1.2.1任意角的三角函数课件(一)_第一课时 (1)
- 格式:ppt
- 大小:487.00 KB
- 文档页数:13
1.2.1任意角的三角函数(新授课)【教学目标】1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
4.掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
5.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;.【教学重点】任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一)【教学难点】任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解..【教学过程】 一、知识回顾初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b===.角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、预习自学1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; (2)x 叫做α的余弦(cossine),记做cos α,即cos x α=; (3)y x叫做α的正切(tangent),记做tan α,即tan (0)y x xα=≠.注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?前面我们已经知道,三角函数的值与点P在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r=,那么sinα=cosα=,tanyxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(,)x y,它与原点的距离为(0)r r==>,那么(1)比值yr叫做α的正弦,记作sinα,即sinyrα=;(2)比值xr叫做α的余弦,记作cosα,即cosxrα=;(3)比值yx叫做α的正切,记作tanα,即tanyxα=;2.三角函数的定义域、值域三.典型例题例1.求53π的正弦、余弦和正切值.例2.已知角α的终边过点0(3,4)P--,求角α的正弦、余弦和正切值.例3.求证:当且仅当不等式组sin0{tan0θθ<>成立时,角θ为第三象限角.四、课堂练习6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:五、课堂小结、本节课你学了哪些知识?有哪些收获?你已经正确理解、掌握它们了吗?六、课后作业1.确定下列三角函数值的符号,然后用计算器验证:(1)cos 250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan 3π2.求下列三角函数值:(1)'sin148010︒; (2)9cos 4π; (3)11tan()6π-。
第一章三角函数1.1任意角和弧度制1.1.1任意角1.B.2.C.3.C.4.-1485°=-5³360°+315°.5.{-240°,120°}.6.{α|α=k²360°-490°,k∈Z};230°;-130°;三.7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略.8.(1)M={α|α=k²360°-1840°,k∈Z}.(2)∵α∈M,且-360°≤α≤360°,∴-360°≤k²360°-1840°≤360°.∴1480°≤k²360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°.9.与45°角的终边关于x轴对称的角的集合为{α|α=k²360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k²360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k²360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k²360°+225°,k∈Z}.10.(1){α|30°+k²180°≤α≤90°+k²180°,k∈Z}.