当前位置:文档之家› 2019年初中数学竞赛试题及答案

2019年初中数学竞赛试题及答案

2019年初中数学竞赛试题及答案
2019年初中数学竞赛试题及答案

初中数学竞赛试题(含答案)

一、选择题(共5小题,每小题6分,满分30分)

1、设N=,其中a、b为相邻的两个整数,c=a.b,则N( )

(A) 必为偶数(B) 必为奇数

(C) 必为无理数(D) 以上三种都可能

2、等腰△ABC中,AB=AC=6,P为BC上一点,且PA=4,则PB·PC的值等于( )

(A) 10 (B) 15 (C) 20 (D) 25

3、若x-1=2 (y+1)=3 (z+2),则x2+y2+z2可取得的最小值为( )

(A) 6 (B) (C) (D)

4、已知正方形ABCD的边长为2,E、F分别是AB,BC的中

点,AF分别交DE,DB于G,H两点,则四边形BEGH的

面积是( )

(A)(B) (C) (D)1

5、如图所示,边长为12的正三角形ABC内接于圆,弦DE∥BC分别交AB,AC

于F,G,若AF长x,DF长y都是正整数,则y的值为( )

(A) 2 (B) 3 (C) 4 (D) 6

二、填空题(共5小题,每小题6分,满分30分)

6、己知方程x2-x-1=0的根是方程x6-px2+q=0的根,则p=________,q=________.

7、已知:如图所示,凸五边形ABCDE中,S△ABC=S△BCD=S△CDE=S△DEA=S△EAB=1,

则S五边形ABCDE=__________.

8、如图,把10个两两互不相等的正整数,a1a2…a10写成下列图表的形式,其中两个箭头所指的数等于这两个箭头始点两个数的和,例如表示a2=a1+a5,那么,

满足该图表的a4的最小可能值为___________.

9、已知二次函数y=ax2+bx+c与一次函数y=mx+n的图象交点为(-1,2),(2,5),且二次函数的最小值为1,则这个二次函数的解析式为_________________________.

10、将四十个自然数1,2……,40任意排成一排,总可以找到连续排列的八个数,它们的和不小于A,则A的最大值等于_____________.

三、解答题(共4题,每小题15分,满分60分)

11、已知正实数a、b、c满足方程组

a+b2+2ac=29

b+c2+2ab=18

c+a2+2bc=25

求a+b+c的值

12、设计一套邮票,设计要求如下:该套邮票由四种不同面值的邮票组成,面值数为正整数,并且对于连续整数1,2…,R中的任一面值数,都能够通过适当选取面值互相不同且不超过三枚的邮票实现。试求出R的最大值,并给出一种相应的设计方案.

13、已知:如图,Rt△ABC中,AB=AC,∠BAC=90°,过点A的圆分别交AB,AC于点

P和Q,交BC于点D和E,若BP+CQ=PQ,求∠DAE的度数.

14、试求出所有满足下列条件的正整数a,b,c,d,其中1<a<b<c<d,且abcd-1是

(a-1) (b-1)(c-1)(d-1)的整数倍.

初三数学竞赛试题参考答案及评分标准

一、选择题(共5小题,每小题6分,满分30分)

1 2 3 4 5

B C D C C

二、填空题(共5小题,每小题6分,满分30分)

6、p=8,q=3

7、

8、20

9、y=x2+1或y=(x2+8x+25) 10、164

三、解答题(共4题,每小题15分,满分60分)

11、解:三式相加,得:

(a+b+c)+(a2+b2+c2+2ab+2bc+2ca)=72 (5分)

∴(a+b+c)2+(a+b+c)-72=0

∴〔(a+b+c)+9〕〔(a+b+c)-8〕=0 . (5分)

∵a,b,c都是正实数

∴a+b+c+9>0

∴a+b+c=8 (5分)

12、解:从四种不同面值的邮票中选取面值互不相同且不超过三张的不同取法共有

4+6+4=14(种)。

不同取法所获得邮票的总面值可能相同,也可能不同,至多只有14种不同的总面值,

∴R≤14 (5分)

又若设计四种邮票的面值数分别为1,2,4,8。(5分)

∵1=1,2=2,3=1+2,4=4,5=1+4,6=2+4,7=1+2+4,

8=8,9=1+8,10=2+8,11=1+2+8,12=4+8,13=1+4+8,14=2+4+8,∴R≤14从而R最大为14,上述四种面值数作为一套,即是符合题意的设计。 (5分)

