1,第二项为2。
其次,建立递归关系。
根据题目中的要求,我们可以得到递归关系式为: a(n) = (a(n-1) + a(n-2))^2,其中a(n)表示数列的第n项。
然后,利用递归关系,得到递推公式。
根据递归关系式,我们可以得到a(3) = (a(2) + a(1))^2,a(4) = (a(3) + a(2))^2,依次类推。
最后,利用递推公式,计算数列中任意项的值。
通过计算,我们可以得到数列的通项公式为 a(n) = (a(n-1) + a(n-2))^2。
总结递归关系法是一种常用的求数列通项的方法,通过已知数列项之间的关系,可以找到递推公式,并计算出数列中任意项的值。
在实际问题中,掌握递归关系法可以帮助我们解决更多数学计算中的问题。
以上为递归关系法求数列通项的完整版文档,通过观察数列特点找到递推关系,并应用递推公式计算任意项的值。
希望对您有所帮助!。
数列的递归公式和通项公式在数学的奇妙世界里,数列就像是一串有规律排列的数字精灵,而数列的递归公式和通项公式则是我们理解和掌控这些精灵的魔法钥匙。
让我们先来聊聊什么是数列。
简单说,数列就是按照一定次序排列的一列数。
比如:1,3,5,7,9……这就是一个数列。
递归公式呢,是通过前面的项来表示后面的项的一种方式。
举个例子,斐波那契数列的递归公式是:$F_{n}=F_{n-1}+F_{n-2}$($n\geq 2$),其中$F_{1}=1$,$F_{2}=1$。
也就是说,从第三项开始,每一项都是前两项的和。
那通项公式又是什么呢?通项公式可以直接算出数列中任意一项的值。
比如等差数列的通项公式是$a_{n}=a_{1}+(n-1)d$,其中$a_{1}$是首项,$d$是公差;等比数列的通项公式是$a_{n}=a_{1}q^{n-1}$,$a_{1}$是首项,$q$是公比。
递归公式和通项公式之间有着紧密的联系。
递归公式就像是一步一步的脚印,告诉我们怎么从前面的项走到后面的项;而通项公式则像是一张地图,能让我们直接找到想去的地方,也就是直接算出任意一项的值。
比如说,对于一个简单的数列:1,2,4,8,16……我们可以发现这是一个等比数列,它的递归公式是$a_{n}=2a_{n-1}$($n\geq2$),$a_{1}=1$。
而它的通项公式则是$a_{n}=2^{n-1}$。
再来看一个例子,数列:1,3,6,10,15……这个数列的递归公式可以写成$a_{n}=a_{n-1}+n$($n\geq 2$),$a_{1}=1$。
通过一些巧妙的方法,我们可以推导出它的通项公式是$a_{n}=\frac{n(n+ 1)}{2}$。
那么,如何从递归公式推导出通项公式呢?这可不是一件容易的事情,需要一些巧妙的方法和技巧。
有时候,我们可以通过累加法、累乘法等方法来实现。
比如说对于递归公式$a_{n}=a_{n-1}+2$($n\geq 2$),$a_{1}=1$,我们可以依次写出:$a_{2}=a_{1}+2$$a_{3}=a_{2}+2=(a_{1}+2)+2=a_{1}+2×2$$a_{4}=a_{3}+2=(a_{1}+2×2)+2=a_{1}+3×2$……以此类推,$a_{n}=a_{1}+(n 1)×2$,因为$a_{1}=1$,所以$a_{n}=1 + 2(n 1)=2n 1$。
线性递归数列的通项公式与求和公式
通常我们得到的递推数列是这样的形式:
目标是求的通项公式。
首先,上面的递推数列通常可以写成下面这种形式:
---------------------(式1)
也叫二阶差分式(或者叫递推式)。
为了求出一阶差分式,我们可以将原式写成如下形式:
其中,因此上式就是以为元素的等比数列,公比为。
通过移项同时可得:
与上面的式子完全等价。
两式子相减则有:
因此通项公式就求出来了:
现在需要解出x1,x2:
利用二次方程根与系数的关系,可知恰为方程的两
根,注意这里的系数abc就是上面二阶差分式(式1)的系数,不用计算,可以直接拿来用。
该二次方程就是原差分方程的特征方程。
求方程的根解除x1,x2后带入通项公式即可得到f(n)的表达式。
实际做题的计算步骤(更简单):
1.移项写出二阶差分式,得到系数abc,也就获得了二次方程的系数abc。
2.解出二次方程的两个根x1,x2。
3.带入f(n)的通项公式即可。
例子:
斐波那契数列,它满足,
首先写出移项到左边的二阶差分式的标准形式:
