人教版高中数学A版必修1课后习题及答案(全)
- 格式:doc
- 大小:3.06 MB
- 文档页数:35
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈"或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; (4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}A B x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==,求(),()()U U U A B A B .4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉"填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R是实数;(5Z 3=是个整数; (6)2N ∈ 25=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}AB x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C ,A B ,S A .9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ,()R A B ,()R A B ,()R A B . 10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.已知集合{1,2}A =,集合B 满足{1,2}AB =,则集合B 有 个. 1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,AB A B . 3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==;当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅. 4.已知全集{|010}U A B x N x ==∈≤≤,(){1,3,5,7}U A B =,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()131f x x x =-++. 1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-;(2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm ,面积为2ycm ,把y 表示为x 的函数.1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦",与A 4.设素60相对应中元B 中的元素是什么?与B 中的元素22相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. O 离开家的距离 时间 (A ) O 离开家的距离 时间 (B ) O 离开家的距离 时间 (C ) O 离开家的距离时间(D )1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1)3()4x f x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x = 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且; (4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,2x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞; (2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(2)f -,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+. 5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗? (2)当4x =时,求()f x 的值; (3)当()2f x =时,求x 的值. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--,即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象: (1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域. 9.解:依题意,有2()2d x vt π=,即24vx t d π=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来. 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示. (1)函数()r f p =的定义域是什么? (2)函数()r f p =的值域是什么? (3)r 取何值时,只有唯一的p 值与之对应? 1.解:(1)函数()r f p =的定义域是[5,0][2,6)-; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上? (2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=. 当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数. (2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )? 4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多。
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
(资料整理,可编辑word,编辑不易,可收藏) (资料整理,可编辑word,编辑不易,可收藏) (资料整理,可编辑word,编辑不易,可收藏) (资料整理,可编辑word,编辑不易,可收藏) (资料整理,可编辑word,编辑不易,可收藏) (资料整理,可编辑word,编辑不易,可收藏) (资料整理,可编辑word,编辑不易,可收藏) (资料整理,可编辑word,编辑不易,可收藏)
(资料整理,可编辑word,编辑不易,可收藏) (资料整理,可编辑word,编辑不易,可收藏)。
【新教材】人教统编版高中数学A版必修第一册第五章教案教学设计+课后练习及答案5.1.1《任意角和弧度制---任意角》教案教材分析:学生在初中学习了o 0~o 360,但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.教学目标与核心素养:课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.教学重难点:重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入初中对角的定义是:射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到o 0~o 360范围内的角.但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与 x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.跟踪训练一1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C【答案】D【解析】由已知得B C,所以B∪C⊆C,故D正确.2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-315°=-360°+45°且0°<45°<90°.所以这四个命题都是正确的.题型二终边相同的角的表示及应用例2(1)将-885°化为k·360°+α(0°≤α<360°,k∈Z)的形式是________.(2)写出与α=-910°终边相同的角的集合,并把集合中适合不等式-720°<β<360°的元素β写出来.【答案】(1)(-3)×360°+195°,(2)终边相同的角的集合为{β|β=k·360°-910°,k∈Z},适合不等式-720°<β<360°的元素-550°、-190°、170°.【解析】(1)-885°=-1 080°+195°=(-3)×360°+195°.(2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z},∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z,∴k取1,2,3.当k=1时,β=360°-910°=-550°;当k=2时,β=2×360°-910°=-190°;当k=3时,β=3×360°-910°=170°.解题技巧:(终边相同的角的表示)1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到所求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.跟踪训练二1.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′【答案】B【解析】与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z),当k =3时,α=-850°12′+1 080°=229°48′.2.写出角α的终边落在第二、四象限角平分线上的角的集合为________.【答案】{α|α=k ·180°+135°,k ∈Z}.【解析】落在第二象限时,表示为k ·360°+135°.落在第四象限时,表示为k ·360°+180°+135°,故可合并为{α|α=k ·180°+135°,k ∈Z}. 题型三 任意角终边位置的确定和表示例3 (1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角(2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)B (2) ①终边落在OA 位置上的角的集合为{α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z}.②故该区域可表示为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z}.【解析】(1) 因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.所以α2是第一、三象限角.(2) ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.解题技巧:(任意角终边位置的确定和表示)1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.提醒:表示区间角时要注意实线边界与虚线边界的差异.2.nα或所在象限的判断方法:的范围;(1)用不等式表示出角nα或αn所在象限.(2)用旋转的观点确定角nα或αn跟踪训练三1.如图所示的图形,那么终边落在阴影部分的角的集合如何表示?【答案】角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.【解析】在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本171页练习及175页习题5.1 1、2、7题.教学反思:本节课主要采用讲练结合与分组探究的教学方法,让学生从旋转方向和旋转度数熟悉角的概念,象限角,终边相同的角等,并且掌握其应用.5.1.2《任意角和弧度制---弧度制》教案教材分析:前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养:课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点:重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
【新教材】人教统编版高中数学A版必修第一册第五章教案教学设计+课后练习及答案5.1.1《任意角和弧度制---任意角》教案教材分析:学生在初中学习了o 0~o 360,但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.教学目标与核心素养:课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.教学重难点:重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入初中对角的定义是:射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到o 0~o 360范围内的角.但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与 x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.跟踪训练一1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C【答案】D【解析】由已知得B C,所以B∪C⊆C,故D正确.2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-315°=-360°+45°且0°<45°<90°.所以这四个命题都是正确的.题型二终边相同的角的表示及应用例2(1)将-885°化为k·360°+α(0°≤α<360°,k∈Z)的形式是________.(2)写出与α=-910°终边相同的角的集合,并把集合中适合不等式-720°<β<360°的元素β写出来.【答案】(1)(-3)×360°+195°,(2)终边相同的角的集合为{β|β=k·360°-910°,k∈Z},适合不等式-720°<β<360°的元素-550°、-190°、170°.【解析】(1)-885°=-1 080°+195°=(-3)×360°+195°.(2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z},∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z,∴k取1,2,3.当k=1时,β=360°-910°=-550°;当k=2时,β=2×360°-910°=-190°;当k=3时,β=3×360°-910°=170°.解题技巧:(终边相同的角的表示)1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到所求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.跟踪训练二1.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′【答案】B【解析】与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z),当k =3时,α=-850°12′+1 080°=229°48′.2.写出角α的终边落在第二、四象限角平分线上的角的集合为________.【答案】{α|α=k ·180°+135°,k ∈Z}.【解析】落在第二象限时,表示为k ·360°+135°.落在第四象限时,表示为k ·360°+180°+135°,故可合并为{α|α=k ·180°+135°,k ∈Z}. 题型三 任意角终边位置的确定和表示例3 (1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角(2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)B (2) ①终边落在OA 位置上的角的集合为{α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z}.②故该区域可表示为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z}.【解析】(1) 因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.所以α2是第一、三象限角.(2) ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.解题技巧:(任意角终边位置的确定和表示)1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.提醒:表示区间角时要注意实线边界与虚线边界的差异.2.nα或所在象限的判断方法:的范围;(1)用不等式表示出角nα或αn所在象限.(2)用旋转的观点确定角nα或αn跟踪训练三1.如图所示的图形,那么终边落在阴影部分的角的集合如何表示?【答案】角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.【解析】在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本171页练习及175页习题5.1 1、2、7题.教学反思:本节课主要采用讲练结合与分组探究的教学方法,让学生从旋转方向和旋转度数熟悉角的概念,象限角,终边相同的角等,并且掌握其应用.5.1.2《任意角和弧度制---弧度制》教案教材分析:前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养:课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点:重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