13、解:∵∠CAB=90°∴ PQ是直径,PQ的中点O是过点A的圆的圆心。连OE,PE,作PF⊥AB交BC于点F ∵AB=AC ∴∠B=45°

∵ PF⊥AB ∴ PF=PB,PF∥CQ

∵ BP+CQ=PQ ∴ FP+CQ=PQ=2OE

∴ OE=(FP+CQ) (5分)

若取梯形CQPF的边CF中点M,连OM,则OM∥CQ∥PF,

OM=((FP+CQ) ∴ OE=OM ∴点M即FC与?OO的交点E (5分)

∴ OE∥CQ 又∵CQ⊥AB ∴ OE⊥AB ∴EA=EP ∴∠EAP=∠EPA

∵∠EAP=∠EAD+∠DAB ∠EPA=∠B+∠PEB

∴∠EAD+∠DAB=∠B+∠PEB ∴∠DAB=∠PEB

∴∠EAD=∠B=45°(5分)

14、解:则由题意,k为正整数∴a、b、c、d都是奇数或都是偶数(1分)

且1<k<

又易证:对于任意的正整数m,n且m>1,有<(1分)

∵ 1<a<b<c<d ∴当a≥5时,

∴即1<k<2

这是不可能的∴1<a≤4 (3分)

当a=4时,则b、c、d都是偶数,从而k为奇数

∴b≥6,c≥8,d≥10,k≥3 ∴

即3≤k<3,这是不可能的。

当a=3时,则b、c、d都是奇数∴b≥5,c≥7,d≥9

∴∴ k=2

若b=7,则k=于是分子不是3的倍数而分母是3的倍数

从而k不是整数∴b≠7

若b≥9 则由于c-1,d-1都不能是3的倍数

∴这是不可能的

∴a=3时,k=2,b=5∴ 2=,cd-16c-16d+17=0

∴ (c-16)(d-16)=239为质数∴ c-16=1 d-16=239

∴ a=3,b=5,c=17,d=255是符合题意的一组值。(5分)

当a=2时,b、c、d为偶数,k为奇数∴

∴ k=3 ∴ 2bcd-1=3(b-1)?(c-1)?(d-1) ∴ bcd不是3的倍数

若b≠4,则b≥8,c≥10,d≥14,于是

与k=3矛盾∴ a=2时,b=4,k=3 ∴ 3=

∴(c-9)?(d-9)=71为质数∴ c-9=1,d-9=71

∴a=2,b=4,c=10,d=80是符合题意的另一组值。(5分) 综上所述,所有满足条件的正整数a、b、c、d有两组:

注意:没有推理过程,猜出一组给2分,猜出两组给5分。

历年全国初中数学竞赛试题及参考答案

2006年全国初中数学竞赛试题及参考答案 一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且仅有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分) 1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪. 刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( ) (A)36(B)37(C)55 (D)90 2.已知,,且,则a的值等于( ) (A)-5(B)5(C)-9(D)9 3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴. 若斜边上的高为h,则( ) (A)h<1 (B)h=1 (C)1<h<2 (D)h>2 4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形,则至少要剪的刀数是( ) (A)2004 (B)2005 (C)2006 (D)2007 5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q,若QP=QO,则 的值为( ) (A)(B) (C)(D) 二、填空题(共5小题,每小题6分,满分30分) 6.已知a,b,c为整数,且a+b=2006,c-a=2005. 若a<b,则a+b+c的最大值为___________. 7.如图,面积为的正方形DEFG内接于面积为1的正三角形ABC,其中a,b,c是整数,且b不能被任何质数的平方整除,则的值等于________.

-初中数学竞赛考题分类汇编(一)数与式

初中数学竞赛考题分类汇编(一)数与式 例题1.化简3-232++=_____ 例题2、设a,b 是不相等的任意正数,又21b x a +=, 21a y b +=,则有x,y 这两个数一定( ) A.都不大于2 B .都小于2 C.至少有一个大于2 D.至少有一个小于2 例题3、设的平均数为M ,的平均数为N ,N ,的平均数为P ,若,则M 与P 的大小关系是( )。 (A )M =P ;(B )M >P ;(C )M <P ;(D )不确定。 例题4、a 、b 、c 为正整数,且4 32c b a =+,求c 的最小值。 例题5、已知333124++=a ,那么 32133a a a ++=_______ 例题6、已知a ,b ,c 为整数,且a +b=2006,c -a =2005.若a

