fluent中文教程笔记
- 格式:docx
- 大小:4.71 MB
- 文档页数:10
FLUENT中文手册(简化版)本手册介绍FLUENT的使用方法,并附带了相关的算例。
下面是本教程各部分各章节的简略概括。
第一部分:☐开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中给出了一个简单的算例。
☐使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。
☐读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。
☐单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。
☐使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。
还描述了非一致(nonconformal)网格的使用.☐边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等☐物理特性:描述了如何定义流体的物理特性与方程。
FLUENT采用这些信息来处理你的输入信息。
第二部分:☐基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。
☐湍流模型:描述了FLUENT的湍流模型以及使用条件。
☐辐射模型:描述了FLUENT的热辐射模型以及使用条件。
☐化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。
☐污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。
第三部分:☐相变模拟:描述了FLUENT的相变模型及其使用方法。
☐离散相变模型:描述了FLUENT的离散相变模型及其使用方法。
☐多相流模型:描述了FLUENT的多相流模型及其使用方法。
☐移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。
单精度和双精度求解器在所有的操作系统上都可以进行单精度和双精度计算。
对于大多数情况来说,单精度计算已经足够,但在下面这些情况下需要使用双精度计算:(1)计算域非常狭长(比如细长的管道),用单精度表示节点坐标可能不够精确,这时需要采用双精度求解器。
(2)如果计算域是许多由细长管道连接起来的容器,各个容器内的压强各不相同。
如果某个容器的压强特别高的话,那么在采用同一个参考压强时,用单精度表示其他容器内压强可能产生较大的误差,这时可以考虑使用双精度求解器。
(3)在涉及到两个区域之间存在很大的热交换,或者网格的长细比很大时,用单精度可能无法正确传递边界信息,并导致计算无法收敛,或精度达不到要求,这时也可以考虑采用双精度求解器。
网格文件是包含各个网格点坐标值和网格连接信息2,以及各分块网格的类型和节点数量等信息的文件进程文件(journal file)是一个FLUENT 的命令集合,其内容用Scheme 语言写成。
可以通过两个途径创建进程文件:一个是在用户进入图形用户界面后,系统自动记录用户的操作和命令输入,自动生成进程文件;另一个是用户使用文本编辑器直接用Scheme 语言创建进程文件,其工作过程与用FORTRAN 语言编程类似。
File -> Write -> Start Journal系统就开始记录进程文件。
此时原来的Start Journa(l 开始进程)菜单项变为Stop Journal(终止进程),点击Stop Journal(终止进程)菜单项则记录过程停止。
边界函数分布文件(profile file)用于定义计算边界上的流场条件,还可以将边界网格写入单独的文件,相应的菜单操作是:File -> Write -> Boundary Grid在打开的文件选择窗口中保存文件即可。
在用户对网格不满意时,可以先将边界网格保存起来,然后再用Tgrid 软件读入这个网格文件,并重新生成满意的立体网格。
Flue nt使用步骤指南(新手参考)步骤一:网格1.读入网格(*Msh )File — Read —Case读入网格后,在窗口显示进程2.检查网格Grid —Check'Flue nt对网格进行多种检查,并显示结果。
注意最小容积,确保最小容积值为正。
3.显示网格Display —Grid①以默认格式显示网格可以用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作对于同样类型的多个区域情况非常有用,以便快速区别它们。
4.网格显示操作Display —Views(a)在Mirror Planes 面板下,axis(b)点击Apply,将显示整个网格(c)点击Auto scale,自动调整比例,并放在视窗中间(d)点击Camera调整目标物体位置(e)用鼠标左键拖动指标钟,使目标位置为正(f)点击Apply,并关闭Camera Parameters 和Views 窗口步骤二:模型1.定义瞬时、轴对称模型Define 宀models 宀Solver(a)保留默认的,Segregated解法设置,该项设置,在多相计算时使用。
(b)在Space面板下,选择Axisymmetric;(c)在Time面板下,选择Un steady2.采用欧拉多相模型Define 宀Models 宀Multiphase(a)选择Eulerian作为模型(b)如果两相速度差较大,则需解滑移速度方程(c)如果Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛(d)保留设置不变3.米用K- e湍流模型(米用标准壁面函数)Define 宀Models 宀Viscous⑻选择K- e ( 2 eqn模型)(b)保留Near wall Treatment 面板下的Standard Wall Function设置(c)在K-e Multiphase Model 面板下,采用Dispersed 模型, dispersed湍流模型在一相为连续相,而材料密度较大情况下采用,而且Stocks数远小于1,颗粒动能意义不大。
Fluent 使用步骤指南(新手参考)步骤一:网格1.读入网格(*.Msh)File → Read → Case读入网格后,在窗口显示进程2.检查网格Grid → Check'Fluent对网格进行多种检查,并显示结果。
注意最小容积,确保最小容积值为正。
3.显示网格Display → Grid①以默认格式显示网格可以用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作对于同样类型的多个区域情况非常有用,以便快速区别它们。