1.1 集合的概念一、单选题1.已知集合{|2,}A x x k k N ==∈,{|4,}B x x k k N ==∈,则A 与B 的关系为( )A .AB ⊆ B .B A ∈C .B A ⊆D .A B =答案:C解析:根据子集的概念分析可得结果.详解:若x B ∈,则42(2)x k k A ==∈,所以B A ⊆,因为2A ∈,且2∉B ,所以A 不是B 的子集.故选:C点睛:关键点点睛:掌握子集的概念是解题关键.2.不等式|1|3x +的解集是A .{|4x x - 或2}xB .{|42}x x -<<C .{|4x x <- 或2}xD .{|42}x x -答案:D解析:先求解出不等式|1|3x +,然后用集合表示即可.详解:解:|1|3x +,即313x -+,即42x -,故不等式|1|3x +的解集是{|42}x x -,故选D .点睛:本题是集合问题,解题的关键是正确求解绝对值不等式和规范答题.3.已知集合{}22M x x =-<<,i 为虚数单位,1a i =+,则下列选项正确的是()A .a M ∈B .{}a M ∈C .{}a M ⊄D .a M ∉答案:A解析:利用复数模的计算公式可得a =,即可判断出结论.详解:a =,又集合{}22M x x =-<<,∴a M ∈.故选:A .点睛:本题考查了复数模的计算公式、元素与集合之间的关系,考查了推理能力与计算能力,属于基础题.4.方程x 2=x 的所有实数根组成的集合为A .()0,1B .(){}0,1C .{}0,1D .{}2x x =答案:C解析:解方程x 2=x ,得x =0或x =1,由此能求出方程x 2=x 的所有实数根组成的集合 详解:解:解方程x 2=x ,得x =0或x =1,方程x 2=x 的所有实数根组成的集合为{}0,1.故选:C .点睛:本题考查集合的表示方法,属于基础题.5.下列各组对象中不能构成集合的是A .大名三中高一(2)班的全体男生B .大名三中全校学生家长的全体C .李明的所有家人D .王明的所有好朋友 答案:D详解:由集合中元素的特性,可知D 中的元素具有不确定性,故不能构成集合选D6.已知集合A =1,2,3,4},B =(x ,y )|x∈A,y∈A,y ﹣x∈A},则集合B 中的元素的个数为( )A .4B .5C .6D .7答案:C解析:通过集合B ,利用x A ∈,y A ,y x A -∈,求出集合B 中元素的个数.详解:解:因为集合{1A =,2,3,4},{(,)|B x y x A =∈,y A ,}y x A -∈,所以当1x =时,2y =或3y =或4y =,当2x =时,3y =或4y =,当3x =时,4y =,即()()()()()(){}1,2,1,3,1,4,2,3,2,4,3,4B =所以集合B 中的元素个数为6.故选:C .7.已知集合{}3,M x x n n ==∈Z ,{}31,N x x n n ==+∈Z ,{}31,P x x n n ==-∈Z ,且a M ∈,N b ∈,c P ∈,若d a b c =-+,则.A .d M ∈B .d N ∈C .d P ∈D .d M ∈且d N ∈答案:B 解析:设3,31,31a k b y c m ==+=-,得到()32d k y m =-+-,结合集合的表示,即可求解,得到答案.详解:由题意,设3a k =,k ∈Z ,31b y =+,y ∈Z ,31c m =-,m ∈Z ,则()()3313132d k y m k y m =-++-=-+-,令t k y m =-+,则t ∈Z ,且()32331311d t t t =-=-+=-+,t ∈Z ,则d N ∈,故选B .点睛:本题主要考查了集合的表示方法及其应用,其中解答中根据集合的元素形式,合理运算,结合集合表示方法求解是解答的关键,着重考查了推理与运算能力,属于中档试题.8.下列关系中①0N ∈;②27Z ∈;③3Z -∉;④Q π∉正确的个数为( )A .0B .1C .2D .3答案:C解析:根据元素与集合的关系逐项进行判断即可.详解:①因为0是自然数,所以0N ∈,故正确; ②因为27不是整数,所以27Z ∉,故错误;③因为3-是整数,所以3Z -∈,故错误;④因为π是无理数,所以Q π∉,故正确;故选:C.9.下列各组中的集合P 与Q 表示同一个集合的是( )A .P 是由元素1,3,π构成的集合,Q 是由元素π,1,3-构成的集合B .P 是由π构成的集合,Q 是由3.14159构成的集合C .P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D .P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集答案:A详解:对于A,集合P,Q 中的元素完全相同,所以P 与Q 表示同一个集合,对于B,C,D,集合P,Q 中的元素不相同,所以P 与Q 不能表示同一个集合.选A二、填空题1.定义集合A 和B 的运算为{}*,A B x x A x B =∈∉,试写出含有集合运算符号“*”“”“”,并对任意集合A 和B 都成立的一个式子:_____________________.答案:()()**A A B A B B ⋂=⋃(答案不唯一).解析:根据运算{}*,A B x x A x B =∈∉的定义可得出结论.详解:如下图所示,由题中的定义可得()(){}(){}(),,A A B x x A x A B x x A B x B A B B *⋂=∈∉⋂=∈⋃∉=⋃*.故答案为:()()**A A B A B B ⋂=⋃(答案不唯一).点睛:本题考查集合运算的新定义,利用韦恩图法表示较为直观,考查数形结合思想的应用,属于中等题.2.已知集合A =a +2,(a +1)2,a 2+3a +3},且1∈A,则2017a 的值为_________.答案:1解析:对集合A 中的元素分情况讨论,结合集合中元素的互异性可求得结果.详解:当a +2=1时,a =-1,此时有(a +1)2=0,a 2+3a +3=1,不满足集合中元素的互异性; 当(a +1)2=1时,a =0或a =-2,当a =-2,则a 2+3a +3=1,舍去,经验证a =0时满足;当a 2+3a +3=1时,a =-1或a =-2,由上知均不满足,故a =0,则2017a =1. 故答案为:13.已知集合2{|A x x =+20}x a +=,若1∈A,则A =________.答案:-3,1}解析:集合2{|A x x =+20}x a +=,1∈A,则2x +20x a +=由一根是1,所以21+20a +=,a =-3,所以2x +23x -=0,x=1或x=-3,所以A =-3,1}4.用列举法表示集合x||x|<6,且x∈Z}是___________.答案:–5,–4,–3,–2,–1,0,1,2,3,4,5} 解析:根据6,x x Z <∈且 解此绝对值不等式,得到66,,x x Z -<<∈且 然后写出满足条件的整体x 的值即可.详解:6,x x Z <∈且66,,x x Z ∴-<<∈且∴ x = -5,-4,-3,-2,-1,0,1,2,3,4,5.故答案为–5,–4,–3,–2,–1,0,1,2,3,4,5}.点睛:此题是个基础题,考查集合的表示法,以及简单绝对值不等式的解法,考查学生分析解决问题的能力.5.设集合{,,1}A x xy xy =-,其中x ∈Z ,y ∈Z 且0y ≠. 若0A ∈,则用列举法表示集合A =________答案:{1,0,1}-解析:根据0y ≠且0A ∈,结合集合的互异性原则可知0xy -1=,进而求得x 和y 的值,即可表示集合A .详解:集合{,,1}A x xy xy =-,其中x ∈Z ,y ∈Z 且0y ≠.若0A ∈,则当0x =时, 0x xy ==由集合的互异性可知不符合要求所以0xy -1=,即1xy =则11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩当11x y =⎧⎨=⎩时,1x xy ==, 由集合的互异性可知不符合要求 因而11x y =-⎧⎨=-⎩,此时1,1,10x xy xy =-=-= 所以{1,0,1}A =-故答案为: {1,0,1}-点睛:本题考查了元素与集合的关系,集合的互异性原则的应用,属于基础题.三、解答题1.用适当的方法表示下列集合:(1)已知集合P =x|x =2n ,0≤n≤2且n∈N};(2)抛物线y =x 2-2x 与x 轴的公共点的集合;(3)直线y =x 上去掉原点的点的集合.答案:答案见解析解析:(1)用列举法即可求得集合的元素;(2)直接用描述法表示公共点的集合;(3)用描述法即可表示.详解:(1)因为02,n n N ≤≤∈,则0,2,4x =,故用列举法表示为:P =0,2,4}.(2)直接用描述法表示为:()22{,|}0y x x x y y ⎧=-⎨=⎩. (3)描述法:(x ,y)|y =x ,x≠0}.点睛:本题考查集合的表示方法,选择适当的方法即可,属简单题.2.试用集合表示图中阴影部分(含边界)的点.答案:(),13,03}{|x y x y -≤≤≤≤解析:直接用集合的描述法将点集表示出来.详解:由题意可得13,03x y -≤≤≤≤,所以图中阴影部分(含边界)的点组成的集合为(),13,03}{|x y x y -≤≤≤≤.点睛:本题考查了用描述法表示点集,属于基础题.3.用另一种形式表示集合.(1)63A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ;(2){2,4,6,8}.答案:(1){3,0,1,2,4,5,6,9}-;(2){|2,14,}x x k k k =≤≤∈Z .解析:(1)描述法转为列举法时,首先确定集合是有哪些元素组成的,然后将所有元素写在花括号内;(2)列举法转为描述法时,首先明确集合中元素的公共属性,即把握住集合中元素满足什么条件.详解:(1)要使6,3x x-是整数,则|3|x -必是6的约数,当3,0,1,2,4,5,6,9x =-时,|3|x -是6的约数,∴{3,0,1,2,4,5,6,9}A =-.(2){|2,14,}x x k k k =≤≤∈Z .点睛:本题考查集合的表示方法,属于基础题.。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空: (1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;'(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ; (4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C .1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉."2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,{所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)/1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;!(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ; (5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==; (3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; (4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==; (6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.|3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ; ?(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=,,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形. 4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==,求(),()()U U U AB A B . ;4.解:显然{2,4,6}U B =,{1,3,6,7}U A =,则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; "(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z 3=是个整数; (6)2N ∈ 25=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;、(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合; (2)反比例函数2y x =的自变量的值组成的集合; -(3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-, 得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空: (1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; $(2)已知集合2{|10}A x x =-=,则有: 1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-;?(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , ]A C ,()ABC ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}A B =,{3,4,5,6}A C =,而{1,2,3,4,5,6}B C =,{3}B C =,则(){1,2,3,4,5,6}AB C =, (){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,《学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}AC x x =是既参加一百米跑又参加四百米跑的同学. 9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C ,A B ,S A .~9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形,{|}S A x x =是梯形.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ,()R A B ,()R A B ,()R A B . 