例题7、设a ,b ,c 为互不相等的实数,且满足关系式 14 162222++=+a a c b ① 5 42--=a a bc ② 求a 的取值范围. 解:因为14162222++=+a a c b ,5 42--=a a bc ,所以 222221448454214162) ()()(+=++=--+++=+a a a a a a a c b , 所以 ) (12+±=+a c b . 又542--=a a bc ,所以b ,c 为一元二次方程 0 541222=--++±a a x a x )( ⑤ 的两个不相等实数根,故0 5441422>---+=?)()(a a a ,所以a >-1. 当a >-1时, 14162222++=+a a c b =0 712>++))((a a . 另外,当b a =时,由⑤式有 0 541222=--++±a a a a a )(, 即 05242=--a a 或 056=--a ,解得,4 211±=a 或65-=a . 当c a =时,同理可得65-=a 或4 211±=a . 所以,a 的取值范围为a >-1且65- ≠a ,4211±≠a . 例题8、已知abc ≠0,且a+b+c =0, 则代数式222 a b c bc ca ab ++的值是( ) (A) 3 (B) 2 (C) 1 (D) 0

初中数学竞赛试题汇编

初中数学竞赛试题汇编文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

C (第2 题 中国教育学会中学数学教学专业委员会 2013年全国初中数学竞赛九年级预赛试题 (本卷满分120分,考试时间120 分钟) 一、选择题(本大题共6个小题,每小题5分,共30分) 在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分. 1. 从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够 组成等腰三角形的概率是( ) A .4 1 B .31 C .2 1 D .1 2.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N ,且AB =10,BC =15,MN =3,则△ABC 的周长为( ) A .38 B .39 C .40 D . 41 3.已知1≠xy ,且有09201152=++x x ,05201192=++y y ,则y x 的值等于( ) A .9 5 B .59 C .52011- D .9 2011 - 4.已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带 斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接 近图中两个弓形(带点的阴影图形)面积之和的是( ) A .6 B . 7 C .8 D .9 5.设a ,b ,c 是△ABC 的三边长,二次函数2 2 (2b a cx x b a y ----=在1=x 时取最小值 b 5 8-,则△ABC 是( ) A .等腰三角形 B .锐角三角形 C .钝角三角形 6 照“先进后出”的原则,如图,堆栈(1)中的2 据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3数据e ,d ,c ,取出数据的顺序是c ,d ,e ,现在要从这两个堆栈中取出5 个数据(每次取出1个数据),则不同顺序的取法的种数有( ) (1) (第6题

2019年全国初中数学竞赛试题及答案

1 全国初中数学竞赛试题及答案 考试时间:2018年4月1日上午9:30—11:30 一、选择题:(共5小题,每小题6分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后括号里.不填、多填或错填都得0分) 1.方程组?????=+=+6 12y x y x 的实数解的个数为( ) (A )1 (B )2 (C )3 (D )4 解:选(A )。当x ≥0时,则有y -|y|=6,无解;当x<0时,则y +|y|=18,解得:y=9,此时x=-3. 2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ) (A )14 (B )16 (C )18 (D )20 解:选(B )。只用考虑红球与黑球各有4种选择:红球(2,3,4,5),黑球(0,1,2,3)共4×4=16种 3.已知a 、b 、c 是三个互不相等的实数,且三个关于x 的一元二次方程02 =++c bx ax , 02 =++a cx bx ,02 =++b ax cx 恰有一个公共实数根,则ab c ca b bc a 2 22++的值为( ) (A )0 (B )1 (C )2 (D )3 解:选(D )。设这三条方程唯一公共实数根为t ,则20at bt c ++=,20bt ct a ++=,2 0ct at b ++= 三式相加得:2 ()(1)0a b c t t ++++=,因为210t t ++≠,所以有a+b+c=0,从而有3333a b c abc ++=, 所以 ab c ca b bc a 222++=333 a b c abc ++=33abc abc = 4.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相 交于点D ,E .若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经 过△ABC 的( ) (A )内心 (B )外心 (C )重心 (D )垂心 解:选(B )。如图△ADE 外接圆的圆心为点F ,由题意知:⊙O 与⊙F 且弧DmE =弧DnE ,所以∠EAB =∠ABE ,∠DAC =∠ACD , 即△ABE 与△ACD 都是等腰三角形。分别过点E ,F 作AB ,AC 相交于点H ,则点H 是△ABC 的外心。又因为∠KHD =∠ACD , 所以∠DHE+∠ACD =∠DHE+∠KHD =180°,即点H ,D ,C ,E 在同一个圆上, 也即点H 在⊙O 上,因而⊙O 经过△ABC 的外心。 5.方程2563 2 3 +-=++y y x x x 的整数解x (,)y 的个数是( ) (A )0 (B )1 (C )3 (D )无穷多 解:选(A )。原方程可变形为:x(x+1)(x+2)+3x(x+1)=y(y-1)(y+1)+2,左边是6的倍数,而右边不是6的倍数。