,获得系数abc分别为1,-1,-1,那么差分式的特征方程就为,解得
带入通用的通项公式即可得到f(n)的通项公式:
完。
另外需要注意:该通项公式仅适用于线性的递推数列!。
(完整版)递归法求数列通项1. 引言在数学中,数列是由一组按照特定顺序排列的数字所组成的序列。
数列通项是指数列中的任意一项,通过通项公式可以求解数列中的任意项。
本文将使用递归法来推导并求解数列通项。
2. 递归法的原理递归法是一种通过建立数学函数与数学函数自身之间的关系来解决问题的方法。
在计算机科学中,递归法通过调用自身来解决复杂的问题。
求解数列通项时,递归法可以通过数列前一项和前两项的关系来逐步推导并求解后续的数列项。
3. 数列通项的递归公式对于某个数列递推的递归公式,通常表示为 f(n) = f(n-1) + f(n-2),其中 f(n) 表示第 n 项,f(n-1) 表示第 n-1 项,f(n-2) 表示第 n-2 项。
这个递归公式可以用来计算数列中的任意一项。
4. 递归法求解数列通项的步骤以下是使用递归法求解数列通项的步骤:1. 确定数列的前两项,即 f(0) 和 f(1)。
2. 建立数列前一项和前两项的关系,即 f(n) = f(n-1) + f(n-2)。
3. 编写递归函数,实现求解数列通项的逻辑。
4. 调用递归函数,传入需要求解的项数 n,得到数列中第 n 项的值。
5. 递归法求数列通项的示例代码def get_sequence(n):if n == 0:return 0elif n == 1:return 1else:return get_sequence(n-1) + get_sequence(n-2)6. 总结通过使用递归法可以方便地求解数列中的任意一项。
递归法的关键在于建立数列前一项和前两项的递推关系,并编写递归函数来实现求解数列通项的逻辑。
本文提供了一个简单的示例代码,读者可以根据具体的数列进行相应的修改和应用。
以上是关于递归法求数列通项的完整版文档。
通过使用递归法,可以在数学和计算机科学领域应用求解各种复杂的递推问题。
希望本文能对读者理解递归法的应用有所帮助。
一、K 阶线性递归数列1. 递推公式:1+1+2+11+++++=n k k n k n k n a λa λa λa -2.特征方程:k k k k λx λxλx +++=2211 --(I )3.通项公式: (1)若(I )的解n k k n n k x c x c a x x x ++=,,1121 互不相同,那么(II ) (2)若(I )的解的某个根为重根(m x x x ==21)则(II )中对应的m 项换为n m m m x n c n c n c )+++(02211 --例1.,n n n a a a ,a a +=1==1+2+21求通项公式。
例2.n n n n a a a a a ,a ,a 2016+=1=1=0=2+3+321--,-,求通项公式。
(提示:0=5+2+=0321a ,)(c )c n c (a nn n ﹣) 二、线性分式数列 1.递推公式:d ca b a a a n n n ++•=1+;2.特征方程:dcx b ax x ++=(I ) 3.若(I )式有解21≠x x ,则数列{12x a x a n n --}等比,若21=x x ,则{11x a n -}等差,若实数解,可能是周期数列。
三、非线性递归数列1.递推公式:1()n n a pa f n +=+,()f n 为一些基本初等函数。
(1)()f n 为一次函数:即1n n a pa bn c +=++,构造1[(1)]n n a n u p a n u λλ+++=+-+,(2)()f n 为二次函数,构造:221(1)(1)()n n a n u n v p a n un v λλ++++++=+++(3)()f n 为二次以上函数,类比构造;(4)()f n 为指数函数:即1n n n a pa q +=+,构造)μq λa (p μq λa n n n n ++=++1+1+例1 (04年联赛四川省初赛) 数列{}n a 满足11a =,122(2)n n a a n n -=+-≥,求通项n a . 