电动力学 第0章 绪论
- 格式:ppt
- 大小:654.00 KB
- 文档页数:21
电动力学习题及答案第0章 绪论及数学准备练习一1、设,,i j k为直角坐标系的三个单位矢量,计算下列各式:解:(1) ()()()2A B A B A B B A B A +⨯-=-⨯+⨯=⨯,(2) ()(),()0a a b a a b a a b ⋅⨯=-⋅⨯∴⋅⨯=, (3) 2()()()()a b a a a b a b a a b a a b ⨯⨯=⋅-⋅=-⋅ , (4) ()1j i k k k ⨯⋅=-⋅=-, (5) ()1k i j j j ⨯⋅=⋅=(6) 若()()M b a c a b c =⋅-⋅ ,则M c ⋅=,解:()()()()0M c b c a c a c b c ⋅=⋅⋅-⋅⋅=(7) ()()[()][()()]()()()()a b c d c a b d c a d b b d a a c b d a d b c ⨯⋅⨯=-⋅⨯⨯=-⋅⋅-⋅=⋅⋅-⋅⋅(8) ()()()()()()()()()0a b c b c a c a b a c b a b c b a c b c a c b a c a b ⨯⨯+⨯⨯+⨯⨯=⋅-⋅+⋅-⋅+⋅-⋅=(9) ():()AB CD =解:():()()()A B C D B C A D =⋅⋅2、利用矢量A B 、的分量式,证明C AB BA C ⋅=⋅证明:(1) 333111,,,i ij j k k i j k A Ae B B e C C e ======∑∑∑33333331111111,,i j i j k k j i j ii j j i i j k m n m n AB A B e e C C e BA B Ae e A B e e ===========∑∑∑∑∑∑∑3,,1,,,33,,1,,1,()(),()(),k i j k i j k i j ki ji j k i j ki i j j i i j j i j j ij i k j i k j i k j kii j k i j k j i i j i i j j i jjiC AB C A B e e e C A B e C A B e C A B e C A B BA C B AC e e e B AC e B AC e C A B e C A B δδ===⋅=⋅====⋅⋅=⋅====⋅∑∑∑∑∑∑∑∑∑∑(注:这里01= j ij δ≠⎧=⎨⎩当i j时当i 时)}练习二1、设(')(')(')x y z r x x e y y e z z e =-+-+-为从源点指向场点的矢量, r k E ,0为常矢量, ,,,,u v A g f是,,'''x y z x y z 以及,,的函数。
电动力学第一讲矢量分析(1)本讲目的使学生了解本课程,建立学好本课程的动力和信念,掌握基本坐标系知识和矢量的概念。
讲课提要内容(1) 课程介绍:自我介绍、性质、基础、教材和参考材料;约5’(2) 矢量分析之坐标系:三种坐标系的概念、应用方法和相互关系;约40’(3) 矢量分析之矢量基础:基本概念、运算和坐标系表示方法。
约45’重点坐标系和矢量的坐标表示;掌握内容矢量的直角坐标系表示方法;了解课程的重要性、圆柱坐标系、球坐标系难点坐标系之间的变换关系、矢量的不同坐标系表示课堂教学方法PPT、板书和交流第零章绪论一、课程性质和任务课程性质:电子信息科学类专业本科生必修的一门专业基础课。
合格本科生所应具备的知识结构的重要组成部分。
内容涉及静态场、时变场、平面电磁波、导波、传输线理论、辐射。
课程的意义:(1) 具有普遍意义的科学和工程问题的研究和解决方法;(2) 广泛社会应用的科学理论基础;(3) 奠定个人在电子信息技术专业领域发展的良好基础。
这里以学习相关课程的三个问题来理解:例1:传播速度问题:光速和电流:一般金属导体内具有电子密度为233~10cm=,J-n-,对于1A/mm2的电流密度,6210Am电子电荷19e-⨯,我们发现对应的电子移动速度~1.610C51v--⨯。
~610ms例2:信号的时谐因子:j teω例3:物理光学、光纤光学的科学理论基础学习要求:掌握基本的宏观电磁理论,具备分析和解决基本的电磁场工程问题的能力。
先修基础:《大学物理(电磁学)》、《高等数学》、《数理方程和特殊函数》二、历史回顾1820年以前定性观察电现象、磁现象电磁场理论发展中的重大事件:库仑定律(电荷相互作用力规律)1820:电流磁效应(奥斯特)、安培力定律(安培)1831:电磁感应(法拉第)1864:位移电流假说,麦克斯韦方程组(麦克斯韦方程)1888:试验证明电磁波存在(赫兹)电磁波技术:发射、传输、接收和应用技术。
第一章电磁现象的普遍规律 一、 主要内容:电磁场可用两个矢量一电场强度电Z,zQ 和磁感应强度B{x r y r zfy 来完全 描写,这一章的主要任务是:在实验定律的根底上找出丘,歹所满足的偏微分方程组 一麦克斯韦方程组以及洛仑兹力公式,并讨论介质的电磁性质及电磁场的能量。
在电 磁学的根底上从实验定律岀发运用矢量分析得出电磁场运动的普遍规律:使学生掌握 麦克斯韦方程的微分形式及物理意义;同时体会电动力学研究问题的方法,从特殊到 一般,由实验定律加假设总结出麦克斯韦方程。
完成由普通物理到理论物理的自然过 渡。