10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或, 、得(){|2,10}R A B x x x =≤≥或,(){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.已知集合{1,2}A =,集合B 满足{1,2}AB =,则集合B 有 个. 1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, ?集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么集合,C D 之间有什么关系2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上, 得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,AB A B . 3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅;当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; ~当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.已知全集{|010}U A B x N x ==∈≤≤,(){1,3,5,7}U A B =,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U A B =,得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.、第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念 练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =. 1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-;.(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.已知函数2()32f x x x =+, (1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,[即(2)18,(2)8,(2)(2)26f f f f =-=+-=; (2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=, 即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.~3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm ,面积为2ycm ,把y 表示为x 的函数. 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,<即22500(050)y x x x=-<<.2.下图中哪几个图象与下述三件事分别吻合得最好请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A)对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B)对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;(图象(C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数|2|y x=-的图象.3.解:2,2|2|2,2x xy xx x-≥⎧=-=⎨-+<⎩,图象如下所示.离开家的距离时间^(A)离开家的距离时间(B)离开家的距离时间&(C)离开家的距离时间(D)<4.设{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,与A 中元素60相对应的B 中的元素是什么与B A 中元素是什么4.解:因为3sin 60=,所以与A 中元素60相对应的B ;因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.求下列函数的定义域:/(1)3()4x f x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x = 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;!(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等(1)2()1,()1x f x x g x x=-=-; (2)24(),()()f x x g x x ==; (3)326(),()f x x g x x ==.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,?即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域. (2)8y x=; (3)45y x =-+; (4)267y x x =-+. (1)3y x =;3.解:(1))[定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)^定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;、(3)'定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)]&定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++; 22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;*22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.已知函数2()6x f x x +=-,(1)点(3,14)在()f x 的图象上吗(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;((2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,、即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.}7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,>周长为l ,那么你能获得关于这些量的哪些函数8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.—9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域. 9.解:依题意,有2()2d x vt π=,即24vx t dπ=, 显然0x h ≤≤,即240vt h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个并将它们分别表示出来. 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,{()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示. ^(1)函数()r f p =的定义域是什么(2)函数()r f p =的值域是什么(3)r 取何值时,只有唯一的p 值与之对应1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上¥(2)将你的图象和其他同学的相比较,有什么差别吗2.解:图象如下,(1)点(,0)x和点(5,)y不能在图象上;(2)省略.3.函数()[]f x x=的函数值表示不超过x的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x∈-时,写出函数()f x的解析式,并作出函数的图象.3, 2.522,211,10()[]0,011,122,233,3xxxf x x xxxx--<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩3.解:图象如下}%[4.如图所示,一座小岛距离海岸线上最近的点P的距离是2km,从点P沿海岸正东12km处有一个城镇.、(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数. (2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h ) 4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得222125x xt +-=+,(012)x ≤≤, 即24125x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()55t h +-=+=+≈. …第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.&—1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.@3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.!3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数. …4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 . 5.最小值.1.3.2单调性与最大(小)值练习(第36页)…1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =-(3)21()x f x x+=; (4)2()1f x x =+.1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,/所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.~2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.%习题A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)..函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)【函数在(,0)-∞上递增;函数在[0,)+∞上递减.&2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数; (2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,/即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;&当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大最大月收益是多少 -5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,(所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],&且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大每间熊猫居室的最大面积是多少$2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,【且每间熊猫居室的最大面积是237.5m . 3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数.*复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=. 1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.设P 表示平面内的动点,属于下列集合的点组成什么图形(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合…{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;,当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =,综上得:实数a 的值为1,0-,或1. 5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-. >6.求下列函数的定义域:(1)y =(2)y =6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞. 7.已知函数1()1x f x x -=+,求: }(1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x+=-,求证: —(1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x +=-, 所以22221()1()()1()1x x f x f x x x +-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-. 9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数(2)它的图象具有怎样的对称性(3)它在(0,)+∞上是增函数还是减函数 (4)它在(,0)-∞上是增函数还是减函数10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数; (2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人只参加游泳一项比赛的有多少人1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =,(){2,4}U A B =,求集合B .3.解:由(){1,3}U A B =,得{2,4,5,6,7,8,9}A B =,集合A B 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++, 得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++ 2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+,所以1212()()()22x x g x g x g ++≤.6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =,所以该人当月的工资、薪金所得是2517.8元.。