分析:令:12[(1)]n n a n u a n u λλ-++=+-+整理:122n n a a n u λλ-=+-+由待定系数:122u λλ=⎧⎨-+=-⎩,得:10u λ=⎧⎨=⎩所以:12[(1)](2)n n a n a n n -+=+-≥即:{}n a n +是以11a +为首项,2为公比的等比数列,得:2nn a n =- 例2 已知数列{}n a 满足11a =,212n n a a n +=+,求通项n a .分析:令:221(1)(1)2()n n a n u n v a n un v λλ++++++=+++ 整理:212(2)n n a a n u n v u λλλ+=++-+-- 由待定系数:2200u v u λλλ=⎧⎪-=⎨⎪--=⎩,得:246u v λ=⎧⎪=⎨⎪=⎩所以:2122(1)4(1)62246n n a n n a n n ++++++=+++ 即:2{246}n a n n +++是以1246a +++为首项,2为公比的等比数列, 得:12132246n n a n n -=⋅---例3 已知数列}a {n 满足1a 425a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式. 解:设)y 2x a (3y 2x a n n 1n 1n +⋅+=+⋅+++将425a 3a n n 1n +⋅+=+代入上式, 得:)y 2x a (3y 2x 425a 3n n 1n n n +⋅+=+⋅++⋅++,y 32x 3y 42)x 25(n n +⋅=++⋅+.令⎩⎨⎧=+=+y 3y 4x 3x 25,则⎩⎨⎧==2y 5x ,得:)225a (3225a n n 1n 1n +⋅+=+⋅+++ 由013121225a 11≠=+=+⋅+及⑦式,得0225a n n ≠+⋅+,则3225a 225a n n 1n 1n =+⋅++⋅+++,故数列}225a {n n +⋅+是以13121225a 11=+=+⋅+为首项,以3为公比的等比数列,因此1n n n 313225a -⋅=+⋅+,则225313a n 1n n -⋅-⋅=-.例4、已知数列}{n a 满足⎩⎨⎧=≥+=+1)2(211a n na a n n ,求通项n a 。
龙源期刊网
递归数列通项求法探讨
作者:陈开通
来源:《中学生导报·教学研究》2013年第21期
对于由递推式所确定的递归数列求通项公式的问题,通常可通过对递推式的变换转化成等差数列或等比数列问题,也可通过联想构造或猜想证明把问题转化。
本文举例谈谈递归数列求通项的几种常见类型和方法,旨在抛砖引玉。
1、an+1=an+f(n)型
方法:an+1=an+f(n)可变形为an+1-an=f(n),则(an-an-1)+(an-1-an-2)+……+
(a3-a2)+(a2-a1)=f(n-1)+f(n-2)+……+f(2)+f(1),即an-a1=f(n-1)+f(n-2)+……+f(2)+f(1),所以an=f(n-1)+f(n-2)+……+f(2)+f(1)+a1。
例1:已知数列{an}中,a1=2,an+1=an+n+2,求数列{an}的通用公式an。
解:∵an+1=an+n+2∴当n≥2时,an-an-1=n+1
∴(an-an-1)+(an-1-an-2)+……+(a3-a2)+(a2-a1)=(n+1)+n+……+3
即an-a1=(n+1)+n+……+3
参考文献
[1]赵春祥《由递推公式给出的数列的常见类型及解法》数学通讯2003年第7期
[2]虞金龙《线性递归数列通项求法》数学教学通讯2003年1月(上半月刊)。
数列的递推与递归公式数列是数学中常见的一种数值序列,它由一个或多个数字按照特定的规律排列组成。
数列可以通过递推公式和递归公式来定义。
递推公式是指通过前一项或多项数值来计算后一项的公式。
递推公式常用于计算数列的前几项,然后利用这些已知的项来计算后面的项。
例如,斐波那契数列就可以通过递推公式来计算,其递推关系为f(n) =f(n-1) + f(n-2),其中f(n)表示第n个斐波那契数。
递归公式是指一个数列中的某一项可以通过该数列中的其他项来定义的公式。
递归公式常常用于计算数列中的任意一项。
例如,阶乘数列就可以通过递归公式来计算,其递归关系为f(n) = n * f(n-1),其中f(n)表示n的阶乘。
递推公式和递归公式是数列中两种常见的定义方法,它们可以根据实际情况灵活运用。
在实际应用中,我们常常需要根据问题的要求选择适合的定义方法来计算数列。