4.网格显示操作Display →Views(a)在Mirror Planes面板下,axis(b)点击Apply,将显示整个网格(c)点击Auto scale, 自动调整比例,并放在视窗中间(d)点击Camera,调整目标物体位置(e)用鼠标左键拖动指标钟,使目标位置为正(f)点击Apply,并关闭Camera Parameters 和Views窗口步骤二:模型1. 定义瞬时、轴对称模型Define → models→ Solver(a)保留默认的,Segregated解法设置,该项设置,在多相计算时使用。
(b)在Space面板下,选择Axisymmetric;(c)在Time面板下,选择Unsteady2. 采用欧拉多相模型Define→ Models→ Multiphase(a)选择Eulerian作为模型(b)如果两相速度差较大,则需解滑移速度方程(c)如果Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛(d)保留设置不变3. 采用K-ε湍流模型(采用标准壁面函数)Define → Models → Viscous(a) 选择K-ε ( 2 eqn 模型)(b) 保留Near wall Treatment面板下的Standard Wall Function 设置(c)在K-ε Multiphase Model面板下,采用Dispersed模型,dispersed湍流模型在一相为连续相,而材料密度较大情况下采用,而且Stocks数远小于1,颗粒动能意义不大。
FLUENT中文手册(简化版)本手册介绍FLUENT的使用方法,并附带了相关的算例。
下面是本教程各部分各章节的简略概括。
第一部分:☐开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中给出了一个简单的算例。
☐使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。
☐读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。
☐单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。
☐使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。
还描述了非一致(nonconformal)网格的使用.☐边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等☐物理特性:描述了如何定义流体的物理特性与方程。
FLUENT采用这些信息来处理你的输入信息。
第二部分:☐基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。
☐湍流模型:描述了FLUENT的湍流模型以及使用条件。
☐辐射模型:描述了FLUENT的热辐射模型以及使用条件。
☐化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。
☐污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。
第三部分:☐相变模拟:描述了FLUENT的相变模型及其使用方法。
☐离散相变模型:描述了FLUENT的离散相变模型及其使用方法。
☐多相流模型:描述了FLUENT的多相流模型及其使用方法。
☐移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。
第一章开始1,解算器的计算步骤:边界条件的设定,流体物性的设定,解的执行,网格的优化,结果的查看与后处理。
2,解决问题前需要考虑的几点问题(1)定义模型目标:a从CFD模型中需要得到什么样的结果?b从模型中需要得到什么样的精度;(2)选择计算模型:a如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?b在模型的边界处使用什么样的边界条件?c二维问题还是三维问题?d什么样的网格拓扑结构适合解决问题?(3)物理模型选取:a无粘,层流还湍流?b定常还是非定常?c可压流还是不可压流?d是否需要应用其它的物理模型?(4)确定解的程序:a问题可否简化?b是否使用缺省的解的格式与参数值?c采用哪种解格式可以加速收敛?d使用多重网格计算机的内存是否够用?e得到收敛解需要多久的时间?3,解题步骤a.创建网格b.运行合适的解算器:2D、3D、2DDP、3DDPc.输入网格d.检查网格e.选择解的格式f.选择需要解的基本方程:层流或湍流(无粘)、化学组分或化学反应、热传导模型等g.确定所需要的附加模型:风扇,热交换,多孔介质等h.指定材料物理性质i.指定边界条件j.调节解的控制参数k.初始化流场l.计算解m.检查结果n.保存结果o.必要时细化网格,改变数值和物理模型P. fluent软件菜单5,双精度解算器的适用条件(1)几何图形长度尺度相差太多(比如细长管道),需要描述节点坐标时;(2)几何图形由很多层小直径管道包围而成(比如:汽车的集管)且平均压力不大,但是局部区域压力却可能相当大时(因为你只能设定一个全局参考压力位置);(3)对于包括很大热传导比率和(或)高比率网格的成对问题,如果使用单精度解算器便无法有效实现边界信息的传递,从而导致收敛性和(或)精度下降。
1.1.1 FLUENT 软件包中包括以下几个软件:(1)FLUENT 求解器——FLUENT 软件的核心,所有计算在此完成。
(2)prePDF——FLUENT 用PDF 模型计算燃烧过程的预处理软件。
(3)GAMBIT——FLUENT 提供的网格生成软件。
(4)TGRID——FLUENT 用于从表面网格生成空间网格的软件。
(5)过滤器——或者叫翻译器,可以将其他CAD/CAE 软件生成的网格文件变成能被FLUENT 识别的网格文件。
3.4.2 生成面网格对于平面及轴对称流动问题,只需要生成面网格。
对于三维问题,也可以先划分面网格,作为进一步划分体网格的网格的网格种子。
Gambit 根据几何形状及CFD 计算的需要提供了三种不同的网格划分方法:1、映射方法映射网格划分技术是一种传统的网格划分技术,它仅适合于逻辑形状为四边形或三角形的面,它允许用户详细控制网格的生成。
在几何形状不太复杂的情况下,可以生成高质量的结构化网格。
2、子映射方法为了提高结构化网格生成效率,Gambit 软件使用子映射网格划分技术。
也就是说,当用户提供的几何外形过于复杂,子影射网格划分方法可以自动对几何对象进行再分割,使在原本不能生成结构化网格的几何实体上划分出结构化网格。