(2){α|k²360°-45°≤α≤k²360°+45°,k∈Z}.11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°³2 4=864°.1.1.2弧度制1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km.7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5.9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2.10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R,∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2.11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4³25=100(cm).1.2任意角的三角函数1.2.1任意角的三角函数(一)1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z.7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角.10.y=-3|x|=-3x(x≥0),3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3.11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717.1.2.1任意角的三角函数(二)1.B.2.C.3.B.4.334.5.2.6.1.7.0.8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z.9.(1)sin100°²cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0.10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22.(3)tan13π3=tan4π+π3=tanπ3=3.11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上;∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z.(2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .当k=2n(n∈Z)时,2nπ-π4<α2<2nπ,n∈Z,sinα2<0,cosα2>0,tanα2<0;当k=2n+1(n∈Z)时,2nπ+3π4<α2<2nπ+π,n∈Z,sinα2>0,cosα2<0,tanα2<0. 1.2.2同角三角函数的基本关系1.B.2.A.3.B.4.-22.5.43.6.232.7.4-22.8.α2kπ+π2<α<2kπ+3π2,或α=kπ,k∈Z.9.0.10.15.11.3+12.1.3三角函数的诱导公式(一)1.C.2.A.3.B.4.-1-a2a.5.12.6.-cos2α.7.-tanα.8.-2sinθ.9.32.10.-22+13.11.3.1.3三角函数的诱导公式(二)1.C.2.A.3.C.4.2+22.5.-33.6.13.7.-73.8.-35.9.1.10.1+a4.11.2+3.1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.B.2.C.3.B.4.3;-3.5.2.6.关于x轴对称.7.(1)取(0,0),π2,1,(π,2),3π2,1,(2π,0)这五点作图.(2)取-π2,0,0,12,π2,0,π,-12,3π2,0这五点作图.8.五点法作出y=1+sinx的简图,在同一坐标系中画出直线y=32,交点有2个.9.(1)(2kπ,(2k+1)π)(k∈Z).(2)2kπ+π2,2kπ+32π(k∈Z).10.y=|sinx|=sinx(2kπ≤x≤π+2kπ,k∈Z),-sinx(π+2kπ<x<2π+2kπ,k∈Z),图象略.y=sin|x|=sinx(x≥0),-sinx(x<0),图象略.11.当x>0时,x>sinx;当x=0时,x=sinx;当x<0时,x<sinx,∴sinx=x只有一解.1.4.2正弦函数、余弦函数的性质(一)1.C.2.A.3.D.4.4π.5.12,±1.6.0或8.提示:先由sin2θ+cos2θ=1,解得m=0,或m=8.7.(1)4.(2)25π.8.(1)π.(2)π.9.32,2.10.(1)sin215π<sin425π.(2)sin15<cos5.11.342.1.4.2正弦函数、余弦函数的性质(二)1.B.2.B.3.C.4.<.5.2π.6.3,4,5,6.7.函数的最大值为43,最小值为-2.8.-5.9.偶函数.10.f(x)=log21-sin2x=log2|cosx|.(1)定义域:xx≠kπ+π2,k∈Z.(2)值域:(-∞,0]. (3)增区间:kπ-π2,kπ(k∈Z),减区间:kπ,kπ+π2(k∈Z).(4)偶函数.(5)π.11.当x<0时,-x>0,∴f(-x)=(-x)2-sin(-x)=x2+sinx.又∵f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=-f(-x)=-x2-sinx.1.4.3正切函数的性质与图象1.D.2.C.3.A.4.5π.5.tan1>tan3>tan2.6.kπ2-π4,0(k∈Z).7.2kπ+6π5<x<2kπ+3π2,k∈Z .8.定义域为kπ2-π4,kπ2+π4,k∈Z,值域为R,周期是T=π2,图象略.9.