1.1 集合的概念一、单选题1.设集合{1,2,3}A =,{2,3,4}B =,{|}M x x ab a A b B ==∈∈,,,则M 中的元素个数为( )A .5B .6C .7D .8答案:C解析:根题意求出集合M 即可得出.详解:{1,2,3}A =,{2,3,4}B =,{}{|}2,3,4,6,8,9,12M x x ab a A b B ∴==∈∈=,,, 所以M 中的元素个数为7.故选:C.2.下列语句能构成集合的是A .大于2且小于8的实数全体B .某班中性格开朗的男生全体C .所有接近1的数的全体D .某校高个子女生全体答案:A解析:根据集合元素的确定性进行判断.详解:选项A:符合集合元素的确定性,可以构成集合;选项B:确定不了什么叫性格开朗,故不能构成集合;选项C:确定不了接近1的数的标准是什么,故不能构成集合;选项D:不符合集合的确定性,因为不知道高个子女生的标准是什么,故不能构成集合,因此本题选A.点睛:本题考查了集合元素的确定性,准确理解集合元素的确定性是解题的关键.3.下列集合符号运用不正确的是( )A .2Z ∈B .}{}{1,2,31,2⊆C .{}12⋂∅=∅,D .N R R ⋃=答案:B解析:根据集合知识,逐项分析,即可求得答案.详解:对于A,由2Z ∈,故A 正确;对于B,因为}{}{1,21,2,3⊆,故B 错误;对于C,因为{}12⋂∅=∅,,故C 正确; 对于D,因为N R R ⋃=,故D 正确.故选:B.点睛:解题关键是掌握集合的基础知识,考查了分析能力,属于基础题.4.下列说法正确的有( )①NBA 联盟中所有优秀的篮球运动员可以构成集合;②*0N ∈;③集合{}2| 1 y y x =-与集合(){}2,| 1 x y y x =-是同一个集合;④空集是任何集合的真子集.A .0个B .1个C .2个D .3个答案:A解析:根据集合的定义,元素与集合的关系,列举法和描述法的定义以及空集的性质分别判断命题的真假.详解:对于①,优秀的篮球队员概念不明确,不能构成集合,错误;对于②,元素与集合的关系应为属于或不属于,即0∉N *,错误;对于③,集合{}2|1{|1}y y x y y =-=≥-是数集,集合(x ,y )|y=x 2-1}表示的是满足等式的所有点,不是同一个集合,错误;对于④,空集是任何非空集合的真子集,错误;故选A .点睛:本题考查集合的确定性,元素与集合的关系,列举法和描述法表示集合以及空集的有关性质,属于基础题.5.集合{|13}A x Z x =∈-<<的元素个数是( )A .1B .2C .3D .4答案:C解析:根据集合A 的代表元素及需满足的条件,用列举法表示出集合A ,即可得到结果. 详解:解:{}{|13}0,1,2A x Z x =∈-<<=所以集合A 中含有3个元素故选:C点睛:本题考查列举法表示集合及集合元素的个数问题,属于基础题.6.下列关系式中,正确的关系式有几个(1)2∈Q (2)0∉N (3)1,2} (4)φ=0} A .0B .1C .2D .3 答案:B详解:(1)因为2为无理数,所以错;(2)O 属于N ,错;(3)正确;(4){}0φ⊆,错.7.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为( )A .5B .4C .3D .2 答案:C详解:,,或是,,根据集合元素的互异性,集合为,共含有3个元素,故选C. 考点:元素与集合8.已知集合{A =第二象限角},{B =钝角},{C =小于180°的角},则A ,B ,C 关系正确的是( )A .B AC =⋂B .AC C .C C =B ∪D .A B C ==答案:C解析:由集合A ,B ,C ,求出B 与C 的并集,判断A 与C 的包含关系,以及A ,B ,C 三者之间的关系即可.详解:由题意得B A C ⋂,故A 错误; A 与C 互不包含,故B 错误;由{B =钝角}{小于180°的角},所以C C =B ∪,故C 正确 .由以上分析可知D 错误.故选:C .9.下列说法中正确的是( )A .联合国所有常任理事国(共5个)组成一个集合B .宜丰二中年龄较小的学生组成一个集合C .{}1,2,3与{}2,1,3是不同的集合D .由1,0,5,1,2,5组成的集合有六个元素答案:A解析:根据集合中的元素的性质逐一判断可得选项.详解:年龄较小不确定,所以B 选项错误;{1,2,3}与{2,1,3}是相同的集合,故C 错误;由1,0,5,1,2,5组成的集合有4个元素,故D 错误;故选:A.点睛:本题考查集合中的元素的性质和判断两个集合是否是同一集合,属于基础题.二、多选题1.下列与集合1(,)|30x y M x y x y ⎧+=⎧⎫=⎨⎨⎬--=⎩⎭⎩表示同一个集合的有( ) A .{(2,1)}-B .{2,1}-C .{(,)|2,1}x y x y ==-D .{2,1}x y ==- E.{(1,2)}-答案:AC 解析:解方程组可得集合中的元素为有序数对(2,1)-,根据集合的表示方法可得答案. 详解:由1,30x y x y +=⎧⎨--=⎩得2,1,x y =⎧⎨=-⎩即(){}2,1M =-, 所以根据集合的表示方法知A ,C 与集合M 表示的是同一个集合,故选:AC.点睛:本题考查同一集合问题,考查集合的表示方法,属于基础题.2.(多选题)设集合{}1,A x x a x R =-<∈,{}15,B x x x R =<<∈,则下列选项中,满足A B =∅的实数a 的取值范围的有( )A .[]0,6B .(][),24,-∞+∞C .(][),06,-∞+∞ D .[)8,+∞答案:CD 解析:先解集合A 得{}11A x a x a =-<<+,再根据题意求解即可.详解: 由题得{}11A x a x a =-<<+,{}15,B x x x R =<<∈,又因为A B =∅,所以11a +≤ 或15a -≥,即0a ≤或6a ≥.所以满足题意的有选项C ,D.故选:CD.点睛:本题考查绝对值不等式的解法,集合的交集运算,是中档题.3.下列是集合{(,)|1,,}M x y x y x y =+≤∈∈N N 中元素的有() A .(0,0) B .(0,1) C .(1,0) D .(2,1)-E.(1,2)-答案:ABC解析:用列举法表示集合,进而判断选项即可详解:∵{(,)|1,,}M x y x y x y =+≤∈∈N N ,∴00x y =⎧⎨=⎩或01x y =⎧⎨=⎩或10x y =⎧⎨=⎩,∴{(0,0),(0,1),(1,0)}M =故选ABC点睛:本题考查列举法表示集合,考查点集,考查元素与集合的关系4.下面表示同一个集合的是( )A .{}2|10,,P x x x R Q =+=∈=∅B .{2,5},{5,2}P Q ==C .{(2,5)},{(5,2)}P Q ==D .{|21,},{|21,}P x x m m Z Q x x m m Z ==+∈==-∈答案:ABD解析:对选项中的集合元素逐一分析判断即可.详解:A 选项中,集合P 中方程210x +=无实数根,故P Q ==∅,表示同一个集合;B 选项中,集合P 中有两个元素2,5,集合Q 中页有两个元素2,5,表示同一个集合;C 选项中,集合P 中有一个元素是点(2,5),集合 Q 中有一个元素是点(5,2),元素不同,不是同一集合;D 选项中,集合{|21,}P x x m m Z ==+∈表示所有奇数构成的集合,集合{|21,}Q x x m m Z ==-∈也表示所有奇数构成的集合,表示同一个集合.故选:ABD.5.已知非空集合M 满足:①{2,1,21,,3,4}M ⊆--,②若x M ∈,则2x M ∈,则满足上述要求的集合M 有( )A .1,1,{}2,4-B .1,2,{}2,4-C .{1,1}-D .{1}答案:CD解析:由集合M 的元素所满足的两个性质,找出集合M 的元素,从而确定集合M 有哪些可能.详解:由题意可知3M ∉且4M ∉,而-2或2与4同时出现,所以2M -∉且2M ∉,所以满足条件的非空集合M 有{1,1}-,{1}.故选:CD .点睛:本题考查满足条件的集合的求法,考查元素与集合的关系,是基础题.三、填空题1.含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭又可表示成{}2,,0a a b +,20142015a b +=______.答案:1解析:根据两个集合的相等关系,可求得,a b 的值,即可得解.详解: 由题意可知,两个集合相等,{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,由0a ≠所以只能是0ba=,即0b =,所以{}{}2,0,1,,0a a a =, 由集合互异性可知1a ≠,则21a =,解得1a =-,符合题意,所以20142015101a b +=+=,故答案为:1.本题考查了集合相等的应用,由集合互异性和相等求参数,属于基础题.2.已知集合A 中元素x 满足2x +a>0,a∈R.若1∉A ,2∈A,则实数a 的取值范围为________.答案:42a -<≤-解析:根据已知条件列不等式组,解不等式组求得a 的取值范围.详解:因为1∉A ,2∈A,所以210220a a ⨯+≤⎧⎨⨯+>⎩, 即42a -<≤-.故答案为:42a -<≤-3.用描述法表示所有偶数组成的集合__________.答案:{}2,x x n n Z =∈解析:利用描述法的定义求解即可详解: 解:所有偶数组成的集合为{}2,x x n n Z =∈, 故答案为:{}2,x x n n Z =∈4.设集合{}22,,A x x =,若1A ∈,则x 的值为___________.答案:1-解析:根据集合中元素的互异性可知,1x ≠,再根据1A ∈,可得1x =-.详解:根据集合中元素的互异性可知,2x x ≠,所以1x ≠且0x ≠,因为1A ∈,所以21x =,解得1x =-或1x =(舍),故答案为:1-点睛:本题考查了集合中元素的互异性,考查了元素与集合的关系,属于基础题.5.用描述法表示被4除余3的正整数集合:______.答案:x|x =4n+3,n∈N}解析:设该数为x ,则该数x 满足x =4n+3,n∈N;再写成集合的形式.设该数为x ,则该数x 满足x =4n+3,n∈N;∴所求的正整数集合为x|x =4n+3,n∈N}.故答案为:x|x =4n+3,n∈N}.点睛:本题主要考查集合的表示方法,属于基础题.四、解答题1.用适当的方法表示下列集合:(1)B=(x ,y )|x+y=4,x∈N*,y∈N*};(2)不等式3x-8≥7-2x 的解集;答案:(1)列举法:{}(1,3),(2,2),(3,1)B =;(2)描述法:{}|3x x ≥.解析:(1)根据代表元素的特征将元素一一列举即可.(2)根据描述法表示集合即可求解.详解:(1)B=(x ,y )|x+y=4,x∈N*,y∈N*}{}(1,3),(2,2),(3,1)=.(2)3x-8≥7-2x 解得3x ≥,所以不等式的解集为{}|3x x ≥.2.已知集合A=x|x=m 2-n 2,m∈Z,n∈Z}.求证:(1)3∈A;(2)偶数4k-2(k∈Z)不属于A .答案:(1)见解析;(2)见解析.详解:试题分析:(1)由3=22-12即可证得;(2)设4k-2∈A,则存在m ,n∈Z,使4k-2=m 2-n 2=(m+n )(m-n )成立,分当m ,n 同奇或同偶时和当m ,n 一奇,一偶时两种情况进行否定即可.试题解析:(1)∵3=22-12,3∈A;(2)设4k-2∈A,则存在m ,n∈Z,使4k-2=m 2-n 2=(m+n )(m-n )成立,1、当m ,n 同奇或同偶时,m-n ,m+n 均为偶数,∴(m-n )(m+n )为4的倍数,与4k-2不是4的倍数矛盾.2、当m ,n 一奇,一偶时,m-n ,m+n 均为奇数,∴(m-n )(m+n )为奇数,与4k-2是偶数矛盾.综上4k-2不属于A .3.由实数组成的集合A 具有如下性质:若a A ∈,b A ∈且a b <,那么1a A b+∈.(1)若集合A 恰有两个元素,且有一个元素为43,求集合A ;(2)是否存在一个含有元素0的三元素集合A ;若存在请求出集合,若不存在,请说明理由.答案:(1)4{4,}3A =或44{,}39A =或4{3A =;(2)存在,A =. 解析:(1)根据题意设集合4{,}3A x =,然后分类讨论x 与43的大小,根据集合的性质解出x ,即可得解;(2)假设存在一个含有元素0的三元素集合A {0,,}a b =,根据集合中元素的性质可知,0a <,0b <,进一步可知,1A ∈,不妨设集合{,0,1},(0A x x =>且1)x ≠,再根据集合中元素的性质可求得结果.详解:(1)集合A 恰有两个元素且43A ∈.不妨设集合4{,}3A x =, 当43x <时,由集合A 的性质可知,314x A +∈,则314x x +=或34143x +=, 解得4x =(舍)或49x =,所以集合44{,}39A = 当43x >时,由集合A 的性质可知,413A x +∈,则413x x +=或44133x +=,解得36x =或36x =(舍)或4x =所以集合4{,4}3A =或43{,}36A +=综上所述:4{4,}3A =或44{,}39A =或4{3A =. (2)假设存在一个含有元素0的三元素集合A {0,,}a b =,即0A ∈,当0a >时,则10a +无意义,当0b >时,则10b +无意义, 所以0a <,0b <,并且01A a +∈,01A b +∈,即1A ∈, 不妨设集合{,0,1},(0A x x =>且1)x ≠,当1x >时,由题意可知,11A x+∈,若11x x +=,即210x x --=,解得x =或x =(舍),此时集合A =; 若111x +=,则10x =不成立; 若110x+=,即1x =-(舍), 当01x <<时,由题意可知,1x A +∈,若10x +=,则1x =-(舍),若11x +=,则0x =(舍),若1x x +=,则10=不成立,综上所述,集合A 是存在的,A =. 点睛:本题考查了元素与集合的关系,考查了分类讨论思想,属于中档题.。
高中数学必修 1 课后习题答案 [ 人教版 ]高中数学必修 1 课后习题答案第一章 会合与函数观点1.1会合会合的含义与表示练习(第 5 页)1.用符号“”或“ ”填空:( 1)设 A 为全部亚洲国家构成的会合,则:中国_______ A ,美国 _______ A ,印度 _______ A ,英国 _______ A ;(2)若 A { x | x 2 x} ,则 1_______ A ; (3)若 B { x | x 2x 6 0} ,则 3 _______ B ;(4)若 C{ x N |1 x 10} ,则 8 _______ C , 9.1 _______ C .1.( 1)中国 A ,美国A ,印度 A ,英国 A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1A2x} { 0 ,.1}A { x | x(3)3 B2x 60 } { 3.,2}B { x | x(4)8 C , 9.1C 9.1 N .2.试选择适合的方法表示以下会合:( 1)由方程 x 2 9 0 的全部实数根构成的会合;( 2)由小于 8 的全部素数构成的会合;( 3)一次函数 y x 3 与 y 2x 6 的图象的交点构成的会合;( 4)不等式 4x5 3的解集.2.解:( 1)由于方程 x 2 9 0 的实数根为 x 13, x 2 3 ,因此由方程 x 2 9 0 的全部实数根构成的会合为 { 3,3} ;( 2)由于小于8 的素数为 2,3,5,7 ,因此由小于 8 的全部素数构成的会合为{2,3,5,7} ;y x 3 x 1( 3)由2x 6,得,yy4即一次函数y x 3 与 y2x 6 的图象的交点为(1,4) ,因此一次函数y x 3 与 y2x 6 的图象的交点构成的会合为{(1, 4)} ;(4)由4x 5 3,得x 2,因此不等式 4x 5 3 的解集为{ x | x2} .会合间的基本关系练习(第7 页)1.写出会合{ a, b, c}的全部子集.1.解:按子集元素个数来分类,不取任何元素,得;取一个元素,得{ a},{ b},{ c} ;取两个元素,得{ a,b},{ a, c},{ b,c} ;取三个元素,得{ a, b, c} ,即会合 { a, b,c} 的全部子集为,{ a},{ b},{ c},{ a,b},{ a,c},{ b, c},{ a, b, c} .2.用适合的符号填空:( 1)a ______{ a, b,c};(2)0 ______{ x | x2 0} ;( 3)______ { x R | x2 1 0} ;( 4){0,1} ______ N;( 5){0} ______{ x | x2 x} ;(6){2,1} ______ { x | x2 3x 2 0} .2 1)a { a,b,c}a 是会合{ a, b, c}中的一个元素;.(( 2)0 { x | x2 0} { x |x2 0 } { ;0}( 3){ x R | x2 1 0} 方程 x2 1 0 无实数根, { x R | x2 1 0} ;( 4){0,1} N (或 {0,1} N ){ 0 , 1}是自然数会合N的子集,也是真子集;( 5){0} { x | x2 x} (或 {0} { x | x2 x} ){ x | x2 x} { 0 ,;1} ( 6){2,1} { x | x2 3x 2 0} 方程 x2 3x 2 0 两根为 x1 1, x2 2 .3.判断以下两个会合之间的关系:(1)A {1,2,4} , B { x | x是 8 的约数 } ;( 2)A { x | x 3k, k N},B { x | x 6z, z N } ;( 3)A{ x | x是 4 与 10 的公倍数 , x N } , B { x | x 20m, m N } .3.