子映射网格技术是FLUENT公司独创的一种新方法,它对几何体的分割只是在网格划分算法里进行,并不真正对用户提供的几何外形做实际操作。
3、自由网格对于拓扑形状较为复杂的面,可以生成自由网格,用户可以选择合适的网格类型(三角 形或四边)。
3.4.4 生成体网格对于三维流动问题,必须生成三维实体网格。
Gambit 提供五种体网格的生成方法。
1、映射网格对于六面体结构,可以使用映射网格方法直接生成六面体网格。
对于较为复杂的几何形体,必须在划分网格前将其分割为若干格六面体结构。
2、子映射网格Gambit 软件的子映射网格划分技术同样适用于体网格。
也就是说,当用户提供的几何外形过于复杂,子影射网格划分方法可以自动对几何对象进行再分割,使在原本不能生成结构化网格的几何实体上划分出结构化网格。
Fluent软件学习笔记Fluent软件学习笔记⼀、利⽤Gambit建⽴计算区域和指定边界条件类型1)⽂件的创建及其求解器的选择软件基本知识:Geometry 绘制图形Mesh ⽹格划分Zones 指定边界条件类型和区域类型Operation绘图⼯具⾯板Tools 指定坐标系统等视图控制⾯板:全图显⽰(Fit to window)选择象限显⽰视图选择显⽰项⽬撤销或重复上⼀步⿏标键:左键单击——旋转模型中键单击——平移模型右键单击——放缩模型Shift+⿏标左键——选择点、边、⾯等①建⽴新⽂件:Flie New②选择求解器:Solver2)创建控制点:Operation-Geometry-Vertex创建边:Operation-Geometry-Edge创建⾯:Operation-Geometry-Face3)划分⽹格对边进⾏划分:对⾯进⾏划分:Operation-Mesh-Face-Mesh Faces注:打开的⽂本框中:Quad-四边形⽹格Elements- Tri-三⾓形⽹格Quad/Tri-混合型⽹格Map映射成结构化⽹络Submap分块/区映射块结构化⽹络Type- Pave平铺成⾮结构化⽹络Tri Primitive 将⼀个三⾓形区域分解为三个四边形区域在划分结构化⽹格Interval size:指定⽹格间距Interval count:指定⽹格个数4)边界条件类型的指定:Operation-ZonesAdd添加Name:为边界命名Action- Modify修改Type:指定类型Delete删除Entity :选择边/⾯5)Mesh⽹格⽂件的输出:File-Export-Mesh注:对于⼆维情况,必须选中Export2-D(X-Y)Mesh总结:建⽴⼏何模型划分⽹格定义边界条件输出⽹格⽂件(即建⽴计算区域)⼆、利⽤Fluent求解器求解1)Fluent求解器的选择2d:⼆维、单精度求解器2ddp:⼆维、双精度求解器3d:三维、单精度求解器3ddp:三维、双精度求解器2)⽂件导⼊和⽹格操作①导⼊⽹格⽂件:File-Read-Case②检查⽹格⽂件:Grid-Check(若minimum volume即最⼩⽹格的体积的值⼤于0,则⽹格可以⽤于计算)③设置计算区域尺⼨:Grid-ScaleFluent中默认的单位为m,⽽Gambit作图时候采⽤的单位为mm④显⽰⽹格:Display-Grid3)选择计算模型①求解器的定义:Define-Models-Solver(压⼒基、密度基)②其他操作模型的选定Multiphase多相流模型Energy考虑传热与否Species反应及其传热相关Viscous层流或湍流模型选择Define-Models-Viscous:打开粘性模型Inviscid⽆粘模型Laminar层流模型Spalart-Allmaras单⽅程湍流模型(S-A模型)K-epsilon双⽅程模型(k-ε模型)K-omega双⽅程模型以及雷诺应⼒模型③操作环境的设置:Define-Operating ConditionsPascal(环境压强)、Gravity(重⼒影响)4)定义流体的物理性质:Define-MaterialsFluent Database中调出5)设置边界条件:Define-Boundary Conditions①设置Fluid流体区域的物质:Zone-Fluid--Set②设置Inlet的边界条件:Zone-Inlet-Set③设置Outlet的边界条件④设置Wall的边界条件6)求解⽅法的设置及控制①求解参数的设置:Solve-Controls-Solutions...Equations:需要求解的控制⽅程Pressure-Velocity Coupling:压⼒-速度耦合求解⽅式Discretization:所求解的控制⽅程Under-Relaxation Factor:松弛因⼦②初始化:Solve-Initialize-Initialize...设置Compute Form为Inlet,依次点击Init和Close图标完成对流场的初始化③打开残差监控图:Solve-Monitors-Residuai...④保存当前的Case⽂件:File-Write-Case...⑤开始迭代计算:Solve-Iterate...⑥保存计算后的Case和Date⽂件:File-Write-Case&Date...7)计算结果显⽰显⽰速度等值线图:Display Contours...Contous of-------选中Velocity...Surfaces-------指定平⾯Levels--------等值线数⽬(默认)Options-----------选中Filled绘制的是云图注:轴对称问题,可通过镜像选择显⽰整个圆管的物理量分布镜像选择显⽰的设置:Display-Views... 在Mirror Planes中选择axial为镜像平⾯,然后点击Apply图标接受设置绘制速度⽮量图:Display-Vectors...Vectors of-------选中VelocityStyle----------箭头类型Scale---------⽮量被放⼤倍数Skip----------⽮量密集程度显⽰某边上速度的速度剖⾯XY点线图:Plot-XY Plot...注:Plot Direction:表⽰曲线将沿什么⽅向绘制显⽰迹线F ile—path lines在release from surface列表中选择释放粒⼦的平⾯设置step size和step的数⽬,step size设置长度间隔steps设置了⼀个微粒能够前进的最⼤步数单击display三、⼆维⽰例⼆维定常可压缩流场分析——NACA 0006翼型⽓动⼒计算⼆维定常不可压缩流场分析——卡门涡街动画的设置:Solve-Animate-Define三维定常可压缩流动⽰例第⼆章:流体⼒学基本⽅程及边界条件三⼤控制⽅程:质量守恒、动量守恒及能量守恒⽅程初始条件边界条件:速度⼊⼝三维定常速度场的计算1、内部⽹格的显⽰打开examine mesh对话框温度场的计算Fluent处理中选中能量⽅程求解器:define/models/energy设置wall边界条件时候,convection热对流边界条件多相流模型VOF模型的选择define/models/multiphase基本相及第⼆相的设置define/phase动画的设置。
