1 2
__B_C__,
③AF是△ABC的高线,则∠__A_F_B_=∠_A__F_C_=90°.
考点三 有关三角形内、外角的计算
例5 ∠A ,∠B ,∠C是△ABC的三个内角,且分别满足 下列条件,求∠A,∠B,∠C中未知角的度数.
(1)∠A-∠B=16°,∠C=54°; (2)∠A:∠B:∠C=2:3:4.
解:(1)由∠C=54°知∠A+∠B=180°-54°=126°① 又∠A-∠B=16°②,由①②解得∠A=71°,∠B=55° (2)设∠A=2x,∠B=3x,∠C=4x
则2x + 3x + 4x = 180° ,解得 x=20° ∴∠A=40°,∠B=60°,∠C=80°
考点四 多边形的内角和与外角和
例2 等腰三角形的周长为16,其一边长为6,求另 两边长.
解:由于题中没有指明边长为6的边是底还是腰, ∴分两种情况讨论:
当6为底边长时,腰长为(16-6)÷2=5,这时另两 边长分别为5,5; 当6为腰长时,底边长为16-6-6=4,这时另两边长 分别为6,4. 综上所述,另两边长为5,5或6∠A+∠B+∠C+∠D+∠E+∠F
+∠G的度数.
A
解析:连接CD便转化为求五边形
的内角和问题.
BG
E F
解:连接CD,由“8字型”可知 C
D
∠FCD+∠GDC=∠F+∠G
所以∠A+∠B+∠C+∠D+∠E+∠F+∠G
=(5-2) ×180 °=540 °
A字型 A
E
D
内角和:(n-2) ×180 ° 外角和:360 °
正多边形
内角= (n
2) 180 n
;外角=
360 n