解:( 1)由于B { x | x是 8的约数 } {1,2,4,8} ,因此A B ;( 2)当k 2z 时, 3k 6z;当 k 2z 1 时, 3k 6 z 3 ,即 B是 A的真子集, B A ;( 3)由于4与10 的最小公倍数是20 ,因此 A B .1.1.3 会合的基本运算练习(第 11 页)1.设A {3,5,6,8}, B {4,5,7,8} ,求 A B,A B.1.解:A B {3,5,6,8} {4,5,7,8} {5,8} ,A B {3,5,6,8} {4,5,7,8} {3,4,5,6,7,8} .2.设A { x | x2 4x 5 0}, B { x | x2 1},求 A B, A B .2.解:方程x2 4x 5 0 的两根为 x1 1, x2 5 ,方程 x2 1 0 的两根为 x1 1, x2 1,得 A { 1,5}, B { 1,1} ,即A B { 1},A B { 1,1,5}.3.已知A { x | x是等腰三角形 } , B { x | x是直角三角形 } ,求 A B, A B .3.解:A B { x | x是等腰直角三角形} ,A B { x | x是等腰三角形或直角三角形 } .4.已知全集U{1,2,3,4,5,6,7},A{2,4,5}, B求 A (痧B),( A) (? B) .U U U{1,3,5,7} ,4.解:明显 e B U {2, 4,6} , e AU{1,3,6,7} ,则 A (e U B) {2, 4} ,(痧A)U( B)U {6} .1.1 会合习题 1.1(第11页)A组高中数学必修 1 课后习题答案 [ 人教版 ] ( 1) 3 2_______ Q ; ( 2)32______ N ; (3) _______ Q ;7( 4) 2 _______ R ; ( 5) 9 _______ Z ;(6)( 5) 2 _______ N .1.( 1) 32Q3 2是有理数; ( 2)32N329 是个自然数;77( 3)Q是个无理数,不是有理数;( 4) 2 R2 是实数;( 5)9 Z 9 3 是个整数;(6) ( 5) 2N (25是个自然数.5 )2.已知 A{ x | x 3k 1,k Z} ,用 “ ”或“ ” 符号填空:( 1) 5 _______ A ; ( 2) 7 _______ A ;( 3)10 _______ A .2.( 1) 5A ; (2) 7 A ; (3) 10 A .当 k 2 时, 3k 1 5 ;当 k3时, 3k 110;3.用列举法表示以下给定的会合:( 1)大于 1且小于 6 的整数;( 2) A { x | (x 1)(x 2)0} ;( 3) B { x Z | 3 2x 1 3} .3.解:( 1)大于 1且小于 6 的整数为 2,3,4,5 ,即 {2,3,4,5} 为所求;( 2)方程 ( x 1)(x 2) 0 的两个实根为 x 1 2, x 2 1,即 { 2,1} 为所求;( 3)由不等式 32x 1 3,得1 x2 ,且 x Z ,即 {0,1,2} 为所求.4.试选择适合的方法表示以下会合:( 1)二次函数 yx 2 4的函数值构成的会合;2( 2)反比率函数 y的自变量的值构成的会合;x( 3)不等式 3x4 2x 的解集.4.解:( 1)明显有 x 2 0 ,得 x 24 4 ,即 y4 ,得二次函数 y x 2 4 的函数值构成的会合为 { y | y4} ;( 2)明显有 x0 ,得反比率函数 y2{ x | x 0} ;的自变量的值构成的会合为4 x4} .( 3)由不等式 3x4 2x ,得 x ,即不等式 3x4 2x 的解集为 { x | x555.采用适合的符号填空:( 1)已知会合 A { x | 2x 3 3x}, B { x | x 2} ,则有:4B3 A{ 2 }BB A高中数学必修 1 课后习题答案 [ 人教版 ]( 2)已知会合 A{ x | x 2 1 0} ,则有:1_______ A; { 1}A ;_______ A; {1, 1}A;______________ ( 3) { x | x 是菱形 } _______ { x | x 是平行四边形} ;{ x |x 是等腰三角形 }_______ { x | x 是等边三角形 } .5.(1) 4 B ;3 A ; { 2 } B ; B A ;2x 3 3xx3,即 A{ x | x3}, B { x | x 2} ;( 2)1 A ;{ 1} A ;A ;= A ;{1, 1}A { x | x 2 10} { 1,1} ;( 3) { x | x 是菱形 }{ x | x 是平行四边形 } ;菱形必定是平行四边形,是特别的平行四边形,可是平行四边形不必定是菱形;{ x | x 是等边三角形 } { x | x 是等腰三角形 } .等边三角形必定是等腰三角形,可是等腰三角形不必定是等边三角形.6.设会合 A { x | 2 x 4}, B { x | 3x 7 8 2x} ,求 A B, A B .6.解: 3x7 8 2x ,即 x 3,得 A { x | 2 x 4}, B{ x | x 3} ,则 A B { x | x 2} , A B { x |3 x 4} .7.设会合 A { x | x 是小于 9 的正整数 } , B {1,2,3}, C{3,4,5,6} ,求 A B ,A C ,A (B C),A (B C).7.解: A{ x | x 是小于 9的正整数 } {1,2,3,4,5,6,7,8} ,则 AB {1,2,3} , AC{3,4,5,6} ,而 B C {1,2,3,4,5,6} , BC {3},则 A ( B C ) { 1,2,3,4,5,6},A (BC ){1,2,3,4,5,6,7,8} .8.学校里开运动会,设A { x | x 是参加一百米跑的同学 } ,B { x | x 是参加二百米跑的同学 } ,C { x | x 是参加四百米跑的同学 } ,高中数学必修 1 课后习题答案 [ 人教版 ]学校规定,每个参加上述的同学最多只好参加两项,请你用会合的语言说明这项规定,并解说以下会合运算的含义:( 1)A B;( 2)A C.8.解:用会合的语言说明这项规定:每个参加上述的同学最多只好参加两项,即为(A B) C.( 1)A B { x | x是参加一百米跑或参加二百米跑的同学} ;( 2)A C { x | x是既参加一百米跑又参加四百米跑的同学} .9.设S{ x | x是平行四边形或梯形} , A { x | x是平行四边形 } , B{ x | x是菱形 } ,C { x | 是x矩形},求B C ,e A B,e S A.9.解:同时知足菱形和矩形特点的是正方形,即 B C { x | x是正方形 } ,平行四边形依据邻边能否相等能够分为两类,而邻边相等的平行四边形就是菱形,即 e A B { x | x是邻边不相等的平行四边形} ,e S A { x | x是梯形 } .10.已知会合A { x | 3 x 7}, B { x | 2 x 10} ,求 e R (A B) , e R( A B) ,(e R A) B , A (e R B) .10.解:A B { x | 2 x 10}, A B { x | 3 x 7} ,e R A { x | x 3,或 x 7} , e R B { x | x 2, 或 x 10} ,得 e R ( A B) { x | x 2, 或 x 10} ,e R ( A B) { x | x 3,或 x 7} ,(e R A) B { x | 2 x 3, 或7 x 10} ,A (e R B) { x | x 2,或3 x 7或x 10} .B 组1.已知会合A {1,2} ,会合B知足 A B {1,2} ,则会合B有个.1.4会合B知足A B A,则 B A ,即会合 B 是会合 A 的子集,得4 个子集.2.在平面直角坐标系中,会合 C {( x, y) | y x} 表示直线y x,从这个角度看,会合 D2x y 1C ,D 之间有什么关系?( x, y) |4 y表示什么?会合x 5高中数学必修 1 课后习题答案 [ 人教版 ]2.解:会合D2x y 15 的交点的会合,( x, y) |4 y表示两条直线 2x y 1, x 4 yx 5即 D2x y 1x 上,( x, y) | {(1,1)} ,点D (1,1)明显在直线 yx 4 y 5得D C.3.设会合A { x | ( x 3)( x a) 0, a R} , B { x | ( x 4)( x 1) 0},求 A B,A B.3.解:明显有会合 B { x | ( x 4)( x 1) 0} {1,4} ,当 a 3 时,会合 A {3} ,则 A B {1,3,4}, A B ;当 a 1 时,会合 A {1,3} ,则 A B {1,3,4}, A B {1} ;当 a 4 时,会合 A {3,4} ,则 A B { 1,3,4}, A B {4} ;当 a 1,且 a 3 ,且 a 4时,会合A{3, a} ,则 A B {1,3,4, a}, A B.4.已知全集U A B { x N | 0 x 10} , A (e B) { 1,3,5,7} ,试求会合 B .U4.解:明显U{0,1,2,3,4,5,6,7,8,9,10},由U A B ,得 e B A ,即 A (痧B) B ,而 A (e B) {1,3,5,7} ,U U U U得 e B {1,3,5,7} ,而 B痧(B) ,U U U即 B {0,2,4,6,8.9,10}.第一章会合与函数观点1.2 函数及其表示1.2.1 函数的观点练习(第 19 页)1.求以下函数的定义域:1;( 2)f (x) 1 x x 3 1.( 1)f ( x)4x 771.解:( 1)要使原式存心义,则4x 7 0 ,即x ,47得该函数的定义域为{ x | x } ;4( 2)要使原式存心义,则1 x 0 ,即3 x,x 3 0 1得该函数的定义域为{ x | 3 x 1} .2.已知函数f ( x) 3x2 2x ,( 1)求f (2), f ( 2), f (2) f ( 2) 的值;( 2)求f (a), f ( a), f (a) f ( a) 的值.2.解:( 1)由f ( x) 3x2 2x ,得 f (2) 3 22 2 2 18 ,同理得 f ( 2) 3 ( 2) 2 2 ( 2) 8 ,则 f (2) f ( 2) 18 8 26 ,即 f (2) 18, f ( 2) 8, f (2) f ( 2) 26 ;( 2)由f ( x) 3x2 2x ,得 f ( a) 3 a2 2 a 3a2 2a ,同理得 f ( a) 3 ( a)2 2 ( a) 3a2 2a ,则 f ( a) f ( a) (3a2 2a) (3a2 2a) 6a2,即 f ( a) 3a2 2a, f ( a) 3a2 2a, f (a) f ( a) 6a2.3.判断以下各组中的函数能否相等,并说明原因:( 1)表示炮弹飞翔高度h 与时间t关系的函数h 130t 5t 2和二次函数 y 130x 5x2;( 2)f ( x)1和 g(x)x0.3.解:( 1)不相等,由于定义域不一样,时间t 0 ;( 2)不相等,由于定义域不一样,g(x) x0 (x 0) .1.2.2 函数的表示法练习(第 23 页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木材,假如矩形的一边长为xcm ,面积为 ycm2,把y表示为 x 的函数.1.解:明显矩形的另一边长为502 x2 cm ,y x 502 x2 x 2500 x2 ,且 0 x 50 ,即 y x 2500 x2 (0 x 50) .2.以下图中哪几个图象与下述三件事分别符合得最好?请你为剩下的那个图象写出一件事.( 1)我走开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,不过在途中碰到一次交通拥塞,耽误了一些时间;( 3)我出发后,心情轻松,慢慢前进,以后为了赶时间开始加快.走开家的距离走开家的距离走开家的距离走开家的距离O时间O时间O时间O时间( A)(B)(C)(D)2.解:图象( A )对应事件(2),在途中碰到一次交通拥塞表示走开家的距离不发生变化;图象( B )对应事件( 3),刚才开始慢慢前进,以后为了赶时间开始加快;图象( D)对应事件( 1),返回家里的时辰,走开家的距离又为零;图象( C)我出发后,认为要迟到,赶时间开始加快,以后心情轻松,慢慢前进.3.画出函数y | x 2 | 的图象.x 2, x 23.解:y| x 2 |,图象以下所示.x 2, x 2高中数学必修 1 课后习题答案 [ 人教版 ]4.设 A { x | x 是锐角 }, B {0,1} ,从 A 到 B 的映照是“求正弦” ,与 A 中元素 60 相对应的 B 中的元素是什么?与 B 中的元素2 相对应的 A 中元素是什么?24.解:由于 sin 603 ,因此与 A 中元素 60 相对应的 B 中的元素是 3 ;2 2由于 sin 452 ,因此与 B 中的元素 2相对应的 A 中元素是 45 .221.2 函数及其表示习题 1.2 (第 23 页)1.求以下函数的定义域:( 1) f ( x)3x ; ( 2)x 4( 3) f ( x)6;( 4) x 23x2f ( x)x 2 ;f ( x)4 x .x 11.解:( 1)要使原式存心义,则得该函数的定义域为 x 4 0 ,即 x 4,{ x | x 4} ;( 2) x R , f ( x)x 2 都存心义,即该函数的定义域为 R ;( 3)要使原式存心义,则x 2 3x 20 ,即 x 1 且 x 2, 得该函数的定义域为 { x | x 1且 x2} ;( 4)要使原式存心义,则4 x 0x 1,即 x 4 且 x 1 ,得该函数的定义域为 { x | x 4且 x1} .2.以下哪一组中的函数f (x) 与 g(x) 相等?( 1) f (x) x 1, g(x)x 2 1 ; ( 2) f ( x)x 2, g( x) ( x) 4 ;x(3)f (x) x 2 , g(x) 3x 6 .2.解:( 1) f ( x)x 1的定义域为 R ,而 g(x)x 2 0} ,1 的定义域为 { x | x x高中数学必修 1 课后习题答案 [ 人教版 ] 即两函数的定义域不一样,得函数 f ( x) 与 g ( x) 不相等;()f ( x) x 2 的定义域为R,而g (x) ( x )4 的定义域为{ x | x 0},2即两函数的定义域不一样,得函数 f ( x) 与 g ( x) 不相等;( 3)对于任何实数,都有 3 x6 x2,即这两函数的定义域同样,切对应法例同样,得函数 f (x) 与 g( x) 相等.3.画出以下函数的图象,并说出函数的定义域和值域.8 2( 1)y3x ;(2)y;(3)y4x 5 ;(4) y x 6x7 .3.解:( 1)定义域是 ( ,),值域是 (,);(2)定义域是 ( ,0) (0,) ,值域是 ( ,0) (0,) ;(3)高中数学必修1 课后习题答案 [ 人教版 ]定义域是 (, ),值域是 ( , );( 4)定义域是 (, ) ,值域是 [ 2,) ..已知函数 f ( x) 3x 25x 2 ,求 f (2) ,f ( a) , f (a 3) , f (a) f (3) .4.解:由于 f ( x) 3x 2 5x 2 ,因此 f (2)3 ( 2)25 (2) 2 852,4即 f (2) 8 5 2 ;同理, f ( a) 3 ( a) 25 ( a)2 3a 2 5a 2 ,即 f ( a) 3a 25a 2 ;f (a 3) 3 (a3)2 5 (a 3) 2 3a 2 13a 14 ,即 f (a 3)3a 213a 14 ;f (a)f (3) 3a 2 5a 2f (3) 3a 2 5a 16 ,即 f (a)f (3) 3a25a 16 .5.已知函数 f ( x)x 2 ,x 6( 1)点 (3,14) 在 f ( x) 的图象上吗?( 2)当 x 4时,求 f ( x) 的值;( 3)当 f (x) 2 时,求 x 的值.5.解:( 1)当 x33 2 5 ,时, f (3)6143 3即点 (3,14) 不在 f ( x) 的图象上;高中数学必修 1 课后习题答案 [ 人教版 ]( 2)当x4 2,4 时,f (4) 34 6即当 x 4 时,求 f ( x) 的值为 3 ;( 3)f (x)x 2,得x 2 2( x 6) ,2x 6即 x 14 .6.若f ( x) x2 bx c ,且 f (1) 0, f (3) 0 ,求 f ( 1) 的值.6.