Radio Buttons这类按钮中,只有一个选项可以打开。
Text EntryInteger Number Entry一般说来用鼠标点击上下箭头,会增加或者减少1。
如果结合键盘点击一次鼠标就可以增加更多的数量。
用法如下表:Key Factor of IncreaseShift 10Ctrl 100Real Number Entry可以输入实数如10, -10.538, 50000.45和5.e-4),一般都会带有相应的单位。
单选列表许多面板响应鼠标的双击功能,在实践中多试几次就熟练了多选列表鼠标点击一次选上;再点击一次取消选择下拉菜单使用方法和Windows的一样。
标尺可以用鼠标操作,也可以用鼠标选择之后再用键盘左右选择图形显示窗口Figure 1: 图形显示窗口的例子显示选项面板可以控制图形显示的属性也可以打开另一个显示窗口。
鼠标按钮面板可以用于设定鼠标在图形显示窗口点击时所执行的操作。
当为图形显示处理数据时要取消显示操作可以按Ctrl+C,已经开始画图的话就无法取消操作了。
输出图形显示窗口是Windows NT系统的特有功能,UNIX系统没有此项功能。
页面设置面板也是Windows NT系统独有的功能Windows NT系统的特有的输出图形显示窗口功能如果你选择的是Windows NT版本的FLUENT,点击图形窗口的左上角便可以显示图形窗口系统菜单,该菜单包括常用系统命令如:move,size和close。
连同系统命令一起,FLUENT 为支持打印机和剪贴板增加了三条命令:1.复制到剪贴板:将当前图形复制到Windows的剪贴板。
可以用页面设置面板改变复制的属性。
图形窗口的大小影响了图形中所使用的字的大小。
2.打印:将当前图形复制到打印机。
可以用页面设置面板改变打印的属性。
3.页面设置:显示页面设置面板。
Windows NT系统独有的页面设置面板功能:在图形显示窗口的system菜单中点击Page Setup..菜单,弹出页面设置面板如下:第一个Color:允许你选择是否使用彩色图第二个Color:选择彩色图形Gray Scale:选择灰度比例图Monochrome:选择黑白图Color Quality:允许你指定图形的色彩模式True Color:创建一个由RGB值定义的图,这假定了你的打印机或者显示器有至少65536个色彩或无限色彩。
⾃学笔记FLUENTcartesian 笛卡⼉的;笛卡⼉坐标cylindrical 柱⾯的圆柱坐标spherical 球⾯;球坐标translate 平移rotate 旋转reflect 反射scale 缩放origin 原点,起点incline 斜⾯,倾斜base 基础,底座tolerance 公差,偏差manual ⼿动auto ⾃动stitch 缝;缝补;缝合,把某物连在⼀起sweep 扫过,沿给定路径扫掠,得到⼀个体revolve 旋转;环绕;转动⽣成回转体wireframe 线框unite 联合,合并,(结合取两个⾯或两个体的并集)subtract 差集;减去(从⼀个⾯或体上减去⼀个⾯或者体得到新的)intersect 相交, 交叉(取两个⾯或体的交集)split ⽤⼀个⾯或体把另⼀个⾯或体分成两个merge 把两个⾯或体合并为⼀个⾯或体⽹格的⽣成1、⽣成线⽹格:允许⽤户详细的控制在线上节点的分布规律;2、⽣成⾯⽹格:对于平⾯及轴对称流动问题,只需要⽣成⾯⽹格。
对于三维问题,也可以先划分⾯⽹格,作为进⼀步划分体⽹格的⽹格种⼦。
(1)映射⽅法:仅适合于逻辑形状为四边形或三⾓形的⾯;(2)⼦映射⽅法:它对⼏何体的分割,只是在⽹格划分算法⾥进⾏,并不真正对⽤户提供的⼏何外形做实际操作。
(3)⾃由⽹格:3、边界层⽹格:⼀是:考虑到近壁粘性效应采⽤较密的贴体⽹格;⼆是⽹格的疏密程度与流场参数的变化梯度⼤体⼀致。
Modify 修改, 更改options 选项;选择 mesh ⽹格;⽹孔remove old mesh 隐藏、清除旧的⽹格ignore size functions 忽略;忽视;尺⼨功能、函数interval 间隔;区间;差别 count 数量;数;计数;边界层⽹格的创建(Create Boundary Layer )Definition 定义,释义;定界边界层⽹格的创建需要输⼊四组参数,分别是第⼀个⽹格点距边界的距离(First Row ),⽹格的⽐例因⼦(Growth Factor ),边界层⽹格点数(Rows ,垂直边界⽅向)以及边界层厚度(Depth )。
fluent中文教程笔记1.FLUENT 提供三种不同的解格式:分离解;隐式耦合解;显式耦合解。
三种解法都可以在很大流动范围内提供准确的结果,但是它们也各有优缺点。
分离解和耦合解方法的区别在于,连续性方程、动量方程、能量方程以及组分方程的解的步骤不同,分离解是按顺序解,耦合解是同时解。
两种解法都是最后解附加的标量方程(比如:湍流或辐射)。
隐式解法和显式解法的区别在于线化耦合方程的方式不同。
2. 分离解以前用于FLUENT 4 和FLUENT/UNS,耦合显式解以前用于RAMPANT。
分离解以前是用于不可压流和一般可压流的。
而耦合方法最初是用来解高速可压流的。
现在,两种方法都适用于很大范围的流动(从不可压到高速可压),但是计算高速可压流时耦合格式比分离格式更合适。
FLUENT 默认使用分离解算器,但是对于高速可压流(如上所述),强体积力导致的强烈耦合流动(比如浮力或者旋转力),或者在非常精细的网格上的流动,你需要考虑隐式解法。
这一解法耦合了流动和能量方程,常常很快便可以收敛。
耦合隐式解所需要内存大约是分离解的1.5 到2 倍,选择时可以通过这一性能来权衡利弊。
在需要隐式耦合解的时候,如果计算机的内存不够就可以采用分离解或者耦合显式解。
耦合显式解虽然也耦合了流动和能量方程,但是它还是比耦合隐式解需要的内存少,但是它的收敛性相应的也就差一些。
注意:分离解中提供的几个物理模型,在耦合解中是没有的:多项流模型;混合组分/PDF 燃烧模型/预混合燃烧模型/Pollutant formation models/相变模型/Rosseland 辐射模型/指定质量流周期流动模型/周期性热传导模型。
3. FLUENT 不会管所解能量方程是温度还是焓形式,它都会设定默认的亚松弛因子为1.0。