二、 知识体系:介质磁化规律:能量守恒定律n 线性介质能量密度:I 能流密度:洛仑兹力密度;宇二应+" x B三、内容提要:1. 电磁场的根本实验定律:(1) 库仑定律:库仑定理:壮丿=[*虫1厶电磁感应定律:市总•屋=-—[B-dSdV f區 dt k涡旋电场假设 介质的极化规律:V- 5 = /? VxZ=比奥-萨伐尔逹律: D = s Q S + PJdVxr边值关系位移电流假设V-> = 0J+ —B =其中:第2页,共37页对E 个点电荷在空间某点的场强等于各点电荷单独存在时在该点场强的矢量和, 即:〔2〕毕奥——萨伐尔定律〔电流决定磁场的实验定律〕B = ^[^L〔3〕电磁感应定律②磁场与它激发的电场间关系是电磁感应定律的微分形式。
〔4〕电荷守恒的实验定律①反映空间某点Q 与了之间的变化关系,非稳恒电流线不闭合。
空二0月•了二0②假设空间各点Q 与£无关,那么別为稳恒电流,电流线闭合。
稳恒电流是无源的〔流线闭合〕,°, 7均与北无关,它产生的场也与上无关。
2、电磁场的普遍规律一麦克斯韦方程微分形式di——diV • D = p方二勺宜+戶,H = —-MAo积分形式[f] E dl =-\ --dSSJs 冼[fl H-df = I + -\D -d§S念J血Q/40①生电场为有旋场〔鸟又称漩涡场〕,与静电场堤本质不同。
电动力学一、课程说明课程编号:140308Z10课程名称(中/英文):电动力学,Electrodynamics课程类别:专业类课程学时/学分:56/3先修课程:高等数学,数学物理方法,电磁学,理论力学适用专业:物理学,应用物理学,光信息工程类等本科专业教材、教学参考书:郭硕鸿主编:《电动力学》,高等教育出版社,2009年出版(第三版)陈世民主编:《电动力学简明教程》,高等教育出版社,2004年出版俞允强主编,《电动力学简明教程》,北京大学出版社,1999年出版尹真主编,《电动力学》,科学出版社,2005年出版(第二版)二、课程设置的目的意义本课程是为应用物理学专业学生开设的专业必修理论课,是在大学物理课程《电磁学》的基础上,运用高等数学工具和数学物理方法,全面系统地阐述和总结电磁学普遍规律以及电磁场理论在各个方面的运用。
通过电动力学课程的教学,使学生对经典电磁学,特别是电动力学的基本概念、基本理论和方法有比较系统的认识和正确的理解,对实际的电磁学问题中所包含的物理本质有较好的理解,并结合高等数学和数学物理方法的运用掌握处理电磁学问题的一般方法,培养学生运用数学工具解决物理问题的能力,为学习后继的理论物理课程和相关课程打下较坚实的基础。
并逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力;训练学生抽象概括问题的能力和综合运用知识来分析解决问题的能力,为学生学习进一步学习新理论、新知识以及新技术打下扎实的基础。
三、课程的基本要求1、知识要求通过电动力学课程的学习,特别是电磁现象的普遍规律——麦克斯韦方程组及洛伦兹力公式的学习,掌握电磁场的基本规律,加深对电磁场性质的理解;通过应用麦克斯韦方程组研究静电场和静磁场的主要特征及电磁波的传播和辐射的基本性质,进一步掌握电磁学的基本理论;通过对电磁场运动规律和狭义相对论的学习,更深刻领会电磁场的物质性,建立新的时空观念。
使学生能够获得有关电磁理论的一个完整的知识框架,为今后学习各类后继课程和进一步扩大知识面奠定必要的基础。
电动力学课件01.引言电动力学是物理学中的一个重要分支,主要研究电荷、电流、电磁场以及它们之间的相互作用规律。
电动力学的发展历程可以追溯到19世纪,当时的科学家们通过实验和理论研究,逐步揭示了电磁现象的本质和规律。
本课件旨在介绍电动力学的基本概念、理论框架和重要应用,帮助读者系统地了解电动力学的基本原理和方法。
2.麦克斯韦方程组麦克斯韦方程组是电动力学的基础,描述了电磁场的基本性质和演化规律。
麦克斯韦方程组包括四个方程,分别是:(1)高斯定律:描述了电荷分布与电场之间的关系,即电荷产生电场,电场线从正电荷出发,终止于负电荷。
(2)高斯磁定律:描述了磁场的无源性质,即磁场线是闭合的,没有磁单极子存在。
(3)法拉第电磁感应定律:描述了时变磁场产生电场的现象,即磁场的变化会在空间产生电场。
(4)安培环路定律:描述了电流和磁场之间的关系,即电流产生磁场,磁场线围绕电流线。
3.电磁波的传播(1)电磁波的传播速度:在真空中,电磁波的传播速度等于光速,即c=3×10^8m/s。
(2)电磁波的能量:电磁波传播过程中,电场和磁场交替变化,携带能量。
(3)电磁波的极化:电磁波的电场矢量在空间中的取向称为极化,可分为线极化、圆极化和椭圆极化。
(4)电磁波的反射、折射和衍射:电磁波在遇到边界时会发生反射和折射现象,同时还会产生衍射现象。
4.动态电磁场(1)电磁场的波动方程:描述了电磁波的传播规律,包括波动方程的推导和求解。
(2)电磁场的能量和动量:研究电磁场携带的能量和动量,以及它们与电荷、电流之间的相互作用。
(3)电磁场的辐射:研究电磁波在空间中的辐射现象,包括辐射源、辐射功率和辐射强度等。
5.电动力学应用(1)通信技术:电磁波的传播特性使其成为无线通信的理想载体,广泛应用于方式、电视、无线电等领域。
(2)能源传输:电磁感应原理使电能的高效传输成为可能,如变压器、发电机等。
(3)电子设备:电磁场的控制和应用是电子设备工作的基础,如电脑、方式、家用电器等。