历年初中数学竞赛真题库(含答案)

1991年全国初中数学联合竞赛决赛试题 第一试 一、选择题 本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是 两两不同的实数,则2 22 23y xy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )3 5 . 答( ) 2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) 3. 方程012=--x x 的解是 (A ) 251±; (B )25 1±-; (C ) 251±或251±-; (D )2 5 1±-±. 答( ) 4. 已知:)19911991(2 11 1 n n x --=(n 是自然数).那么n x x )1(2+-,的值是 (A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5. 若M n 1210099321=?????Λ,其中M为自然数,n 为使得等式成立的最大的自然数,则M (A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.

答( ) 6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S , 32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3. 答( ) 8. 在锐角ΔABC 中, 1= AC ,c AB =,ο60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤2 1 ; 答( ) (C )c > 2; (D )c = 2. 答( ) 二、填空题 1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a c b 32 . 3.设m ,n ,p ,q 为非负数,且对一切x >0,q p n m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( . 4.四边形ABCD 中,∠ ABC ο135=,∠BCD ο120=,AB 6=,BC 35-=, CD = 6,则AD = . 第二试 1 1=S 3S =1 32=S

初中数学奥林匹克竞赛方法与测试试题大全

初中数学奥林匹克竞赛方法与试题大全

————————————————————————————————作者:————————————————————————————————日期:

初中数学奥林匹克竞赛教程

初中数学竞赛大纲(修订稿) 数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。 本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。 《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。除教学大纲所列内容外,本大纲补充列出以下内容。这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。 1、实数 十进制整数及表示方法。整除性,被2、3、4、5、8、9、11等数整除的判定。 素数和合数,最大公约数与最小公倍数。 奇数和偶数,奇偶性分析。 带余除法和利用余数分类。 完全平方数。 因数分解的表示法,约数个数的计算。 有理数的表示法,有理数四则运算的封闭性。 2、代数式 综合除法、余式定理。 拆项、添项、配方、待定系数法。 部分分式。 对称式和轮换对称式。 3、恒等式与恒等变形 恒等式,恒等变形。 整式、分式、根式的恒等变形。 恒等式的证明。 4、方程和不等式 含字母系数的一元一次、二次方程的解法。一元二次方程根的分布。 含绝对值的一元一次、二次方程的解法。

初中数学竞赛题汇编(代数部分1)

初中数学竞赛题汇编 (代数部分1) 江苏省泗阳县李口中学沈正中精编、解答 例1若m2=m+1,n2=n+1,且m≠n,求m5+n5的值。 解:由已知条件可知,m、n是方程x2-x-1=0两个不相等的根。∴m+n=1,mn=-1 ∴m2+n2=(m+n)2-2mn=3或m2+n2=m+n+2=3 又∵m3+n3=(m+n) (m2-mn+n2)=4 ∴m5+n5=(m3+n3) (m2+n2)-(mn)2(m+n)=11 例2已知 解:设,则 u+v+w=1……①……② 由②得即 uv+vw+wu=0 将①两边平方得 u2+v2+w2+2(uv+vw+wu)=1 所以u2+v2+w2=1 即 例3已知x4+x3+x2+x+1=0,那么1+x+x2+x3+x4+……x2014=。解:1+x+x2+x3+x4+…x2014=(1+x+x2+x3+x4)+(x5+x6+x7+x8+x9)+…+(x2010+x2011+x2012+x2013+x2014)=(1+x+x2+x3+x4)+x5(1+x+x2+x3+x4)+… + x2010(1+x+x2+x3+x4)=0 例4:证明循环小数为有理数。 证明:设=x…① 将①两边同乘以100,得 …② ②-①,得99x=261.54-2.61 即x=。

例5:证明是无理数。 证明(反证法):假设不是无理数,则必为有理数,设 =(p、q是互质的自然数),两边平方有p2=2q2…①, 所以p一定是偶数,设p=2m(m为自然数),代入①整理得q=2m2,所以q也是偶数。p、q均为偶数与p、q是互质矛盾,所以不是有理数,即为有理数。 例6:;;。 解: 例7:化简(1);(2) (3);(4); (5); (6)。 解:(1)方法1