(1)x=π4.(2)x=π4或54π.10.y|y≥34.11.T=2π,∴f99π5=f-π5+20π=f-π5,又f(x)-1是奇函数,∴f-π5-1=-fπ5-1 f-π5=2-fπ5=-5,∴原式=-5.1.5函数y=Asin(ωx+φ)的图象(一)1.A.2.A.3.B.4.3.5.-π2.6.向左平移π4个单位.7.y=sinx+2的图象可以看作是将y=sinx图象向上平移2个单位得到,y=sinx-1的图象可以看作是将y=sinx图象向下平移1个单位而得到.8.±5.9.∵y=sin3x-π3=sin3x-π9,∴可将y=sin3x的图象向右平移π9个单位得到.10.y=sin2x+π4的图象向左平移π2个单位,得到y=sin2x+π2+π4,故函数表达式为y=sin2x+5π4.11.y=-2sinx-π3,向左平移m(m>0)个单位,得y=-2sin(x+m)-π3,由于它关于y轴对称,则当x=0时,取得最值±2,此时m-π3=kπ±π2,k∈Z,∴m的最小正值是5π6.1.5函数y=Asin(ωx+φ)的图象(二)1.D.2.A.3.C.4.y=sin4x.5.-2a;-310a+2ka(k∈Z);-2a.6.y=3sin6x+116π.7.方法1y=sinx横坐标缩短到原来的12y=sin2x向左平移π6个单位y=sin2x+π6=y=sin2x+π3.方法2y=sinx向左平移π3个单位y=sinx+π3横坐标缩短到原来的12y=sin2x+π3.8.(1)略.(2)T=4π,A=3,φ=-π4.9.(1)ω=2,φ=π6.(2)x=12kπ+π6(k∈Z),12kπ-112π,0(k∈Z).10.(1)f(x)的单调递增区间是3kπ-5π4,3kπ+π4(k∈Z).(2)使f(x)取最小值的x的集合是x|x=7π4+3kπ,k∈Z.11.(1)M=1,m=-1,T=10|k|π.(2)由T≤2,即10|k|π≤2得|k|≥5π,∴最小正整数k 为16.1.6三角函数模型的简单应用(一)1.C.2.C.3.C.4.2sinα.5.1s.6.k²360°+212 5°(k∈Z).7.扇形圆心角为2rad时,扇形有最大面积m216.8.θ=4π7或5π7.9.(1)设振幅为A,则2A=20cm,A=10cm.设周期为T,则T2=0.5,T=1s,f=1Hz.(2)振子在1T内通过的距离为4A,故在t=5s=5T内距离s=5³4A=20A=20³10=200cm=2(m).5s末物体处在点B,所以它相对平衡位置的位移为10cm.10.(1)T=2πs.(2)12π次.11.(1)d-710=sint-1.8517.5π.(2)约为5.6秒.1.6三角函数模型的简单应用(二)1.D.2.B.3.B.4.1-22.5.1124π.6.y=sin52πx+π4.7.95.8.12sin212,1sin12+2.9.设表示该曲线的三角函数为y=Asin(ωx+φ)+b.由已知平均数量为800,最高数量与最低数量差为200,数量变化周期为12个月,所以振幅A=2002=100,ω=2π12=π6,b=800,又7月1日种群数量达最高,∴π6³6+φ=π2.∴φ=-π2.∴种群数量关于时间t的函数解析式为y=800+100sinπ6(t-3).10.由已知数据,易知y=f(t)的周期T=12,所以ω=2πT=π6.由已知,振幅A=3,b=10,所以y=3sinπ6t+10.11.(1)图略.(2)y-12.47=cos2π(x-172)365,约为19.4h.单元练习1.C.2.B.3.C.4.D.5.C.6.C.7.B.8.C.9.D.10.C.11.5π12+2kπ,13π12+2kπ(k∈Z).12.4412.13.-3,-π2∪0,π2.14.1972π.15.原式=(1+sinα)21-sin2α-(1-sinα)21-sin2α=1+sinα|cosα|-1-sinα|cosα|=2sinα|cosα|. ∵α为第三象限角,|cosα|=-cosα,∴原式=-2tanα.16.1+sinα+cosα+2sinαcosα1+sinα+cosα=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=(sinα+cosα)2+sinα+cosα1+sinα+cosα=(sinα+cosα)·(1+sinα+cosα)1+sinα+cosα=sinα+cosα. 17.f(x)=(sin2x+cos2x)2-sin2xcos2x2-2sinxcosx-12sinxcosx+14cos2x=1-sin2xcos2x2(1-sinxcosx)-12sinxcosx+14cos2x=12+12sinxcosx-12sinxcosx+14cos2x=12+14cos2x.∴T=2π2=π,而-1≤cos2x≤1,∴f(x)max=34,f(x)min=14.18.∵Aπ3,12在递减段上,∴2π3+φ∈2kπ+π2,2kπ+3π2.∴2π3+φ=5π6,φ=π6.19.(1)周期T=π,f(x)的最大值为2+2,此时x∈x|x=kπ+π8,k∈Z;f(x)的最小值为2-2,此时x ∈x|x=kπ-38π,k∈Z;函数的单调递增区间为kπ-3π8,kπ+π8,k∈Z.(2)先将y=sinx(x∈R)的图象向左平移π4个单位,而后将所得图象上各点的横坐标缩小为原来的12,纵坐标扩大成原来的2倍,最后将所得图象向上平移2个单位.20.(1)1π.(2)5π或15.7s.(3)略.。