数列的递推和递归公式有着广泛的应用。
在数学中,数列的递归公式常用于证明数学定理和解决数学问题。
而在计算机科学中,数列的递推公式常用于编写程序,计算数列的任意一项。
以斐波那契数列为例,斐波那契数列是指从1开始,后一项是前两项之和的数列。
斐波那契数列的递推关系f(n) = f(n-1) + f(n-2),其中f(1) = 1,f(2) = 1。
利用递推公式,我们可以计算斐波那契数列的前几项:f(1) = 1f(2) = 1f(3) = f(2) + f(1) = 2f(4) = f(3) + f(2) = 3f(5) = f(4) + f(3) = 5...通过递推公式,我们可以计算出斐波那契数列的任意一项。
递推公式和递归公式是数列中常用的定义方法,它们在解决问题时有着不可替代的作用。
通过递推公式和递归公式,我们可以轻松地计算数列的任意一项。
无论是在数学领域还是在计算机科学领域,数列的递推和递归公式都是不可或缺的工具。
以上是关于数列递推和递归公式的一些介绍和应用。
求数列递归公式常用的八种方法本文将介绍数列递归公式的常用方法,帮助读者更好地理解和应用数列递归公式。
1. 递推法递推法是一种基本的求递归公式的方法。
通过观察数列的规律,我们可以找到数列当前项与前几项之间的关系,并利用该关系式来递归求解数列。
2. 直接法直接法是一种直接求得递归公式的方法。
通过分析数列的特点和性质,我们可以直接得出数列的递归公式。
3. 特征根法特征根法适用于特定类型的数列,特别是线性递推数列。
通过求解数列的特征根,我们可以得到数列的通项公式。
4. 变项系数法变项系数法适用于一些复杂的数列,特别是递推系数为多项式的数列。
通过假设数列的通项公式为一个多项式,并依次确定多项式的系数,我们可以获得数列的递归公式。
5. 矩阵法矩阵法适用于一些特殊的数列,特别是线性递推数列。
通过将数列转化为矩阵形式,并求解特征矩阵,我们可以得到数列的递归公式。
6. 生成函数法生成函数法是一种基于形式幂级数的方法,适用于一些特殊的数列。
通过定义一个形式幂级数,并进行运算和求导,我们可以得到数列的递归公式。
7. 常系数法常系数法适用于一些特殊的数列,特别是线性递推数列。
通过解线性递推方程组,我们可以得到数列的递归公式。
8. 差分方程法差分方程法适用于一些连续函数的递推数列。
通过建立递推数列的差分方程,并求解差分方程,我们可以获得数列的递归公式。
这些方法是当前数学领域常用的求解数列递归公式的方法,对于数学研究和实际问题的求解有很大的帮助。
希望本文能够帮助读者更好地理解和运用这些方法。
递归数列通项公式的求法一.公式法(1)设}{n a 是等差数列,首项为1a ,公差为d ,则其通项为d m n a a m n )(-+=;(2)设}{n a 是等比数列,首项为1a ,公比为q ,则其通项为m n m n q a a -=;(3)已知数列的前n 项和为n S ,则)2()1(11≥=⎩⎨⎧-=-n n S S S a n nn 。
二.迭代法迭代恒等式(累加法):112211)()()(a a a a a a a a n n n n n +-++-+-=--- ; 迭乘恒等式(累积法): 112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- ,(0≠n a ) 迭代法能够解决以下类型一和类型二所给出的递推数列的通项问题:类型一:已知)(,11n f a a b a n n +==+,求通项n a ;由累加法可求得通项公式为:++=)(11f a a n )1()2(-+++n f f 。
类型二:已知n n a n f a b a )(,11==+,求通项n a ;由)(1n f a a n n =+得)(1n f a a n n =+,使用累乘法可得)1()1(1f n f a a n -⋅=。
三.待定系数法类型三:已知)1(,11≠+==+λμλn n a a b a (其中λ、μ为常数),求通项n a ;通常解法是设=-+β1n a )(βλ-n a ,求出β,因}{β-n a 是等比数列则可求出通项公式。
类型四:形如)(1n f a a n n +=+λ(其中λ为常数)递推式,n n n a a μλ+=+1(λ、μ为常数)是其特殊情形。