历年初中数学竞赛真题库(含答案)

1991年全国初中数学联合竞赛决赛试题 第一试 一、选择题 本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. . 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不 同的实数,则22223y xy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35 . 答( ) . 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) . 方程0 12=--x x 的解是 (A )251±; (B )25 1±-; (C )251±或251±-; (D )251±-± . 答( ) . 已知:)19911991(21 1 1n n x --=(n 是自然数).那么 n x x )1(2+-,的值是 (A)11991-; (B)1 1991--; (C)1991)1(n -; (D)1 1991)1(--n . 答( ) . 若M n 1210099321=????? ,其中M为自然数,n 为使得等式成立的最大的自然数,则M (A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除. 答( ) . 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) . 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和 1 3=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3. 答( ) 1 1=S

(完整版)【2019年整理】初中数学竞赛试题及答案,推荐文档

全国初中数学竞赛(海南赛区) 初 赛 试 卷 (本试卷共 4 页,满分 120 分,考试时间:3 月 22 日 8:30——10:30) 题号 一 二 三 总分 (1—10) (11—18) 19 20 得分 一、选择题(本大题满分 50 分,每小题 5 分) 在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号下的方格内 题号 1 2 3 4 5 6 7 8 9 10 答案 1. 方程 1 - 1 x = 0 的根是2009 A. - 1 2009 B. 1 C. -2009 D. 2009 2009 2. 如果 a + b < 0 ,且b > 0 ,那么 a 2 与b 2 的关系是 A. a 2 ≥ b 2 B. a 2 > b 2 C. a 2 ≤ b 2 D. a 2 < b 2 3. 如图所示,图 1 是图 2 中正方体的平面展开图(两图中的箭头位置和方向是一致的),那么,图 1 中的线段 AB 在图 2 中的对应线段是 A. k B . h C . e D . d 4. 如图,A 、B 、C 是☉O 上的三点,OC 是☉O 的半径,∠ABC=15°,那么∠OCA 的度数是 A .75° B .72° C .70° D .65° A 图 2 (第 3 题图) (第 4 题图) 5. 已知2a =3, 2b =6, 2c =12,则下列关系正确的是 A B C O B 图 1

y 2 A. 2a = b + c B. 2b = a + c C. 2c = a + b D. c = 2a + b 6. 若实数 n 满足 (n-2009 )2 + ( 2008-n )2 =1,则代数式(n-2009 ) ( 2008-n )的值是 D.1 1 B . 2 C .0 D. -1 7. 已知△ABC 是锐角三角形,且∠A>∠B>∠C,则下列结论中错误的是 A .∠A>60° B .∠C<60° C .∠B>45° D .∠B+∠C<90° 8.有 2009 个数排成一行,其中任意相邻的三个数中,中间的数总等于前后两数的和,若第一个数是 1,第二个数是-1,则这 2009 个数的和是 A .-2 B .-1 C .0 D .2 9.⊙0 的半径为 15,在⊙0 内有一点 P 到圆心 0 的距离为 9,则通过 P 点且长度是整数值的弦的条数是 A .5 B .7 C .10 D .12 10.已知二次函数 y = ax 2 + bx + c (a ≠ 0) 的图象如图所示,记 p = 2a + b , q = b - a ,则下列结论正确的是 A . p > q >0 B . q > p >0 C . p >0> q D . q >0> p (第 10 题图) 二、填空题(本大题满分 40 分,每小题 5 分) 11. 已知 | x |=3, =2,且 x + y <0,则 x y = . 1 1 12. 如果实数 a , b 互为倒数,那么 1 + a 2 + 1 + b 2 = . 13. 口袋里只有红球、绿球和黄球若干个,这些球除颜色外,其余都相同,其中红球 4 个, 2 绿球 6 个,又知从中随机摸出一个绿球的概率为 5 ,那么,随机从中摸出一个黄球的 概率为 . 14. 如图,在直线 y = -x + 3 上取一点 P ,作 PA ⊥ x 轴, PB ⊥ y 轴,垂足分别为 A 、B ,若矩形 OAPB 的面积为 4,则这样的点 P 的坐标是 . 15. 如图,AD 是△ABC 的角平分线,∠B=60°, E, F 分别在 AC 、AB 上,且 AE=AF ,∠CDE=∠BAC,那么,图中长度一定与 DE 相等的线段共有 条 .