1.2.1任意角三角函数(命题人:乔更云 审题人:郑伟锋自主预习认真阅读教材P 11-14,回答下列问题: 1.任意角的三角函数(1)单位圆:在直角坐标系中,称以 为圆心,以 为半径的圆为单位圆.(2)锐角的三角函数:如图所示,在Rt △OAB 中,∠OAB =90°,OA =a ,AB =b ,OB =r ,设∠BOA =α,则有:示,α是任意角,以α的顶点O 坐标原点,以α的始边为x 轴的非负半轴,建立平面直角坐标系.设P (x ,y )是α的终边与单位圆的交点,则有:(4)定义:当a = (k ∈Z )时,tan α无意义.除此之外,对于每一个确定的α,都分别有 确定的正弦值、余弦值、正切值与之对应,所以这三个对应法则都是以角α为 ,以单位圆上点的坐标或坐标的比值为函数值的函数,分别叫做正弦函数、余弦函数、正切函数,这三个函数统称为,分别记作y =sin x ,y =cos x ,y =tan x .典例讲解[例1] 已知角的终边落在直线y =2x 上,求sin α,cos α,tan α的值.变式1 (1)求2π3的正弦、余弦和正切值.(2)已知角α的终边经过点P (3,4),求sin α,cos α,tan α.(3)已知角α的终边过点P (5,a ),且tan α=-125,求sin α-cos α的值.[例2]确定下列各式的符号:(1)sin105°·cos230°;(2)sin 7π8·tan7π8;(3)cos6·tan6.变式2. (1)若sinθ>0且tanθ<0,则θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)判断下列三角函数值的符号:(1)in(-670°)cos1230°;(2)sin8·cos8.[例3]求下列各式的值.(1)cos 253π+tan(-154π);(2)sin810°+tan765°-cos360°.变式3求下列三角函数值:(1)cos(-1050°);(2)tan19π3;(3)sin(-31π4).[例4]已知角α的终边上一点P(4t,-3t)(t≠0),求α的各三角函数值.例5已知sinα=12,求出角α的取值集合.变式5.利用单位圆,求使下列不等式成立的x的取值范围:(1)sin x≤12;(2)tan x≤1;(3)cos x≥22.1.2.1任意角三角函数 课后作业 1.若sin α<0且tan α>0,则α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限2.若角α的终边过点(-3,-2),则( )A .sin αtan α>0B .cos αtan α>0C .sin αcos α>0D .sin αcos α<0 3.cos1110°的值为( ) A.12 B.32 C .-12 D .-32 4.已知P (2,-3)是角θ终边上一点,则tan(2π+θ)等于( )A.32B.23 C .-32 D .-23 5.cos 2201.2°可化为( ) A .cos201.2° B .-cos201.2° C .sin201.2° D .tan201.2°6.已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114 B.114 C .-4 D .4P 在第二或三象限,所以m <0,则m =-4.7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8.α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则sin α的值为( )A.104B.64C.24 D .-1049.如果α的终边过点P (2sin30°,-2cos30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 10.函数y =|sin x |sin x +cos x |cos x |+|tan x |tan x 的值域是( )A .{-1,1,3}B .{1,3}C .{-1,3}D .R 11.已知11π6的正弦线为MP ,正切线为AT ,则有( )A .MP 与AT 的方向相同B .|MP |=|AT |C .MP >0,AT <0D .MP <0,AT >012已知sin α>0,tan α<0,则α的( ) A .余弦线方向向右,正切线方向向下 B .余弦线方向向右,正切线方向向上 C .余弦线方向向左,正切线方向向下 D .余弦线方向向上,正切线方向向左 13.使得lg(cos θ·tan θ)有意义的角θ是第________象限角.14.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,求实数a 的取值范围.15.