解:由f (1) 0, f (3) 0 ,得 1,3 是方程 x2 bx c 0 的两个实数根,即 1 3 b,1 3 c ,得 b 4, c 3,即 f (x) x2 4x 3 ,得 f ( 1) ( 1)2 4(1)38,即 f ( 1) 的值为8.7.画出以下函数的图象:0, x 0( 2)G (n) 3n 1,n {1,2,3}.( 1)F ( x) ;1,x 07.图象以下:8.如图,矩形的面积为10,假如矩形的长为x ,宽为y,对角线为 d ,周长为 l ,那么你能获取对于这些量的哪些函数?8.解:由矩形的面积为10,即xy 10 ,得 y 10 (x 0) , x 10 ( y 0) ,x y高中数学必修 1 课后习题答案 [ 人教版 ]由对角线为 d ,即 d x 2y 22100,得 dxx 2 ( x 0) ,由周长为 l ,即 l2x 2 y ,得 l2x 20 (x 0) ,x 此外 l 2( x y) ,而 xy 10, d 2x 2 y 2 ,得 l 2 ( x y) 2 2 x 2 y 2 2xy2 d 2 20 (d 0) ,即 l2 d 2 20 (d 0) .9.一个圆柱形容器的底部直径是dcm ,高是 hcm ,此刻以 vcm 3 / s 的速度向容器内注入某种溶液.求溶液内溶液的高度 xcm 对于注入溶液的时间 ts 的函数分析式,并写出函数的定义域和值域.9.解:依题意,有( d)2 x vt ,即 x 4v 2 t ,2d明显 0x h ,即 04v t h ,得 0 th d 2 ,d 24v得函数的定义域为 [0,h d 2] 和值域为 [0, h] .4v10.设会合 A { a,b, c}, B {0,1} ,试问:从 A 到 B 的映照共有几个?并将它们分别表示出来.10.解:从 A 到 B 的映照共有8 个.f (a) 0 f ( a) 0 f (a) 0 f (a) 0分别是 f (b)0 , f (b) 0 , f (b) 1 , f (b)0 ,f (c) 0 f (c) 1 f (c) 0 f (c) 1 f ( a) 1 f (a) 1f (a) 1 f ( a) 1f (b) 0 , f (b) 0 , f (b) 1 , f (b) 0 .f ( c) 0f (c)1f (c)f (c) 1B组1.函数 r f ( p) 的图象以下图.( 1)函数 r f ( p)( 2)函数 r f ( p) 的定义域是什么?的值域是什么?( 3) r 取何值时,只有独一的 p 值与之对应?1.解:( 1)函数 rf ( p) 的定义域是 [ 5,0][2,6) ;( 2)函数r f ( p) 的值域是 [0,) ;( 3)当r 5 ,或 0 r 2 时,只有独一的p 值与之对应.2.画出定义域为{ x | 3 x 8,且 x 5} ,值域为 { y | 1 y 2, y 0} 的一个函数的图象.( 1)假如平面直角坐标系中点P( x, y) 的坐标知足 3 x 8 , 1 y 2 ,那么此中哪些点不可以在图象上?( 2)将你的图象和其余同学的对比较,有什么差异吗?2.解:图象以下,(1)点( x,0)和点(5, y)不可以在图象上;( 2)省略.3.函数 f (x) [ x] 的函数值表示不超出x 的最大整数,比如, [ 3.5] 4,[2.1] 2.当 x ( 2.5,3] 时,写出函数 f ( x) 的分析式,并作出函数的图象.3, 2.5 x 22, 2 x 11, 1 x 03.解:f (x) [ x] 0, 0 x 11, 1 x 22, 2 x 33, x 3图象以下4.以下图,一座小岛距离海岸线上近来的点P 的距离是 2km ,从点 P 沿海岸正东 12km 处有一个城镇.( 1)假定一个人驾驶的小船的均匀速度为3km/ h ,步行的速度是5km/ h ,t(单位: h )表示他从小岛到城镇的时间,x (单位:km)表示这人将船停在海岸处距P 点的距离.请将t 表示为 x 的函数.( 2)假如将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精准到1h )?4.解:( 1)驾驶小船的行程为x2 22 ,步行的行程为 12 x ,得 t x2 22 12 x(0 x 12) ,3 5,即 t x2 4 12 xx 12) .3 5 , (0( 2)当x42 4 12 4 2 5 84 时,t5 33 (h) .3 5第一章会合与函数观点1.3 函数的基天性质单一性与最大(小)值练习(第32 页)1.请依据以下图描绘某装置线的生产效率与生产线上工人数目间的关系.1.答:在必定的范围内,生产效率跟着工人数目的增添而提升,当工人数目达到某个数目时,生产效率达到最大值,而超出这个数目时,生产效率跟着工人数目的增添而降低.因而可知,并不是是工人越多,生产效率就越高.2.整个上午(8: 00 12 : 00) 天气愈来愈暖,中正午分(12 : 00 13: 00) 一场狂风雨使天气忽然凉快了许多 . 狂风雨事后,天气转暖,直到太阳落山(18: 00) 才又开始转凉.画出这天8: 0020: 00 时期气温作为时间函数的一个可能的图象,并说出所画函数的单一区间.2.解:图象以下[ 8 , 1 2是]递加区间,[12,13] 是递减区间,[13,18] 是递加区间, [18, 20] 是递减区间.3.依据以下图说出函数的单一区间,以及在每一单一区间上,函数是增函数仍是减函数 .3.解:该函数在 [ 1,0] 上是减函数,在 [0,2] 上是增函数,在 [2,4] 上是减函数,在 [4,5] 上是增函数.4.证明函数 f ( x) 2x 1在 R 上是减函数 .4.证明:设 x 1 , x 2 R ,且 x 1x 2 ,由于 f ( x 1 ) f ( x 2 ) 2( x 1 x 2 ) 2( x 2 x 1 ) 0 ,即 f ( x 1 ) f ( x 2 ) , 因此函数 f (x)2x 1在 R 上是减函数 .5.设 f (x) 是定义在区间 [ 6,11] 上的函数 . 假如 f (x) 在区间 [ 6, 2] 上递减,在区间 [ 2,11] 上递加,画出 f (x) 的一个大概的图象,从图象上能够发现f ( 2) 是函数 f ( x) 的一个.5.最小值.单一性与最大(小)值练习(第 36 页)1.判断以下函数的奇偶性:( 1) f ( x)2x 4 3x 2 ; ( 2) f ( x) x 3 2x2( 3) f (x)x1;( 4) f (x)x 2 1 .x1.解:( 1)对于函数 f (x)2x 4 3x 2 ,其定义域为 (,) ,由于对定义域内每一个 x 都有 f ( x)2( x)43( x)22x 4 3x 2f ( x) ,因此函数 f (x)2x 4 3x 2 为偶函数;高中数学必修 1 课后习题答案 [ 人教版 ]( 2)对于函数f (x) x3 2x ,其定义域为 ( , ) ,由于对定义域内每一个 x 都有 f ( x) ( x) 3 2( x) ( x3 2x) f ( x) ,因此函数 f ( x) x3 2x 为奇函数;( 3)对于函数f (x) x2 1( ,0) (0, ) ,由于对定义域内x,其定义域为每一个 x 都有 f ( x) ( x)2 1 x2 1f ( x) ,x x因此函数 f ( x) x2 1x为奇函数;( 4)对于函数f (x) x2 1 ,其定义域为 ( , ) ,由于对定义域内每一个 x 都有 f ( x) ( x) 2 1 x2 1 f ( x) ,因此函数 f ( x) x2 1 为偶函数.2. 已知f ( x)是偶函数,g(x) 是奇函数,试将以下图增补完好 .2.解: f (x) 是偶函数,其图象是对于y 轴对称的;g( x) 是奇函数,其图象是对于原点对称的.高中数学必修1 课后习题答案 [ 人教版 ]习题 1.3A 组1. 画出以下函数的图象,并依据图象说出函数y f (x) 的单一区间,以及在各单一区间上函数 yf ( x) 是增函数仍是减函数 .( 1) yx25x 6 ;( 2) y9x 2 .1.解:( 1)函数在 (, 5) 上递减;函数在 [ 5, ) 上递加;2 2(2)函数在 (,0) 上递加;函数在 [0, ) 上递减 .2. 证明:( 1)函数 f (x)x 2 1 在 (,0) 上是减函数;高中数学必修 1 课后习题答案 [ 人教版 ]( 2)函数f (x) 1 1,0) 上是增函数. 在 (x2.证明:(1)设x1 x2 0 ,而 f ( x1 ) f ( x2 ) x1 2x2 2 ( x1 x2 )( x1 x2 ) ,由 x1 x2 0, x1 x2 0 ,得 f ( x1 ) f ( x2 ) 0 ,即 f ( x1 ) f ( x2 ) ,因此函数 f ( x) x2 1 在 ( ,0) 上是减函数;( 2)设x1 x2 0 ,而 f ( x1 ) f ( x2 ) 1 1 x1 x2 ,x2 x1 x1 x2 由 x1x2 0, x1 x2 0 ,得 f (x1) f (x2 ) 0 ,即 f ( x1 ) f (x2 ) ,因此函数 f ( x) 1 1,0) 上是增函数. 在 (x3.研究一次函数 y mx b( x R) 的单一性,并证明你的结论.3.解:当m 0 时,一次函数y mx b 在 ( , ) 上是增函数;当 m 0 时,一次函数y mx b 在 ( , ) 上是减函数,令 f (x) mx b ,设 x1 x2,而 f (x1) f (x2 ) m(x1 x2 ) ,当 m 0 时,m(x1 x2 ) 0 ,即 f ( x1 ) f ( x2 ) ,得一次函数 y mx b 在 ( , ) 上是增函数;当 m 0 时,m(x1 x2 ) 0 ,即 f ( x1 ) f (x2 ) ,得一次函数 y mx b 在 ( , ) 上是减函数.4.一名心率过速患者服用某种药物后心率马上明显减慢,以后跟着药力的减退,心率再次慢慢高升 . 画出自服药那一刻起,心率对于时间的一个可能的图象(表示图). 4.解:自服药那一刻起,心率对于时间的一个可能的图象为5. 某汽车租借企业的月利润y 元与每辆车的月租金x 元间的关系为第21页共 28页x2y 162x 21000 ,那么,每辆车的月租金多少元时,租借企业的月利润最大?最大月利润是多50少?5.解:对于函数y x2162x 21000 ,501624050时,y max 307050 (元),当 x 12 ( )50即每辆车的月租金为4050 元时,租借企业最大月利润为307050元.6. 已知函数 f (x) 是定义在R上的奇函数,当x 0 时, f (x)x(1 x) .画出函数 f (x)的图象,并求出函数的分析式.6.解:当x 0 时,x 0 ,而当 x 0 时,f (x) x(1 x) ,即 f ( x) x(1 x) ,而由已知函数是奇函数,得 f ( x)f (x) ,得 f (x) x(1 x) ,即 f ( x) x(1 x) ,f ( x) x(1 x), x 0因此函数的分析式为x(1 x), x. 0B 组1. 已知函数f (x) x2 2x , g( x) x2 2x (x [2, 4]) .( 1)求f ( x),g( x)的单一区间;( 2)求f (x),g (x)的最小值 .1.解:( 1)二次函数f ( x) x2 2x 的对称轴为x 1 ,则函数 f (x) 的单一区间为 ( ,1),[1, ) ,且函数 f (x) 在 ( ,1) 上为减函数,在[1, ) 上为增函数,函数 g( x) 的单一区间为[2,4] ,且函数 g( x) 在 [2,4] 上为增函数;( 2)当x 1 时, f ( x)min 1 ,由于函数 g(x) 在 [2,4] 上为增函数,因此 g ( x) min g(2) 22 220.2.以下图,动物园要建筑一面靠墙的2 间面积同样的矩形熊猫居室,假如可供建筑围墙的资料总长是30m ,那么宽x(单位:m)为多少才能使建筑的每间熊猫居室面积最大?每间熊猫居室的最大面积第22页共 28页是多少?2.解:由矩形的宽为x m ,得矩形的长为30 3xm ,设矩形的面积为S ,2则 S30 3x 3( x2 10 x),x2 2当 x 5 时,S max 37.5 m2 ,即宽 x 5 m才能使建筑的每间熊猫居室面积最大,且每间熊猫居室的最大面积是37.5 m2.3. 已知函数f (x)是偶函数,并且在(0, ) 上是减函数,判断 f (x) 在 ( ,0) 上是增函数仍是减函数,并证明你的判断 .3.判断f (x)在( ,0) 上是增函数,证明以下:设 x1 x2 0 ,则 x1 x2 0,由于函数 f ( x) 在 (0, ) 上是减函数,得 f ( x1) f ( x2 ) ,又由于函数 f ( x) 是偶函数,得 f ( x1 ) f ( x2 ) ,因此 f (x) 在 ( ,0) 上是增函数.复习参照题A组1.用列举法表示以下会合:( 1)A { x | x2 9} ;(2)B { x N |1 x 2} ;( 3)C { x | x2 3x 2 0} .1.解:(1)方程x2 9 的解为 x13, x2 3 ,即会合 A { 3,3} ;(2)1 x 2 ,且 x N ,则x 1,2 ,即会合 B { 1,2} ;第23页共 28页( 3)方程 x 23x 2 0 的解为 x 1 1, x 2 2 ,即会合 C {1,2} .2.设 P 表示平面内的动点,属于以下会合的点构成什么图形? (1){ P|PAPB} ( A, B 是两个定点 ) ;(2){ P|PO3cm} (O 是定点 ) .2.解:( 1)由 PAPB ,得点 P 到线段 AB 的两个端点的距离相等,即{P|PAPB} 表示的点构成线段 AB 的垂直均分线;(2){P|PO3cm} 表示的点构成以定点 O 为圆心,半径为 3cm 的圆.3. 设平面内有ABC ,且 P 表示这个平面内的动点,指出属于会合{P|PAPB} {P|PA PC} 的点是什么 .3.解:会合 { P | PAPB} 表示的点构成线段AB 的垂直均分线,会合{P|PAPC } 表示的点构成线段 AC 的垂直均分线,得{ P |PAPB} { P | PA PC} 的点是线段 AB 的垂直均分线与线段 AC 的垂直均分线的交点,即ABC 的外心.4. 已知会合 A{ x | x 2 1} , B { x | ax 1} . 若 BA ,务实数 a 的值 .4.解:明显会合 A { 1,1} ,对于会合 B { x | ax 1} ,当 a 0时,会合 B ,知足 B A ,即 a 0 ;当 a时,会合 B 1 1 1 1,{ },而B A ,则1 ,或aaa得 a 1 ,或 a 1 ,综上得:实数 a 的值为1,0 ,或 1.5. 已知会合 A {( x, y) | 2xy0} , B {( x, y) | 3x y 0} , C {( x, y) | 2xy 3} ,求 AB ,A C ,(A B) (B C).5.解:会合 A B( x, y) |2 x y 0 A B {(0,0)} ;3x y{(0,0)} ,即会合会合AC2x y 0 ,即A C( x, y) |y3 ;2xBC3x y 0 3,9)} ;( x, y) |y{(2x 35 5第24页共 28页3 9则 ( A B) (B C) {(0,0),( , )} .5 56. 求以下函数的定义域:( 1) yx 2 x 5 ;( 2) yx 4 .| x | 56.解:( 1)要使原式存心义,则x 2 0 x 5 ,即 x 2 ,得函数的定义域为 [2,) ;( 2)要使原式存心义,则x 4 0 ,即 x 4 ,且 x 5 ,| x | 5得函数的定义域为 [4,5)(5,) .7. 已知函数 f (x)1 x,求:1 x( 1) f ( a) 1(a 1) ; ( 2) f (a 1)(a 2) .7.解:( 1)由于 f ( x)1 x ,1 x因此 f (a)1 a,得 f (a) 1 1 a 12 ,1 a 1 a 1 a即 f ( a) 11 2 ;a( 2)由于 f (x)1 x ,1 x因此 f ( a1) 1 ( a 1)a ,1 a 1a 2即 f ( a 1) a .a 21 x2 8. 设 f ( x)2 ,求证:1 x( 1) f ( x)f ( x) ;1f ( x) . ( 2) f ( )x8.证明:(1)由于 f (x)1 x2 ,1 x 2因此 f ( x)1 ( x)2 1 x 2 f ( x) ,1 ( x)21 x2第25页共 28页高中数学必修 1 课后习题答案 [ 人教版 ]即 f ( x) f ( x) ;1 x 2,( 2)由于 f ( x)x 211 21) 1 ( x )1 x2 f (x),因此 f ( 1x 2 1x 1 ( ) 2x即 f ( 1)f (x) .x9. 已知函数 f (x)4x 2 kx 8 在 [5,20] 上拥有单一性,务实数 k 的取值范围 .9.