在能量场影响流体流动(通过温度相关属性或者焓)的问题中,你应该是用较小的亚松弛因子,一般在0.8 到1.0之间。
当流场和温度场解耦时(没有温度相关属性或者浮力),你可以保留松弛因子的默认值1.0。
Fluent学习笔记(⼀)前⾔:之前⽤过CFX,看完Fluent感觉好⽤多了。
不过,本⼈是⾃⼰编代码做CFD的,我对这些CFD软件⼀直持有保守观点,我始终认为只有掌握CFD的基本原理才抓住了他的本质。
学个CFX,Fluent在我看来就是学会了怎么点点功能按键,⼀个完全不懂CFD的⼈可以靠Fluent输出五颜六⾊的图⽚,外⾏⼈⼀看还以为是⼤神。
不过,我承认,⽤Fluent或者CFX对快速求解分析⼀些问题是很好的⼯具,对于不是专门做CFD的⾏外⼈员来说蛮好⽤。
对于我这种像研究CFD原理的⼈来说,就当⼀个技能学了。
如果在命名过程中使⽤.gz或.z的后缀,则系统会⽤相应的压缩⽅式保存算例⽂件和数据⽂件,它们是Fluent中的压缩⽂件格式。
进程⽂件相当于重播⽤户曾经进⾏的操作,可以读⼊。
记录⽂件也可以记录⽤户所有的键盘和菜单输⼊动作,但是不可以重播。
边界函数分布⽂件⽤于定义计算边界上的流场条件,例如可以⽤边界函数分布⽂件定义管道⼊⼝处的速度分布。
Mesh->check检查⽹格的质量,输出⽹格的常⽤信息,⽐如坐标值、体积值、⾯积值。
当体积为负时,意味着存在⼀个或多个单元有不合适的连通性,⼀个负体积的单元经常可以使⽤Iso-Value Adaption。
在合并⾯域时,选择所要合并的⾯,在Tolerance中输⼊适当的公差值,单机fuse按钮进⾏合并。
在两个⼦域交会的边界处不需要⽹格的节点位置统⼀,如果使⽤Tolerance的默认值没有使所有合适的⾯合并,那么可以适当增加Tolerance的数值,然后再试着合并域,但是Tolerance不应该超过0.5,否则可能会合并错误的节点。
通常情况下,⽹格设置后还需要进⾏光顺和单元⾯交换来提⾼最后数值⽹格的质量,光顺重新配置节点和⾯的交换修改单元的连通性,从⽽使⽹格在质量上取的改善。
(单元⾯交换仅仅适⽤于三⾓形和四⾯体单元的⽹格适应)求解器的类型有Pressure-based和density-based。
Discretization离散Node values节点值,coarsen粗糙refine细化curvature曲率,X-WALL shear Stress 壁面切应力的X方向。
strain rate应变率1、求解器:(solver)分为分离方式(segeragated)和耦合方式(coupled),耦合方式计算高速可压流和旋转流动等复杂高参数问题时比较好,耦合隐式(implicit)耗时短内存大,耦合显式(explicit)相反;2.收敛判据:观察残差曲线。
可以在残差监视器面板中设置Convergence Criterion(收敛判据),比如设为10 -3 ,则残差下降到小于10 -3 时,系统既认为计算已经收敛并同时终止计算。
(2)流场变量不再变化。
有时候不论怎样计算,残差都不能降到收敛判据以下。
此时可以用具有代表性的流场变量来判断计算是否已经收敛——如果流场变量在经过很多次迭代后不再发生变化,就可以认为计算已经收敛。
(3)总体质量、动量、能量达到平衡。
在Flux Reports (通量报告)面板中检查质量、动量、能量和其他变量的总体平衡情况。
通过计算域的净通量应该小于0.1%。
Flux Reports(通量报告)面板如图2-17 所示,其启动方法为:Report -> Fluxes3.一阶精度与二阶精度:First Oder Upwind and Second Oder Upwind(一阶迎风和二阶迎风)①一阶耗散性大,有比较严重的抹平现象;稳定性好②二阶耗散性小,精度高;稳定性较差,需要减小松弛因子4.流动模型的选择①inviscid无粘模型:当粘性对流场影响可以忽略时使用;例如计算升力。
②laminar层流模型:考虑粘性,且流动类型为层流。
③Spalart-Allmaras (S-A模型):单方程模型,适用于翼型、壁面边界层流动,不适于射流等自由剪切湍流问题。
④k-epsilon (k-ε模型):⑴k-ε标准模型:高雷诺数湍流,应用广泛,不适于旋转等各向异性较强的流动。
fluent技术基础与应用实例4.2.2 fluent数值模拟步骤简介主要步骤:1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。
2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件)3、检查网格(Grid→Check)。
如果网格最小体积为负值,就要重新进行网格划分。
4、选择计算模型。
5、确定流体物理性质(Define→Material)。
6、定义操作环境(Define→operating condition)7、制定边界条件(Define→Boundary Conditions)8、求解方法的设置及其控制。
9、流场初始化(Solve→Initialize)10、迭代求解(Solve→Iterate)11、检查结果。
12、保存结果,后处理等。
具体操作步骤:1、fluent2d或3d求解器的选择。
2、网格的相关操作(1)、读入网格文件(2)、检查网格文件文件读入后,一定要对网格进行检查。
上述的操作可以得到网格信息,从中看出几何区域的大小。
另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划分网格。
(3)、设置计算区域在gambit中画出的图形是没有单位的,它是一个纯数量的模型。
故在进行实际计算的时候,要根据实际将模型放大或缩小。
方法是改变fluent总求解器的单位。
(4)、显示网格。
Display→Grid3、选择计算模型(1)、基本求解器的定义Define→Models→SolverFluent中提供了三种求解方法:·非耦合求解 segregated·耦合隐式求解 coupled implicit·耦合显示求解 coupled explicit非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。
耦合求解方法用在高速可压缩流体fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建议采用耦合隐式求解方法。
Fluent学习笔记(8)----tecplot应用技巧(tecplot 输出图片方法1. file-export2. 快速地把图形放在剪切板上,edit->copy plot to clipboar.需要导出彩色的图片,需要点选colorcopy到word中的图形显示效果不太令人满意,需要优化。