历年初中数学竞赛试题精选(含解答)

初三数学竞赛试题 4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是() A. m(1+a%)(1-b%)元 B. m?a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 解:选C。设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于是x=a+b+c+d=9。 解:出发1小时后,①、②、③号艇与④号艇的距离分别为 各艇追上④号艇的时间为 对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。 解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则 由①②得,代入③得: ∴,故n的最小整数值为23。 答:要在2小时内抽干满池水,至少需要水泵23台 解:设第一层有客房间,则第二层有间,由题可得 由①得:,即 由②得:,即 ∴原不等式组的解集为 ∴整数的值为。

答:一层有客房10间。 解:设劳动竞赛前每人一天做个零件 由题意 解得 ∵是整数∴=16 (16+37)÷16≈3.3 故改进技术后的生产效率是劳动竞赛前的3.3倍。 初中数学竞赛专项训练(2) (方程应用) 一、选择题: 答:D。 解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程: ,化简得,解得不合题意舍去)。应选D。 答:C。 解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为 所以,生产第9档次产品获利润最大,每天获利864元。 答:C。 解:若这商品原来进价为每件a元,提价后的利润率为, 则解这个方程组,得,即提价后的利润率为16%。 答:B。

初中数学竞赛试题大全

B C M (第2题图) 中国教育学会中学数学教学专业委员会 2013年全国初中数学竞赛九年级预赛试题 (本卷满分120分,考试时间120 分钟) 一、选择题(本大题共6个小题,每小题5分,共30分) 在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号里,不填、多填或错填均为零分. 1. 从长度是2cm ,2cm ,4cm ,4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( ) A .4 1 B .31 C .2 1 D .1 2.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,AN ⊥BN 于N ,且AB =10,BC =15,MN =3,则△ABC 的周长为( ) A .38 B .39 C .40 D. 41 3.已知1≠xy ,且有09201152=++x x ,05201192=++y y ,则y x 的值等于( ) A .9 5 B .59 C .52011- D .9 2011 - 4.已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜 线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形 (带点的阴影图形)面积之和的是( ) A .6 B. 7 C .8 D .9 5.设a ,b , c 是△ABC 的三边长,二次函数2 2 (2b a cx x b a y ----=在1=x 时取最小值 b 5 8 -,则△ABC 是( ) A .等腰三角形 B .锐角三角形 C .钝角三角形 D 6 照“先进后出”的原则,如图,堆栈(1)中的2 据b ,a ,取出数据的顺序是a ,b ;堆栈(2)的3 数据e ,d ,c ,取出数据的顺序是c ,d ,e ,现在要从这两个堆栈中取出5 个数据(每次取出1个数据),则不同顺序的取法的种数有( ) A .5种 B .6种 C .10种 D .12种 (1) (第6题图)

全国初中数学竞赛各省市试题汇编

初中数学竞赛题汇编 省市2013年中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2013?)下列各数中,小于﹣3的数是() 2.(3分)(2013?)某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为()

故选A. 点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键. 3.(3分)(2013?)下列计算,正确的是() A.x4﹣x3=x B.x6÷x3=x2C.x?x3=x4D.(xy3)2=xy6 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方 专题:计算题. 分析:A、本选项不能合并,错误; B、利用同底数幂的除法法则计算得到结果,即可做出判断; C、利用同底数幂的乘法法则计算得到结果,即可做出判断; D、利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断. 解答:解:A、本选项不能合并,错误; B、x6÷x3=x3,本选项错误; C、x?x3=x4,本选项正确; D、(xy3)2=x2y6,本选项错误. 故选C. 点评:此题考查了同底数幂的乘除法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键. 4.(3分)(2013?)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是() A.4B.3C.2D.1 考点:中心对称图形;轴对称图形 分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后解答即可. 解答:解:第一个图形是轴对称图形,不是中心对称图形;

全国初中数学竞赛试题及答案79416

中国教育学会中学数学教学专业委员会 全国初中数学竞赛试题 一、选择题(共5小题,每小题6分,共30分.) 1(甲).如果实数a,b,c在数轴上的位置如图所示,那 22 ||()|| a a b c a b c ++-++可以化简为(). (A)2c a-(B)22 a b -(C)a-(D)a 1(乙).如果22 a=- 1 1 1 2 3a + + + 的值为(). (A)2 -(B)2(C)2 (D) 22 2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数 y = x b(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为(). (A)(2,3)(B)(3,-2)(C)(-2,3) (D)(3,2) 2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x +2y的整数点坐标(x,y)的个数为(). (A)10 (B)9 (C)7 (D)5 3(甲).如果a b,为给定的实数,且1a b <<,那么