后者的等式两边同除以n μ,得111+⋅=-+n n n n a a μμλμ,令1-=n n n a b μ,则可化归为μλ+=+n n a a 1(λ、μ为常数)型。
类型五:形如)()(1n g a n f a n n +=+(其中λ为常数)递推式,设数列)}({n h ,使)1()()(+=n h n h n f ,则)()1()(1n g a n h n h a n n ++=+,即)n h n g n h a n h a n n 1()()()1(1+⋅+⋅=+⋅+,令)(n h a b n n ⋅=,则)1()(1+⋅+=+n h n g b b n n ,即已化为模式一。
求数列通项公式的八种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项 二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
:例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ ]例3 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。
求递推数列的通项公式的十一种方法
递推数列是一种数学数列,其中每一项都是由前一项推算出来的。
通
项公式则是通过已知的数列项之间的关系,找出数列的整体规律,从而可
以直接计算任意一项的值。
下面将介绍11种方法来推导递推数列的通项公式。
1.递归定义法
递归定义法是通过规定数列的首项以及前面项与后面项之间的关系,
来表达出数列的通项公式。
2.直接求和法
直接求和法是通过将数列的前n项求和,并将结果化简得出通项公式。
3.递推关系法
递推关系法是通过规定数列前两项之间的关系,并将该关系推广到前
n项之间的关系,从而求出通项公式。
4.变量代换法
变量代换法是通过引入新的变量,将原数列表示成一个新的数列,从
而得到新数列的通项公式。
5.假设公式法
假设公式法是通过猜测数列的通项公式,并验证猜测的公式是否符合
已知项的规律。
6.拆项法
拆项法是通过拆解数列的项,将数列表示成两个或多个部分,再求和得出通项公式。
7.枚举法
枚举法是通过穷举数列的前几项,找出数列项之间的规律,推算出通项公式。
8.差分法
差分法是通过计算数列项之间的差值,找出数列项之间的规律,从而得到通项公式。
9.生成函数法
生成函数法是通过将数列视为多项式的系数,构造一个生成函数,再通过求导、积分等运算得到通项公式。
10.求和公式法
求和公式法是通过利用已知的数列求和公式,计算数列的前n项和,并化简得出通项公式。
11.对称性法
对称性法是通过观察数列的对称性,推断出数列的通项公式。
常见递归数列通项公式的求解策略Revised as of 23 November 2020常见递归数列通项公式的求解策略数列是中学数学中重要的知识之一,而递归数列又是近年来高考和全国联赛的重要题型之一。
数列的递归式分线性递归式和非线性递归式两种,本文仅就高中生的接受程度和能力谈谈几种递归数列通项公式的求解方法和策略。
一、周期数列如果数列满足:存在正整数M、T,使得对一切大于M的自然数n,都有成立,则数列为周期数列。
例1、已知数列满足 a1 =2,an+1 =1-,求an 。
解:an+1 =1- an+2 =1- =- , 从而 an+3 = 1-=1+an-1=an ,即数列是以3为周期的周期数列。
又a1 =2,a2=1-=, a3 =-12 , n=3k+1所以 an= ,n=3k+2 ( kN )-1 , n=3k+3二、线性递归数列1、一阶线性递归数列:由两个连续项的关系式 an= f (an-1 )(n,n)及一个初始项a1所确定的数列,且递推式中,各an都是一次的,叫一阶线性递归数列,即数列满足an+1 =f (n) an+g(n),其中f (n)和g(n)可以是常数,也可以是关于n的函数。
(一)当f (n) =p 时,g(n) =q(p、q为常数)时,数列是常系数一阶线性递归数列。
(1)当p =1时,是以q为公差的等差数列。
(2)当q=0,p0时,是以p为公比的等比数列。
(3)当p1且q0时,an+1 =p an+q可化为an+1-=p(an-),此时{an -}是以p为公比,a1-为首项的等比数列,从而可求an。
例2、已知:=且,求数列的通项公式。
解:=-=即数列是以为公比,为首项的等比数列。