1. 去掉图形边框,frame->edit current frame, 取消show border2. 去掉坐标轴,单击坐标轴所在的直线,取消show axis line3. 调整图形窗口的大小单击图形的四周的虚线,拖动即可。
Fluent学习笔记(10)-----多相流模型多相流是指有两种或者两种以上不同相的物质同时存在的一种流体运动。
如气井中喷出的流体以天然气为主,但也包含一定数量的液体和泥,这是比两相更复杂的一种流动。
工程中多相流系统中的相具有更为广泛的意义。
例如具有相同类别的物质,该类物质在所处流动中具有特定的惯性响应并与流场相互作用。
例如:形同材料的固体物质颗粒如果具有不同搞得尺寸,就可以把他妈看成不同的相,因为相同尺寸粒子的集合对流场有相似的动力学响应。
多相流研究方法目前有欧拉-拉格朗日方法和欧拉-欧拉方法1. 欧拉-拉格朗日方法流体视为连续相,并且求解N—S方程,而离散相是通过计算流场中大量粒子的运动得到的。
离散相和连续相之间存在动量、质量和能量的传递。
方法适用的前提:作为离散相的第二相的体积分数应很低。
即便当mspecies>=mfluid,,粒子运动轨迹的计算也是独立的,他们被安排在流体相计算的特定间隙内完成。
2. 欧拉-欧拉方法在欧拉-欧拉方法中,不同的相被处理成相互贯穿的连续介质。
由于一种相所占的体积无法再被其他相占有,故此引入相体积率(phase volume fraction)的概念。
体积率是时间和空间的连续函数,各相的体积率之和为1.从各相的守恒方程可以推导出一组方程,其对于所有的相都具有类似的形式。
Fluent学习笔记(20)-----fluent contours
等值线图绘制,选择contours ⾯板下的 surface type即可,此时若需要云图,点击filled即可。
选择nodes values时是对云图中的数据进⾏插值运算,或者是平滑处理,即是点击nodes values前后是对图中等值线的锯齿部分的有⽆处理。
⽽单独surfaces后,图像会出现⽹格的背景。
对于fluent绘制出来的云图,若想从图中得到观察点的云图数值,点击图⽚中的适当位置即可,在fluent的窗⼝中会相应的输出点击点的处于云图的哪⼀个等级,以及等级范围。
等值线中添加数据,将fluent的cas、dat⽂件导⼊到tecplot,选择contours,点击图⽚中在contour 下的contour type 选择lines 格式后确定,选择主页⾯上的contour后⾯的…按钮,选择labels版⾯下的show labels,具体的字体颜⾊和⼤⼩都可以修改。
Fluent软件学习笔记一、利用Gambit建立计算区域和指定边界条件类型1)文件的创建及其求解器的选择软件基本知识:Geometry 绘制图形Mesh 网格划分Zones 指定边界条件类型和区域类型Operation绘图工具面板Tools 指定坐标系统等视图控制面板:全图显示(Fit to window)选择象限显示视图选择显示项目撤销或重复上一步鼠标键:左键单击——旋转模型中键单击——平移模型右键单击——放缩模型Shift+鼠标左键——选择点、边、面等①建立新文件:Flie New②选择求解器:Solver2)创建控制点:Operation-Geometry-Vertex创建边:Operation-Geometry-Edge创建面:Operation-Geometry-Face3)划分网格对边进行划分:对面进行划分:Operation-Mesh-Face-Mesh Faces注:打开的文本框中:Quad-四边形网格Elements- Tri-三角形网格Quad/Tri-混合型网格Map映射成结构化网络Submap分块/区映射块结构化网络Type- Pave平铺成非结构化网络Tri Primitive 将一个三角形区域分解为三个四边形区域在划分结构化网格Interval size:指定网格间距Interval count:指定网格个数4)边界条件类型的指定:Operation-ZonesAdd添加Name:为边界命名Action- Modify修改Type:指定类型Delete删除Entity :选择边/面5)Mesh网格文件的输出:File-Export-Mesh注:对于二维情况,必须选中Export2-D(X-Y)Mesh总结输出网格文件()二、利用Fluent求解器求解1)Fluent求解器的选择2d:二维、单精度求解器2ddp:二维、双精度求解器3d:三维、单精度求解器3ddp:三维、双精度求解器2)文件导入和网格操作①导入网格文件:File-Read-Case②检查网格文件:Grid-Check(若minimum volume即最小网格的体积的值大于0,则网格可以用于计算)③设置计算区域尺寸:Grid-ScaleFluent中默认的单位为m,而Gambit作图时候采用的单位为mm④显示网格:Display-Grid3)选择计算模型①Define-Models-Solver(压力基、密度基)②其他操作模型的选定Multiphase多相流模型Energy考虑传热与否Species反应及其传热相关Viscous层流或湍流模型选择Define-Models-Viscous:打开粘性模型Inviscid无粘模型Laminar层流模型Spalart-Allmaras单方程湍流模型(S-A模型)K-epsilon双方程模型(k-ε模型)K-omega双方程模型以及雷诺应力模型③操作环境的设置:Define-Operating ConditionsPascal(环境压强)、Gravity(重力影响)4)定义流体的物理性质:Define-MaterialsFluent Database中调出5)设置边界条件:Define-Boundary Conditions①设置Fluid流体区域的物质:Zone-Fluid--Set②设置Inlet的边界条件:Zone-Inlet-Set③设置Outlet的边界条件④设置Wall的边界条件6)求解方法的设置及控制①求解参数的设置:Solve-Controls-Solutions...Equations:需要求解的控制方程Pressure-Velocity Coupling:压力-速度耦合求解方式Discretization:所求解的控制方程Under-Relaxation Factor:松弛因子②初始化:Solve-Initialize-Initialize...设置Compute Form为Inlet,依次点击Init和Close图标完成对流场的初始化③打开残差监控图:Solve-Monitors-Residuai...④保存当前的Case文件:File-Write-Case...