解:该二次函数的对称轴为 x k,8函数 f ( x) 4x 2 kx 8 在 [5,20] 上拥有单一性,则k20 ,或k5 ,得 k 160 ,或 k40 ,88即实数 k 的取值范围为 k160 ,或 k 40 .10.已知函数 yx 2 ,( 1)它是奇函数仍是偶函数? ( 2)它的图象拥有如何的对称性? ( 3)它在 (0,) 上是增函数仍是减函数?( 4)它在 ( ,0) 上是增函数仍是减函数?10.解:( 1)令 f ( x) x 2 ,而 f ( x) ( x)2 x 2f ( x) ,即函数 yx 2 是偶函数;( 2)函数 y x 2 的图象对于 y 轴对称;( 3)函数 y x 2 在 (0, ) 上是减函数;( 4)函数 yx 2 在 (,0) 上是增函数.B 组1. 学校举办运动会时, 高一( 1)班共有 28 名同学参加竞赛, 有 15 人参加游泳竞赛, 有 8 人参加田径竞赛,有 14人参加球类竞赛, 同时参加游泳竞赛和田径竞赛的有 3人,同时参加游泳竞赛和球类竞赛的有 3 人,没有人同时参加三项竞赛 . 问同时参加田径和球类竞赛的有多少人?只参加游泳一项竞赛的有多少人? 1.解:设同时参加田径和球类竞赛的有x 人,则 15 8 14 3 3 x 28 ,得 x 3 , 只参加游泳一项竞赛的有1533 9 (人),第26页共 28页即同时参加田径和球类竞赛的有3 人,只参加游泳一项竞赛的有9 人.2. 已知非空会合 A { x R | x2a} ,试务实数 a 的取值范围 .2.解:由于会合 A,且 x 20 ,因此 a 0 .3. 设全集 U{1,2,3,4,5,6,7,8,9} , e U (A B) {1,3} , A (e U B) {2, 4} ,求会合 B .e ( A B) {1,3},得 A B{2,4,5,6,7,8,9}, 3.解:由 U会合 AB 里除掉 A(e U B) ,得会合 B ,因此会合 B {5,6,7,8,9} .4. 已知函数 f (x)x(x 4), x 0(1), f ( 3) , f (a 1)的值 .x(x4), x . 求 f4.解:当 x0 时, f ( x) x(x 4) ,得 f (1) 1 (1 4) 5 ; 当 x0 时, f ( x) x(x 4) ,得 f ( 3)3( 3 4) 21;f (a 1)(a 1)(a 5), a 1 (a 1)(a 3), a1 .5. 证明:( 1)若 f (x)ax b ,则 f (x 1x 2 ) f ( x 1 ) f ( x 2 ) ;2 2( 2)若 g (x) x2ax b ,则 g(x 1 x2)g( x 1)g( x 2).225.证明:(1)由于 f (x)axb ,得 f (x 1x 2 ) a x 1 x 2 b a( x 1 x 2 ) b ,2 22f ( x 1 ) f ( x 2 ) ax 1 b ax 2b ax 2 ) b ,22(x 12因此 f (x 1 2 x2)f ( x 1 )f ( x 2 );2 ( 2)由于 g( x)x 2 ax b ,得 g (x 1 x 2)2 g( x 1 )g(x 2 )21(x 12x 222x 1x 2 ) a(x 1 x 2) b , 42 1[( x 12 ax 1 b) (x 2 2ax 2 b)]21( x 12x 2 2) a(x 1 x 2) b ,22由于 1( x 12 x 222x 1 x 2 )1( x 12 x 2 2)1(x 1 x 2 )2 0 , 424即 1( x 12x 222 x 1 x 2 ) 1( x 12x 2 2 ) , 42第27页共 28页因此 g( x 1 x 2)g (x 1) g (x 2 ) .226. ( 1)已知奇函数 f (x) 在 [a, b] 上是减函数,试问:它在 [ b, a] 上是增函数仍是减函数? ( 2)已知偶函数 g( x) 在 [a,b] 上是增函数,试问:它在[ b, a] 上是增函数仍是减函数?6.解:( 1)函数 f ( x) 在 [ b, a] 上也是减函数,证明以下:设 b x 1 x 2a ,则 ax 2x 1 b ,因 为 函 数 f ( x) 在 [ a, b]上是减函数,则全月应纳税所得额税率 (0 0)f ( x 1) ,f ( x 2 )不超出 500元的部分5f ( x) 是奇函数,则f ( x 2 )f ( x 1 ) ,超出 500 元至 2000 元的部分 10 又由于函数 超出 2000 元至 5000 元的部分 15f (x 1 ) f ( x 2 ) ,即因此函数 f (x) 在 [b, a] 上也是减函数;( 2)函数 g( x) 在 [ b, a] 上是减函数,证明以下:设 b x 1 x 2 a ,则 a x 2 x 1 b ,由于函数 g( x) 在 [ a, b] 上是增函数,则 g ( x 2 ) g( x 1) , 又由于函数 g (x) 是偶函数,则 g( x 2 ) g( x 1 ) ,即 g( x 1 ) g( x 2 ) , 因此函数 g(x) 在 [ b, a] 上是减函数.7. 《中华人民共和国个人所得税》规定,公民全月薪资、薪金所得不超出2000 元的部分 不用纳税,超出 2000元的部分为全月应纳税所得额. 此项税款按下表分段累计计算: 某人一月份应缴纳此项税款为26.78元,那么他当月的薪资、薪金所得是多少?7x 元,应纳此项税款为 y元,则.解:设某人的全月薪资、薪金所得为0,0 x 2000(x 2000) 5%, 2000x 2500y( x 2500) 10%, 2500 x 4000 25 175 (x 4000) 15%, 4000 x5000由该人一月份应缴纳此项税款为26.78 元,得 2500 x4000 ,25 ( x 2500) 10%26.78 ,得 x2517.8 ,因此该人当月的薪资、薪金所得是2517.8元.第28页共 28页书是我们时代的生命——别林斯基书本是巨大的力量——列宁书是人类进步的阶梯———高尔基书本是人类知识的总统——莎士比亚书本是人类思想的宝库——乌申斯基书本——举世之宝——梭罗好的书本是最名贵的瑰宝——别林斯基书是独一不死的东西——丘特书本令人们成为宇宙的主人——巴甫连柯书中横卧着整个过去的灵魂——卡莱尔人的影响短暂而轻微,书的影响则宽泛而深远——普希金人走开了书,好像走开空气同样不可以生活——科洛廖夫书不单是生活,并且是此刻、过去和将来文化生活的源泉——库法耶夫书本把我们引入最美好的社会,使我们认识各个时代的伟大智者———史美尔斯书本即是这类改造灵魂的工具。
1.1 集合的概念一、单选题1.若集合{}2|(2)210A x k x kx =+++=有且仅有1个真子集,则实数k 的值是( ).A .2-B .1-或2C .1-或2±D .1-或2-答案:C解析:集合A 中有且只有1个真子集,等价为集合A 只有一个元素,然后分20k +=、20k +≠两种情况讨论即可.详解:集合2{|(2)210}A x k x kx =+++=有且仅有1个真子集,∴集合A 只有一个元素. 若20k +=,即2k =-时,方程等价为410x -+=,解得14x =,满足条件.若20k +≠,即2k ≠-时,则方程满足△0=,即244(2)0k k -+=,220k k ∴--=,解得2k =或1k =-. 综上:2k =-或2k =或1k =-.故选:C2.已知集合{(2)(2)0}M xx x x =+-=∣,则M =( ) A .{0,2}-B .{0,2}C .{0,2,2}-D .{2,2}-答案:C 解析:直接利用方程的解法化简求解.详解:因为集合{(2)(2)0}{2,0,2}M xx x x =+-==-∣, 故选:C3.已知集合M=6*,5aN a ⎧∈⎨-⎩且}a Z ∈,则M 等于( ) A .2,3}B .1,2,3,4}C .1,2,3,6}D .1-,2,3,4}答案:D解析:由元素具有的性质,5a -是6的正约数,由此可得a 的值.详解:因为集合M=6*,5a N a⎧∈⎨-⎩且}a Z ∈,,所以5-a 可能为1,2,3,6, 即a 可能为4,3,2,1-.所以M=1-,2,3,4},故选:D.点睛:本题考查集合的概念,确定集合的元素是解题关键.元素所具有的性质是解题的根据.4.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-5C .37D答案:D解析:首项R 代表实数集,Q 代表有理数集,对四个数判断是无理数即可.详解:由题意知a 是实数,但不是有理数,故a 应为无理数,故a .故选:D点睛:本题主要考查了元素与集合的关系,涉及了专用数集符号,属于基础题.5.下列表示正确的是A .0N ∈B .12N ∈C .R π∉D .0.333Q ∉答案:A解析:要判断表示是否正确,掌握N 、R 和Q 各数集的定义,并能够用正确的符号表示元素和集合的关系.详解:对于A ,0是自然数,所以0N ∈,故A 正确;对于B ,12是分数,但不满足12N ∈,故B 不正确; 对于C ,π是无理数,属于实数,即有R π∈,故C 不正确;对于D ,0.333是有理数,即有0.333Q ∈,故D 不正确;故选:A点睛:本题考查了判断元素和集合之间的关系是否正确,需要熟练掌握各数集的范围,而且能够用属于符号正确表示元素和集合之间的关系,本题较为简单.6.下列命题中的真命题是( )A是有理数B .是实数C .e 是有理数D .0 不是自然数答案:B解析:根据数集的定义,实数的运算判断.详解:和 e 都是无理数;0 是自然数. 故选:B .7.设集合{}{}1,3,5,7,9,27M N x x ==>,则MN =( ) A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9答案:B解析:求出集合N 后可求M N ⋂.详解:7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.8.下列说法正确的是A .我校爱好足球的同学组成一个集合B .{}1,2,3是不大于3的自然数组成的集合C .集合{}1,2,3,4,5和{}5,4,3,2,1表示同一个集合D .由1,0,12,325个元素答案:C解析:根据集合中的元素具有:确定性,互异性,无序性对选项逐一判断可得正确选项. 详解:对于选项A:不满足集合中的元素的确定性,所以A 错误;对于选项B:不大于3的自然数组成的集合是{0,1,2,3},所以B 错误;对于选项C:由于集合中的元素具有无序性,所以集合{}1,2,3,4,5和{}5,4,3,2,1表示同一个集合,所以C 正确;;对于选项D 12,集合中的元素具有互异性,所以由1,0,12,32有4个元素, 所以D 错误;故选C.点睛:本题考查了集合中的元素的特征:确定性,无序性,互异性,属于基础题.9.下面有四个语句:①集合N*中最小的数是0;②-a ∉N ,则a∈N;③a∈N,b∈N,则a+b 的最小值是2;④x 2+1=2x 的解集中含有两个元素.其中说法正确的个数是( )A .0B .1C .2D .3答案:A解析:根据题意依次判断即可.详解:因为N*是不含0的自然数,所以①错误;取∉N , ∉N ,所以②错误;对于③,当a=b=0时,a+b 取得最小值是0,而不是2,所以③错误;对于④,解集中只含有元素1,故④错误.故选:A二、填空题1.若a ,b R ∈,且0a ≠,0b ≠,则a b ab a b ab ++的可能取值所组成的集合中元素的个数为________.答案:2解析:对,a b 分三种情况讨论:1、0,0a b >>;2、,a b 两者中一正一负;3、0,0a b <<,对每一种情况分别求,,a b ab a b ab 的值,从而可得a b ab a b ab ++的值,可得答案. 详解:当0,0a b >>时,0ab > ,所以1,1,1a b ab a b ab ===,所以3a b ab a b ab++=; 当,a b 两者中一正一负时,0ab < ,所以0,1a b ab a b ab +==-,所以1a b ab a b ab ++=-; 当0,0a b <<时,0ab > ,所以1,1,1a b ab a b ab =-=-=,所以1a b ab a b ab++=-;所以a b ab a b ab++的取值可能是3或-1,组成的集合中的元素为3,-1.即元素的个数为2. 故答案为:2.点睛:本题考查集合的元素的个数,注意对每一种情况进行讨论,集合的元素具有互异性,属于基础题.2.已知集合{}22(,)3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为_____.答案:9解析:根据列举法,写出集合中元素,即可得出结果.详解:将满足223x y +≤的整数,x y 全部列举出来,即(1,1),(1,0),(1,1),(0,1)-----(0,0),(0,1),(1,1),(1,0),(1,1)-,共有9个.故答案为:9.点睛:本题主要考查判断集合中元素个数,属于基础题型.3.若{}20x N x mx *∈+<恰有三个元素,则实数m 的取值范围为___________.答案:[)4,3--解析:根据题意可知34m <-≤,解出即可.详解:{}20x Nx mx *∈+<恰有三个元素,{}{}{}2001,2,3x N x mx x N x m **∴∈+<=∈<<-=, 34m ∴<-≤,即43m -≤<-.故答案为:[)4,3--.点睛:本题考查根据集合元素个数求参数,其中涉及一元二次不等式的求解,属于基础题.4.已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a =___________.答案:2或32解析:由题意知M 中各元素为描述中方程的解,由集合的性质讨论23,x x 是否相等即可求实数a . 详解:由题意知:2{|()(1)0}M x x a x ax a =--+-=中元素,即为2()(1)0x a x ax a --+-=的解, ∴0x a -=或210x ax a -+-=,可知:1x a =或23x x a +=∴当23x x ≠时,23a =;当23x x =时,332a =,∴2a =或32a =,故答案为:2或32点睛:本题考查了集合的性质,根据集合描述及元素之和,结合互异性讨论求参数,属于基础题.5.已知{}201,2x x x ∈+--,则x =_____________答案:2解析:讨论10x +=和220x x --=两种情况,再验证得到答案.详解:{}201,2x x x ∈+--当10x +=时,1x =-,代入验证知:{}{}21,20,0x x x +--=,不满足互异性,排除;当220x x --=时,2x =或1x =-(舍去),代入验证知:{}{}21,23,0x x x +--=,满足.故答案为:2点睛:本题考查了元素和集合的关系,没有验证互异性是容易发生的错误.三、解答题1.已知集合(){}2|220A x x a x a =-++=,{}22,5,512B a a =+-.(1)若3A ∈,求实数a 的值;(2)若{}5B C A =,求实数a 的值.答案:(1)3a =(2)6a =-解析:(1)化简得到()(){}|20A x x x a =--=和3A ∈,代入计算得到答案.(2)根据题意得到2512a a a +-=,计算得到2a =或6a =-,再验证互异性得到答案. 详解:(1)因为3A ∈,()(){}|20A x x x a =--=,所以3a =.(2)因为{}5B C A =,所以A 中有两个元素,即{}2,A a =,所以2512a a a +-=,解得2a =或6a =-,由元素的互异性排除2a =可得6a =-.点睛:本题考查了根据元素与集合的关系,集合的运算结果求参数,意在考查学生对于集合性质的综合应用.2.坐标平面内抛物线y=x 2-2上的点的集合;答案:答案见解析解析:利用描述法即可求解.详解:由集合的表示法,抛物线y=x 2-2上的点用描述法:{}2(,)|2x y y x =-.3.若集合A=x ∣28160kx x -+=}中只有一个元素,试求实数k 的值,并用列举法表示集合A.答案:实数k 的值为0或1,当0k =时,{}2A =;当1k =,{}4A =解析:集合A=x∣28160kx x -+=}中只有一个元素,即方程28160kx x -+=只有一个解,再讨论当0k =时,当0k ≠时方程的解的个数,再求集合A 即可.详解:解:由集合A=x∣28160kx x -+=}中只有一个元素,即方程28160kx x -+=只有一个解,①当0k =时,方程为8160x -+=,解得2x =,即{}2A =;②当0k ≠时,方程28160kx x -+=只有一个解,则2(8)4160k ∆=--⨯⨯=,即1k =, 即方程为28160x x -+=,解得4x =,即{}4A =,综合①②可得:实数k 的值为0或1,当0k =时,{}2A =;当1k =,{}4A =.点睛:本题考查了方程的解的个数问题,重点考查了分类讨论的数学思想方法,属基础题.。