(二)当f(n),g(n)至少有一个是关于n的非常数函数时,数列{an}是非常系数的一阶线性递归数列。
(1)当f(n) =1时,化成an+1=an+g(n),可用求和相消法求an。
例3、(2003年全国文科高考题)已知数列{an}满足a1=1,an=3n--1+an -1 (n2) , (1)求a2 ,a3 ; (2) 证明:an= .(1)解: a1 =1, a2=3+1=4 , a3=32+4=13 .(2)证明: an=3n--1+an-1 (n2) ,an-an-1=3n—1 ,an-1-an-2=3n—2 ,an-2-an-3=3n—3……,a4-a3=33 ,a3-a2=32 ,a2-a1=31将以上等式两边分别相加,并整理得:an-a1=3n—1+3n—2+3n—3+…+33+32+31 ,即an=3n—1+3n—2+3n—3+…+33+32+31+1= .(2)当g(n)=0时,化为a n+1=f(n) an ,可用求积相消法求an 。
递归数列通项公式的求法确定数列的通项公式,对于研究数列的性质起着至关重要的作用。
求递归数列的通项公式是解决数学竞赛中有关数列问题的关键,本文着重对递归数列通项公式加以研究。
基础知识定义:对于任意的*N n ∈,由递推关系),,,(21k n n n n a a a f a ---= 确定的关系称为k 阶递归关系或称为k 阶递归方程,由k 阶递归关系及给定的前k 项k a a a ,,,21 的值(称为初始值)所确定的数列称为k 阶递归数列。
若f 是线性的,则称为线性递归数列,否则称为非线性递归数列,在数学竞赛中的数列问题常常是非线性递归数列问题。
求递归数列的常用方法: 一.公式法(1)设}{n a 是等差数列,首项为1a ,公差为d ,则其通项为d m n a a m n )(-+=; (2)设}{n a 是等比数列,首项为1a ,公比为q ,则其通项为mn m n q a a -=;(3)已知数列的前n 项和为n S ,则)2()1(11≥=⎩⎨⎧-=-n n S S S a n n n 。
二.迭代法迭代恒等式:112211)()()(a a a a a a a a n n n n n +-++-+-=--- ; 迭乘恒等式: 112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- ,(0≠n a ) 迭代法能够解决以下类型一和类型二所给出的递推数列的通项问题: 类型一:已知)(,11n f a a b a n n +==+,求通项n a ; 类型二:已知n n a n f a b a )(,11==+,求通项n a ; 三.待定系数法类型三:已知)1(,11≠+==+p q pa a b a n n ,求通项n a ; 四.特征根法类型四:设二阶常系数线性齐次递推式为n n n qx px x +=++12(0,,1≠≥,q q p n 为常数),其特征方程为q px x +=2,其根为特征根。
(1)若特征方程有两个不相等的实根βα,,则其通项公式为nnn B A x βα+=(1≥n ),其中A 、B 由初始值确定;(2)若特征方程有两个相等的实根α,则其通项公式为1)1([--+=n n n B A x αα(1≥n ),其中A 、B 由初始值确定。
证明:设特征根为βα,,则,p =+βαq -=αβ所以12++-n n x x α=11++-+n n n x qx px α=n n qx x p +-+1)(α=n n x x αββ-+1=)(1n n x x αβ-+ 即}{1n n x x α-+是以β为公比,首项为)12x x α-的等比数列。
所以1121)(-+-=-n n n x x x x βαα,所以2121)(---+=n n n x x x x βαα(1)当βα≠时,则其通项公式为n n n B A x βα+=,其中αβαβ)(12--=x x A ,ββαα)(12--=x x B ; (2)当βα=时,则其通项公式为1)]1([--+=n n n B A x αα,其中ααα121,x x B x A -==五.代换法代换法主要包括三角代换、分式代换与代换相消等,其中代换相消法可以解决以下类型五:已知c a b a ==21,,)0(11≠++=-+r r qa pa a n n n ,求通项n a 。