⑤开始迭代计算:Solve-Iterate...⑥保存计算后的Case和Date文件:File-Write-Case&Date...7)计算结果显示➢显示速度等值线图:Display Contours...Contous of-------选中Velocity...Surfaces-------指定平面Levels--------等值线数目(默认)Options-----------选中Filled绘制的是云图注:轴对称问题,可通过镜像选择显示整个圆管的物理量分布镜像选择显示的设置:Display-Views... 在Mirror Planes中选择axial为镜像平面,然后点击Apply图标接受设置➢绘制速度矢量图:Display-Vectors...Vectors of-------选中VelocityStyle----------箭头类型Scale---------矢量被放大倍数Skip----------矢量密集程度➢显示某边上速度的速度剖面XY点线图:Plot-XY Plot...注:Plot Direction:表示曲线将沿什么方向绘制➢显示迹线F ile—path lines在release from surface列表中选择释放粒子的平面设置step size和step的数目,step size设置长度间隔steps设置了一个微粒能够前进的最大步数单击display三、二维示例➢二维定常可压缩流场分析——NACA 0006翼型气动力计算➢二维定常不可压缩流场分析——卡门涡街动画的设置:Solve-Animate-Define三维定常可压缩流动示例第二章:流体力学基本方程及边界条件三大控制方程:质量守恒、动量守恒及能量守恒方程初始条件边界条件:速度入口三维定常速度场的计算1、内部网格的显示打开examine mesh对话框温度场的计算Fluent处理中选中能量方程求解器:define/models/energy设置wall边界条件时候,convection热对流边界条件多相流模型VOF模型的选择define/models/multiphase基本相及第二相的设置define/phase动画的设置。
单/双精度解算器1,如果几何体为细长形的,用双精度的;2,如果模型中存在通过小直径管道相连的多个封闭区域,不同区域之间存在很大的压差,用双精度。
3,对于有较高的热传导率的问题和对于有较大的面比的网格,用双精度。
Cortex 是fluent为用户提供接口和图形的一个过程。
边界条件被记录后,如果以后再读入的话,是按照相应的区域的名字来对照的。
如果几个名字相似的区域想使用相同的边界条件,那么在边界条件文件中应该编辑该边界条件对应的区域名为name-*,就是要使用通配符!网格类型的选择:1。
建模时间2。
计算花费一般对于同一几何体三角形/四面体网格元素比四边形/六面体的数目要少。
但是后者却能允许较大的纵横比,因此对于狭长形的几何体选择该种网格类型。
3 数字发散。
引起发散的原因是由于系统的截断误差,如果实际流场只有很小的发散,这时的发散就很重要。
对于fluent来说,二次离散有助于减少发散,另外优化网格也是降低发散的有效途径。
如果流动和网格是平行的话,对于网格和几何体的要求:1,对于轴对称的几何体,对称轴必须是x轴。
2,gambit 能生等角的或非等角的周期性的边界区域。
另外,可以在fluent中通过make-periodic文本命令来生成等角的周期性的边界区域。
网格质量:1.节点密度和聚变。
对于由于负压强梯度引起的节点脱离,以及层流壁面边界层的计算精度来说,节点浓度的确定是很重要的。
对于湍流的影响则更重要,一般来说任何流管都不应该用少于5个的网格元素来描述。
当然,还要考虑到计算机的性能。
2.光滑性。
相邻网格元素体积的变化过大,容易引起较大的截断误差,从而导致发散。
Fluent 通过修正网格元素的体积变化梯度来光滑网格。
3.元素形状。
主要包括倾斜和纵横比。
一般纵横比要小于5:1。
4.流场。
很倾斜的网格在流动的初始区域是可以的,但在梯度很大的地方就不行。
由于不能实现预测该区域的存在,因此要努力在整个区域划分优良的网格。
1.FLUENT 提供三种不同的解格式:分离解;隐式耦合解;显式耦合解。
三种解法都可以在很大流动范围内提供准确的结果,但是它们也各有优缺点。
分离解和耦合解方法的区别在于,连续性方程、动量方程、能量方程以及组分方程的解的步骤不同,分离解是按顺序解,耦合解是同时解。
两种解法都是最后解附加的标量方程(比如:湍流或辐射)。
隐式解法和显式解法的区别在于线化耦合方程的方式不同。
2. 分离解以前用于FLUENT 4 和FLUENT/UNS,耦合显式解以前用于RAMPANT。
分离解以前是用于不可压流和一般可压流的。
而耦合方法最初是用来解高速可压流的。
现在,两种方法都适用于很大范围的流动(从不可压到高速可压),但是计算高速可压流时耦合格式比分离格式更合适。
FLUENT 默认使用分离解算器,但是对于高速可压流(如上所述),强体积力导致的强烈耦合流动(比如浮力或者旋转力),或者在非常精细的网格上的流动,你需要考虑隐式解法。
这一解法耦合了流动和能量方程,常常很快便可以收敛。
耦合隐式解所需要内存大约是分离解的1.5 到2 倍,选择时可以通过这一性能来权衡利弊。
在需要隐式耦合解的时候,如果计算机的内存不够就可以采用分离解或者耦合显式解。
耦合显式解虽然也耦合了流动和能量方程,但是它还是比耦合隐式解需要的内存少,但是它的收敛性相应的也就差一些。
注意:分离解中提供的几个物理模型,在耦合解中是没有的:多项流模型;混合组分/PDF 燃烧模型/预混合燃烧模型/Pollutant formation models/相变模型/Rosseland 辐射模型/指定质量流周期流动模型/周期性热传导模型。
3. FLUENT 不会管所解能量方程是温度还是焓形式,它都会设定默认的亚松弛因子为1.0。
在能量场影响流体流动(通过温度相关属性或者焓)的问题中,你应该是用较小的亚松弛因子,一般在0.8 到1.0 之间。
当流场和温度场解耦时(没有温度相关属性或者浮力),你可以保留松弛因子的默认值1.0。
4. 层流有限速率模型:忽略湍流脉动的影响,反应速率根据Arrhenius 公式确定。
涡耗散模型:认为反应速率由湍流控制,因此避开了代价高昂的Arrhenius 化学动力学计算。
涡耗散概念(EDC)模型:细致的Arrhenius 化学动力学在湍流火焰中合并。
注意详尽的化学动力学计算代价高昂。
5.尽管FLUENT 允许采用涡耗散模型和有限速率/涡耗散模型的多步反应机理(反应数>2),但可能会产生不正确的结果。
原因是多步反应机理基于Arrhenius 速率,每个反应的都不一样。