1121 a a b a b ++++,, ,这四个数据的平均数与中位数之差的 绝对值是( ). (A )1 (B ) 214a - (C )12 (D )1 4 3(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=?,AD = 3,BD = 5, 则CD 的长为( ). (A )23 (B )4 (C )52 (D )4.5 4(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ). (A )1 (B )2 (C )3 (D )4 4(乙).如果关于x 的方程 2 0x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的 个数是( ). (A ) 5 (B ) 6 (C ) 7 (D ) 8 5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则 0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p 5(乙).黑板上写有1 11123100 , , ,, 共100个数字.每次操作先从黑板上的数中选取2个数 a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数 是( ). (A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行 从“输入一个值x ”到“结果是否>487?”为一次

全国初中数学竞赛各省市试题汇编

初中数学竞赛题汇编 江苏省南通市2013年中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2013?南通)下列各数中,小于﹣3的数是() 2.(3分)(2013?南通)某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为()

故选A. 点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键. 3.(3分)(2013?南通)下列计算,正确的是() A.x4﹣x3=x B.x6÷x3=x2C.x?x3=x4D.(xy3)2=xy6 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方 专题:计算题. 分析:A、本选项不能合并,错误; B、利用同底数幂的除法法则计算得到结果,即可做出判断; C、利用同底数幂的乘法法则计算得到结果,即可做出判断; D、利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断. 解答:解:A、本选项不能合并,错误; B、x6÷x3=x3,本选项错误; C、x?x3=x4,本选项正确; D、(xy3)2=x2y6,本选项错误. 故选C. 点评:此题考查了同底数幂的乘除法,幂的乘方与积的乘方,以及二次根式的乘除法,熟练掌握运算法则是解本题的关键. 4.(3分)(2013?南通)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数 是() A.4B.3C.2D.1 考点:中心对称图形;轴对称图形 分析:根据轴对称图形与中心对称图形的概念对各图形分析判断后解答即可. 解答:解:第一个图形是轴对称图形,不是中心对称图形;

最新全国初中数学竞赛试题及答案

全国初中数学竞赛试题及参考答案 一.选择题(5×7'=35') 1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ). A .0 B .1 C .3 D .5 【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C . 2.已知关于x 的不等式组??????? <-+->-+x t x x x 2 353 52恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2 116.-≤≤-t D 【分析】20232 35352<<-????????<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x . 注意到15=x 时,只有4个整数解.所以 2116152314-≤<-?<-≤t t ,本题选C 3.已知关于x 的方程x x x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4 【分析】422222222+-=?--=-+-x x a x x x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍); ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍); 再考虑等根: ⅲ)对04222=-+-a x x ,270)4(84= →=--=?a a ,当21,272,1==x a . 故27, 8,4=a ,2 1,1,1-=x 共3个.本题选C .

初中数学竞赛试题及答案大全

全国初中数学竞赛初赛试题汇编 (1998-2018) 目录 1998年全国初中数学竞赛试卷 (1) 1999年全国初中数学竞赛试卷 (6) 2000年全国初中数学竞赛试题解答 (9) 2001年TI杯全国初中数学竞赛试题B卷 (14) 2002年全国初中数学竞赛试题 (15) 2003年“TRULY信利杯”全国初中数学竞赛试题 (17) 2004年“TRULY信利杯”全国初中数学竞赛试题 (25) 2005年全国初中数学竞赛试卷 (30) 2006年全国初中数学竞赛试题 (32) 2007年全国初中数学竞赛试题 (38) 2008年全国初中数学竞赛试题 (46) 2009年全国初中数学竞赛试题 (47) 2010年全国初中数学竞赛试题 (52) 2011年全国初中数学竞赛试题 (57) 2012年全国初中数学竞赛试题 (60) 2013年全国初中数学竞赛试题 (73) 2014年全国初中数学竞赛预赛 (77) 2015年全国初中数学竞赛预赛 (85) 2016年全国初中数学联合竞赛试题 (94) 2017年全国初中数学联赛初赛试卷 (103)

2018 年初中数学联赛试题 (105)