六.不动点法若αα=)(f ,则称α为)(x f 的不动点,利用不动点法可将非线性递归式化归为等差数列、等比数列或易于求解的递关系的递推关系,从而达到求解的目的。
类型六:(1)已知0(1≠+⋅+⋅=+c da c ba a a n n n ,且)0≠-bc ad ,求通项n a ;(2)已知ca ab a a a n n n +⋅+⋅=+221,求通项n a ; 七.数学归纳法 八.构造法典例分析例1.数列{a n }中,a 1=1,a n+1>a n ,且)(2111221n n n n n n a a a a a a ++=+++++成立,求n a 。
例2.已知正数数列}{n x 满足:kk nn n cx x x 11)1(+=+,其中0,,*≠∈∈c R c N k ,求n x 。
例3.已知数列{a n }满足:112212,2,1++++===n n n n n a a a a a a a ,求n a 。
例4.已知)3(2,122121≥+===--n a a a a a n n n ,证明:该数列中的一切数都是整数。
例5.已知)(1,1*213321N n a a a a a a a nn n n ∈+====+++,求n a 。
例6.数列}{},{n n b a 满足)2(1,211≥-==--n a b b b a a nn n n n n ,q b p a ==11,且1,0,=+>q p q p ,求}{},{n n b a 的通项公式。
例7.已知q p pa a b a n n +-+==+211)1(,,求n a 。
例8.数列}{n a 满足⎪⎩⎪⎨⎧=+++==+ ,2,1),24141(161111n a a a a n n n ,求n a 。
例9.已知nn n n n n n n b a b a b b a a a a +=+===++2,2,25,11121,求}{},{n n b a 的通项公式。
例10.已知数列}{},{n n b a 满足:⎩⎨⎧+=-=----θθθθcos s in s in cos 1111n n n n n n b a b b a a ,且θtan ,111==b a ,求}{},{n n b a 的通项公式。
例11.若数列}{n a 的前n 项和为)0(,1>=a a a S n ,且满足221n n n S aS a a ++=+,求}{n a 的通项公式。
拓展:若数列}{n a 的前n 项和为)0(,1>=a a a S n ,且满足)22(221<<-+-=+t S taS a a n n n ,求}{n a 的通项公式。
(参考答案:12sin sin --=n n a a θπθ,其中2cos t =θ) 例12.设数列}{},{n n b a 满足:0,100==b a ,且⎩⎨⎧-+=-+=+4783671n n nn n n b a b b a a , 2,1,0=n ,证明:n a (,2,1=n ……)是完全平方数。
练习题:1.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a3.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a4.已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a练习答案:1.解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+2.解:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=3.解:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++ 由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+- 4.解:其特征方程为2146x x x -=+,即24410x x ++=,解得1212x x ==-,令1111122n n c a a +=+++ 由12,a =得2314a =,求得1c =, ∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+-⋅=-+,135106n n a n -∴=-。