在涡耗散模型中,每个反应都有同样的湍流速率,因而模型只能用于单步(反应物—产物)或是双步(反应物—中间产物,中间产物—产物)整体反应。
模型不能预测化学动力学控制的物质,如活性物质。
为合并湍流流动中的多步化学动力学机理,使用EDC模型。
6.涡耗散模型需要产物来启动反应。
当你初始化求解的时候,FLUENT 设置产物的质量比率为0.01,通常足够启动反应。
但是,如果你首先聚合一个混合解,其中所有的产物质量比率都为0,你可能必须在反应区域中补入产物以启动反应。
7. 涡-耗散-概念(EDC)模型是涡耗散模型的扩展,以在湍流流动中包括详细的化学反应机理。
它假定反应发生在小的湍流结构中,称为良好尺度。
良好尺度的容积比率按下式模拟在FLUENT 中,良好尺度中的燃烧视为发生在定压反应器中,初始条件取为单元中当前的物质和温度。
反应经过时间尺度τ*后开始进行,由方程 13.1-7 的 Arrhenius 速率控制,并且用普通微分方程求解器CVODE 进行数值积分。
经过一个τ*时间的反应后物质状态记为Y i∗8.已选物质Selected Species 列表中物质的顺序非常重要。
FLUENT 认为列表中最后的物质是大量的物质。
因此,当你从混合物材料中增加或是删除物质时,必须小心将最丰富(按质量)的物质作为最后一个物质。
9.完成了周期性热传导常数壁面温度的用户输入之后,你就可以解决流动和热传导问题直至收敛。
最为有效的解决方法是首先解没有热传导的周期性流动,然后不改变流场来解热传导问题,具体步骤如下:1). 在解控制面板中关闭能量方程选项。
菜单:Solve/Controls/Solution...。
2). 解剩下的方程(连续性,动量以及湍流参数(可选))来获取收敛的周期性流动的流场解。
注意,当你在开始计算之前初始化流场时,请使用入口体积温度和壁面温度的平均值作为流场的初始温度。
3). 回到解控制面板,关闭流动方程打开能量方程。
4). 解能量方程直至收敛获取周期性温度场。
当同时考虑流动和热传导来解决周期性流动和热传导问题时,你就会发现上面所介绍的方法相当有效。
10. 对于轴对称问题,旋转轴必须是x 轴,网格必须在直线y=0 上或上方。
11. Limitations of the Premixed Combustion ModelThe following limitations apply to the premixed combustion model:• You must use the pressure-based solver. The premixed combustion model is not available with the density-based solver.• The premixed combustion model is valid only for turbulent, subsonic flows. These types of flames are called deflagrations. Explosions, also called detonations, where the combustible mixture is ignited by the heat behind a shock wave, can be modeled with the finite-rate model using the density-based solver.• The premixed combustion model cannot be used in conjunction with the pollutant (that is, soot and NOx) models. However, a perfectly premixed system can be modeled with the partially premixed model, which can be used with the pollutant models.• You cannot use the premixed combustion model to simulate reacting discrete-phase particles, because these would result in a partially premixed system. Only inert particles can be used with the premixed combustion model.• The G-Equation model can be used only with the unsteady solver because it tracks the flame front in time. However, RANS solutions, which tend to a steady-state, can be modeled by evolving them in time until the solution is stationary.1.注意:1.对流项的插值方法有:–First-Order Upwind –易收敛,一阶精度。
Power Law –对低雷诺数流动(Re cell < 5 )比一阶格式更精确Second-Order Upwind –尤其适用流动和网格方向不一致的四面体/三角形网格,二阶精度,收敛慢Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL) –对非结构网格,局部三阶精度,对二次流、旋转涡、力等预测的更精确Quadratic Upwind Interpolation (QUICK) –适用于四边形/六面体以及混合网格,对旋转流动有用,在均匀网格上能达到三阶精度2.–Green-Gauss Cell-Based –可能会引起伪扩散Green-Gauss Node-Based –更精确,更少伪扩散,建议对三角形/四面体网格采用Least-Squares Cell-Based –建议对多面体网格采用,精度和属性同Node-based3.使用分离算法时,计算面上压力的插值方法有:Standard –默认格式,对于近边界的沿面法向存在大压力梯度流动,精度下降(如果存在压力突变,建议改用PRESTO! )PRESTO! –用于高度旋流,包括压力梯度突变(多孔介质,风扇模型等)或者计算域存在大曲率的面Linear –当其他格式导致收敛问题或非物理解时使用Second-Order –用于压缩流,不适用多孔介质、风扇、压力突变以及VOF/Mixture 多相流Body Force Weighted –用于大体积力的情况,如高瑞利数自然对流或高旋流。