1.1 集合的概念1.用描述法表示下列集合:(1)小于1500的正偶数组成的集合;(2)所有矩形组成的集合.2.设全集为R ,{}|37A x x =≤<,{}|210B x x =<<. (1)求A B ; (2)求()RA B ⋃.3.用列举法表示下列集合: (1)大于1且小于6的整数; (2){}(1)(2)0A x x x =-+=; (3){}3213B x Z x =∈-<-<.4.已知集合1b a a ⎧⎫⎨⎬⎩⎭,,与集合a 2,a+b ,0}是两个相等的集合,求a 2 020+b 2 020的值.5.设{}0,2,3,5,7A =,{}22,31B a a =++,已知5A ∈,5B ∉,求a 的值.6.已知集合A 含有两个元素a 和a 2,若1∈A,求实数a 的值.7.若集合A 具有以下性质:①0A ∈,1A ∈;②若x 、y A ,则x y A -∈,且0x ≠时,1A x∈,则称集合A 为“好集”.(1)试判断有理数集Q 和集合{}1,0,1B =-是不是“好集”,并说明理由; (2)设集合A 是“好集”,求证:若a 、b A ∈,则a b A +∈.8.用描述法表示下列集合: (1)正奇数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合; (4)方程1x y -=-的所有解组成的集合.9.已知集合{}2|(1)320A x a x x =-+-=,{}2|320B x x x =-+=(1)若A ≠∅,求实数a 的取值范围; (2)若A B A ⋂=,求实数a 的取值范围.10.集合A 是由方程2210ax x -+=的实数解构成的. (1)若集合A 是空集,求a 的取值范围; (2)若集合A 中只有一个元素,求a 的值.11.试说明下列集合各表示什么?1|A y y x ⎧⎫==⎨⎬⎩⎭;{|B x y =;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.12.已知方程ax2-3x-4=0的解组成的集合为A.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.13.用列举法表示下列给定的集合:(1)不大于8的非负偶数组成的集合A;(2)小于10的质数组成的集合B;(3)方程2x2-x-3=0的实数根组成的集合C;(4)一次函数y=x+3与y=-2x+6的图象的交点组成的集合D.14.下面三个集合:①x|y=x2+1};②y|y=x2+1};③(x,y)|y=x2+1}.(1)它们各自的含义是什么?(2)它们是不是相同的集合?15.用描述法表示下列集合,并思考能否用列举法表示该集合(1)所有能被3整除的自然数(2)不等式²230+-<的解集x x(3)²230+-=的解集x x16.已知函数f(x)=2x-ax+b(a,b∈R).集合A=x|f(x)-x=0},B=x|f(x)+ax=0},若A=1,-3},试用列举法表示集合B.17.已知关于x 的方程2210-+=ax x 的实数解构成集合A ,若集合A 中仅有一个元素,求实数a 的值.18.已知集合2{2,25,12}A a a a =-+,且3A -∈,求a 的值.19.称正整数集合 A=a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n≥2)具有性质 P :如果对任意的i ,j (1≤i≤j≤n),i j a a 与j ia a 两数中至少有一个属于A.(1)分别判断集合1,3,6}与1,3,4,12}是否具有性质 P ;(2)设正整数集合 A=a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n≥2)具有性质 P.证明:对任意1≤i≤n(i∈N *),a i 都是a n 的因数; (3)求a n =30时n 的最大值.20.已知集合{}2|340A x R ax x =∈--=,①若A 是空集,求a 的范围; ②若A 中只有一个元素,求a 的值;参考答案1.(1){|1500x x <且,}2x n n +=∈N ;(2){|x x 是矩形}.解析:在花括号内先写上这个集合元素的一般符号及取值范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征. 详解:(1)小于1500的正偶数组成的集合为{|1500x x <且,}2x n n +=∈N ; (2)所有矩形组成的集合为{|x x 是矩形}. 点睛:本题考查描述法表示集合,属于基础题.2.(1){|37}x x ≤<;(2){|2x x ≤或10}x ≥. 解析:(1)画出数轴图,数形结合即可求出;(2)画出数轴图,数形结合可求出A B ,再利用补集定义即可求出. 详解:(1)画出集合A 和集合B 表示的数轴图, 则由图可得{}37A B x x ⋂=≤<; (2)观察图形可得{}210A B x x ⋃=<<∴()RA B ⋃={|2x x ≤或10}x ≥.3.(1){}2,3,4,5;(2){}1,2A =-;(3){}0,1B = 解析:根据题意,求出集合的元素,用列举法表示出来即可. 详解:解:用列举法表示下列集合(1)大于1且小于6的整数,{}2,3,4,5; (2){|(1)(2)0}A x x x =-+=;所以{}1,2A =- (3){|3213}B x Z x =∈-<-<,由3213x -<-<解得12x -<<,x ∈Z ,故表示为{}0,1B =,4.a 2 020+b 2 020=1解析:先由集合相等及集合中元素的互异性求出a 、b ,代入求值即可. 详解: 由a ,b a ,1组成一个集合,可知a≠0,a≠1,由题意可得ba=0,即b =0,此时两集合中的元素分别为a ,0,1和a 2,a ,0,因此a 2=1,解得a =-1 (a =1不满足集合中元素的互异性,舍去),因此a =-1,且b =0,所以a 2 020+b 2 020=(-1)2 020+0=1.5.{a 32a --≠且32a -+≠且1a ≠且}4a ≠-解析:根据5B ∉,结合集合元素的互异性求得参数a 的取值. 详解:由5B ∉知,2315a a ++≠,即2340a a +-≠, 解得1a ≠且4a ≠-又集合元素具有互异性,知2312a a ++≠,即2310a a +-≠解得a ≠且a ≠综上所述,a 的取值为{a a ≠且a ≠1a ≠且}4a ≠-6.a =-1. 详解:试题分析:本题中已知集合A 中有两个元素且1∈A,据集合中元素的特点需分a =1和a 2=1两种情况,最后注意集合中元素的互异性,进行验证. 试题解析:若1∈A,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a=-1.点睛:利用元素的性质求参数的方法,已知一个元素属于集合,求集合中所含的参数值.具体解法:(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.7.(1)理数集Q 是“好集”,集合B 不是“好集”,理由见解析;(2)证明见解析解析:(1)利用举反例的方法,证明集合B 不是“好集”.根据“好集”的两个条件,证明有理数集Q 是“好集.(2)先判断出当b A ∈,则0b b A -=-∈,进而证得()a b a b A --=+∈,由此证得结论成立. 详解:(1)集合B 不是“好集”理由.假设集合B 是“好集”,则由1B -∈,1B ∈可得112B --=-∈,这与题设2B -∉矛盾;有理数集Q 是“好集”,0Q ∈,1Q ∈,对任意的m ,Q n ∈,有Q m n -∈,且0m ≠时,1Q m∈,故Q 是“好集” (2)集合A 是“好集”,0A ∴∈,若a ,b A ∈,则0b b A -=-∈,于是()a b a b A --=+∈,即a b A +∈,结论成立..点睛:本小题主要考查新定义集合的概念理解和运用,考查分析与解决问题的能力,属于基础题.8.(1) *{|2}1,x x n n =-∈N (2) {|3,2}x n x n =+∈N (3) {(,)|0}x y xy =(4) {(,)|1}x y x y -=- 解析:描述法表示集合即为(){}|x p x ,()p x 为元素的性质,根据这个概念写出集合即可 详解:解:(1)正奇数集可表示为*{|2}1,x x n n =-∈N ; (2)被3除余2的正整数集可表示为{|3,2}x n x n =+∈N ;(3)平面直角坐标系中坐标轴上的点(,)x y 的特点是横、纵坐标中至少有一个为0,即0xy =,故平面直角坐标系中坐标轴上的点组成的集合可表示为{(,)|0}x y xy =;(4)方程1x y -=-的解是满足方程的有序实数对(,)x y ,所以所有解组成的集合为{(,)|1}x y x y -=-点睛:本题考查描述法表示集合,考查数集与点集,属于基础题9.(1)18a ≥-,(2)18a <-或0a = 详解:试题分析:(1)对于字母系数的方程,一般先看最高项的系数是否为零,不要看到最高次数为2,就认为是一元二次方程,要分类讨论其系数;(2)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解 试题解析:(1) ①当1a =时,23A ⎧⎫=≠∅⎨⎬⎩⎭②当1a ≠时,0∆≥即18a ≥-且1a ≠ 综上:18a ≥- (2)①A =∅,18a <-②{}1,2A =,0a =,{}1A =或{}2A =时,a 无解,综上:18a <-或0a =.考点:集合的性质及运算.10.(1)(1,+∞);(2)a=0或a=1.解析:(1)集合A 是空集,表示方程2210ax x -+=无实数解,根据一元二次方程根的个数与∆的关系,易得一个与a 的不等式,解得a 的取值范围;(2)若集合A 中只有一个元素,表示方程2210ax x -+=为一次方程或有两个相等实数根的二次方程,分别构造关于a 的方程,即可求得满足条件的a 值. 详解:(1)集合A 是空集,即方程2210ax x -+=无实数解. ∴ 2(2)40a --<且a≠0.解得a>1. ∴ 所求a 的范围是(1,+∞)(2)集合A 中只有一个元素,即方程2210ax x -+=只有一个实数解. ①0a =,方程为一元一次方程210x -+=,只有一个实数解. ②0a ≠,则一元二次方程2210ax x -+=有两个相等的. ∴()2240a --=解得a=1 综上可得a=0或a=1 点睛:本题考查元素与集合关系的判断,根据题目要求分析方程根的情况,属于基础题.11.答案见解析解析:根据集合的定义依次判断各个集合中的元素即可确定结果. 详解:A 表示y 的取值集合,由1y x=知:0y ≠,{}0A y y ∴=≠;B 表示x 的取值集合,由220x x -≥知:0x ≤或2x ≥,{0B x x ∴=≤或}2x ≥;C 的代表元素为(),x y ,表示反比例函数1y x=上的点构成的点集; D 的代表元素为(),x y ,由13yx =-知:()33y x x =-≠,D ∴表示直线3y x =-上除了()3,0以外的点构成的点集;E 表示以方程“0x =”和“1y =”为元素的一个二元集.F 表示以方程“1x y +=”和“1x y -=-”为元素的一个二元集.点睛:本题考查集合中的元素的确定,涉及到数集、点集及二元集等集合的类别,属于基础题.12.(1)()9,00,16⎛⎫-+∞ ⎪⎝⎭;(2)9|016a a a ⎧⎫≤-=⎨⎬⎩⎭或 解析:(1)利用方程有两个不等实根列不等式组,解出实数a 的取值范围; (2)利用方程有0个或1个实根列不等式,解出实数a 的取值范围. 详解:解:(1)因为A 中有两个元素,所以方程ax 2-3x -4=0有两个不等的实数根,所以9160a a ≠⎧⎨∆=+>⎩ 即a>-916且a≠0.所以实数a 的取值范围为()9,00,16⎛⎫-+∞ ⎪⎝⎭.(2)当a =0时,由-3x -4=0得x =-43;当a≠0时,若关于x 的方程ax 2-3x -4=0有两个相等的实数根,则Δ=9+16a =0,即a =-916; 若关于x 的方程无实数根,则Δ=9+16a<0,即a<-916, 故所求的a 的取值范围是9|016a a a ⎧⎫≤-=⎨⎬⎩⎭或.13.(1)A =0,2,4,6,8};(2)B =2,3,5,7};(3)C =31,2⎧⎫-⎨⎬⎩⎭;(4)D =(1,4)}. 解析:由题意,依次求出(1)、(2)、(3)、(4)集合中的元素,再用列举法写出即可. 详解:解:(1)不大于10的非负偶数有0,2,4,6,8,所以A =0,2,4,6,8}. (2)小于8的质数有2,3,5,7,所以B =2,3,5,7}.(3)方程2x 2-x -3=0的实数根为-1,32,所以C =31,2⎧⎫-⎨⎬⎩⎭.(4)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,所以一次函数y =x +3与y =-2x +6的交点为(1,4),所以D =(1,4)}.14.(1)各个含义见解析;(2)不同的集合.解析:(1)可以看出①函数21y x =+的自变量当元素,②的元素是该函数的因变量y ,而③的元素是x ,y 构成的点,从而得出这三个集合分别表示函数21y x =+的定义域,值域,以及函数图象上的点集.(2)是不是相同的集合,就要看它们的元素是否完全相同,容易判断这三个集合的元素是否相同,从而可得结论. 详解:解:(1)集合①x|y=x 2+1}的代表元素是x ,满足条件y =x 2+1中的x∈R, 所以实质上x|y =x 2+1}=R ;集合②的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y≥1, 所以实质上y|y =x 2+1}=y|y≥1};集合③(x,y)|y =x 2+1}的代表元素是(x ,y),可以认为是满足y =x 2+1的数对(x ,y)的集合,也可以认为是坐标平面内的点(x ,y)构成的集合,且这些点的坐标满足y =x 2+1, 所以(x ,y)|y =x 2+1}=P|P 是抛物线y =x 2+1上的点}. (2)由(1)中三个集合各自的含义知,它们是不同的集合.15.答案见解析.解析:根据集合的表示法求解. 详解:(1){|3,}x x n n N =∈,集合中元素个数无穷,不能用列举法表示; (2)2230x x +-<,即(1)(3)0x x -+<,31x -<<,集合为{|31}x x -<<,集合中元素有无数个,不能用列举法表示; (3)集合可表示为2{|230}x x x +-=,列举法表示为{3,1}-.16.解析:由题意可得f (1)−1=0,f (−3)−(−3)=0,代入求出解析式,再解方程即可求解. 详解::解答:A=1,-3},∴f(1)−1=0,f (−3)−(−3)=0,即1−a+b −1=b −a=0,(9+3a+b )+3=3a+b+12=0, 解得a=−3,b=−3.∴f(x )+ax=2x +3x-3+(-3x )=2x -3=0.∴B=17.1a =或0a =.解析:根据题意,分0a =,0a ≠两类情况分别讨论即可得答案.. 详解:解:当0a =时,方程化为210x -+=,解得12x =,则0a =符合题意; 当0a ≠时,关于x 的方程2210-+=ax x 是一元二次方程,由于集合A 中仅有一个元素,所以一元二次方程2210-+=ax x 仅有一个实数根, 所以440a ∆=-=,解得1a =. 综上所述,1a =或0a =. 点睛:本题考查根据集合的元素个数求参数的值,考查一元二次方程的根的问题,是基础题. 18.32-解析:根据题意可知23a -=-或2253a a +=-,解出a ,再由集合的性质确定符合条件的a 的值。
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形. 等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得0)l d ===>,即(0)l d =>.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x= (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x .因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x 在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.。