1998年全国初中数学竞赛试卷 一、选择题:(每小题6分,共30分) 1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D) c b c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)5 3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( ) (A)12(B)14(C)16(D)18 4、已知0≠abc ,并且 p b a c a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组? ??<-≥-080 9b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、 b )共有( ) (A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分) 6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。 7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。 8、已知圆环内直径为acm ,外直径为bcm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。 9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a=___________。 10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。 三、解答题:(每小题20分,共60分) 11、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点, 点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。 A B C E F

★初中数学竞赛试题精选

1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。 A. 111 B. 1000 C. 1001 D. 1111 解:依题意设六位数为abcabc ,则abcabc =a ×105 +b ×104 +c ×103 +a ×102 +b ×10 +c =a ×102 (103 +1)+b ×10(103 +1)+c (103 +1)=(a ×103 +b ×10+c )(103 +1)=1001(a ×103+b ×10+c ),而a ×103+b ×10+c 是整数,所以能被1001整 除。故选C 方法二:代入法 2、若2001 11981 11980 11 ? ?++ =S ,则S 的整数部分是____________________ 解:因1981、1982……2001均大于1980,所以9022 19801980 1221==? >S ,又1980、 1981……2000均小于2001,所以22219022 20012001 1221== ? < S ,从而知S 的整数 部分为90。 3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。 解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的, 所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。 4、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店

初中数学竞赛题汇编代数部分

初中数学竞赛题汇编(代数部分)

————————————————————————————————作者:————————————————————————————————日期:

初中数学竞赛题汇编 (代数部分1) 江苏省泗阳县李口中学沈正中精编、解答 例1若m2=m+1,n2=n+1,且m≠n,求m5+n5的值。 解:由已知条件可知,m、n是方程x2-x-1=0两个不相等的根。∴m+n=1,mn=-1 ∴m2+n2=(m+n)2-2mn=3或m2+n2=m+n+2=3 又∵m3+n3=(m+n) (m2-mn+n2)=4 ∴m5+n5=(m3+n3) (m2+n2)-(mn)2(m+n)=11 例2已知 解:设,则 u+v+w=1……①……② 由②得即 uv+vw+wu=0 将①两边平方得 u2+v2+w2+2(uv+vw+wu)=1 所以u2+v2+w2=1 即 例3已知x4+x3+x2+x+1=0,那么1+x+x2+x3+x4+……x2014=。解:1+x+x2+x3+x4+…x2014=(1+x+x2+x3+x4)+(x5+x6+x7+x8+x9)+…+(x2010+x2011+x2012+x2013+x2014)=(1+x+x2+x3+x4)+x5(1+x+x2+x3+x4)+… + x2010(1+x+x2+x3+x4)=0 例4:证明循环小数为有理数。 证明:设=x…① 将①两边同乘以100,得 …② ②-①,得99x=261.54-2.61 即x=。

例5:证明是无理数。 证明(反证法):假设不是无理数,则必为有理数,设 =(p、q是互质的自然数),两边平方有p2=2q2…①, 所以p一定是偶数,设p=2m(m为自然数),代入①整理得q=2m2,所以q也是偶数。p、q均为偶数与p、q是互质矛盾,所以不是有理数,即为有理数。 例6:;;。 解: 例7:化简(1);(2) (3);(4); (5); (6)。 解:(1)方法1

2020年全国初中数学竞赛历年竞赛试题以及参考答案:一

2020年全国初中数学竞赛历年竞赛试题以及参考答案 一 一、选择题 1.设a <b <0,a 2+b 2=4ab ,则b a b a -+的值为【 】 A 、3 B 、6 C 、2 D 、3 2.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2 -ab -bc -ca 的值为【 】 A 、0 B 、1 C 、2 D 、3 3.如图,点 E 、 F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点 G ,则ABCD AGCD S S 矩形四边形等于【 】 A 、65 B 、54 C 、43 D 、32 A B C D E F G 4.设a 、b 、c 为实数,x =a 2-2b + 3π,y =b 2-2c +3π,z =c 2-2a +3 π,则x 、y 、z 中至少有一个值【 】 A 、大于0 B 、等于0 C 、不大于0 D 、小于0 5.设关于x 的方程ax 2 +(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】

A 、72-<a <52 B 、a >52 C 、a <72- D 、11 2-<a <0 6.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、 ()b a +2 1 D 、a +b 二、填空题 7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。 8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。 9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。 A B C P 10.如图,大圆O 的直径AB =acm ,分别以OA 、OB 为直径作⊙O 1、⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形O 1O 2O 3O 4的面积为 cm 2 。

相关主题
文本预览
相关文档 最新文档