求下列各式的值: (1)sin 25π3+tan(-23π4);(2)sin 1170°+cos360°-tan 125°.16.已知1|sin α|=-1sin α,且lgcos α有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点是M (35,m ),且|OM |=1(O 为坐标原点),求m 的值及sin α的值.18.(2011~2012·黑龙江五校联考)已知角θ的终边上有一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ的值.1.2.1任意角三角函数(第一课时)1.(1)原点,单位长度(2) (3)y, x y/x (4) 唯一,自变量,三角函数例 1 [解析] 当角的终边在第一象限时,在角的终边上取点P (1,2),由r =|OP |=12+22=5,得sin α=25=255,cos α=15=55,tan α=21=2.当角的终边在第三象限时,在角的终边上取点Q (-1,-2),由r =|OQ |=(-1)2+(-2)2=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2. 变式1(1) 因为角2π3的终边与单位圆的交点为(-12,32),所以sin 2π3=32,cos 2π3=-12,tan 2π3=- 3.(2)x =3,y =4,得 由r =32+42=5.∴sin α=y r =45,cos α=x r =35,tan α=y x =43. (3)由正切函数定义得: a 5=-125,∴a =-12,r =52+(-12)2=13 ∴sin α=a 13=-1213,cos α=513 ∴sin α-cos α=-1213-513=-1713.π2+k π例2(1)∵105°、230°分别为第二、第三象限角,∴sin105°>0,cos230°<0. 于是sin105°·cos230°<0. (2)∵π2<7π8<π,∴7π8是第二象限角,则sin 7π8>0,tan 7π8<0. ∴sin7π8·tan 7π8<0. (3)∵3π2<6<2π,∴6是第四象限角.变式2(1)B,(2) (1)∵-670°=-2×360°+50°,∴-670°是第一象限角,∴sin(-670°)>0.又1230°=3×360°+150°, ∴1230°是第二象限角,∴cos1230°<0,∴sin(-670°)cos1230°<0. (2)∵52π<8<3π,即8 rad 的角是第二象限角,∴sin8>0,cos8<0.∴sin8·cos8<0.例3(1)∵-670°=-2×360°+50°,∴-670°是第一象限角,∴sin(-670°)>0.又1230°=3×360°+150°, ∴1230°是第二象限角,∴cos1230°<0,∴sin(-670°)cos1230°<0. (2)∵52π<8<3π,即8 rad 的角是第二象限角,∴sin8>0,cos8<0.∴sin8·cos8<0.变式3(1)∵-1050°=-3×360°+30°, ∴cos(-1050°)=cos(-3×360°+30°)=cos30°=32. (2)∵19π3=3×2π+π3,∴tan 19π3=tan(3×2π+π3)=tan π3= 3.(3)∵-31π4=-4×2π+π4,∴sin(-31π4)=sin(-4×2π+π4)=sin π4=22.例4因为点P 的坐标是(4t ,-3t )且t ≠0, 所以r =|PO |=(4t )2+(-3t )2=5|t |. 当t >0时,α是第四象限角,r =|PO |=5t .sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,α是第二象限角,r =|PO |=-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34. 例5[解析] 已知角α的正弦值,可知MP =12,则P 点纵坐标为12.所以在y 轴上取点(0,12),过这点作x 轴的平行线y =12,交单位圆于P 1、P 2两点,则OP 1、OP 2是角α的终边,因而角α的集合为{α|α=2k π+π6或α=2k π+5π6,k ∈Z },如图:变式5[解析] (1)如图所示,在0~2π内作出正弦值等于12的角:π6和56π.在图中所示的阴影区域内的每一个角x ,其正弦值都满足sin x ≤12,所以不等式sin x ≤12的解集为:{x |5π6+2k π≤x ≤136π+2k π,k ∈Z }.(2)如图所示,在0~2π内作出正切值等于1的角:π4和5π4,则在图中所示的阴影区域内的每个角x (不包括终边在y 轴上的角)均满足tan x ≤1.课后作业答案1. C [解析] 由于sin α<0,则α的终边在第三或四象限,又tan α>0,则α的终边在第一或三象限,所以α的终边在第三象限.2 C [解析] ∵角α的终边过点(-3,-2),∴sin α<0,cos α<0,tan α>0,∴sin αcos α>0,故选C.3 B [解析] cos1110°=cos(3×360°+30°)=cos30°=32. 4 C [解析] tan(2π+θ)=tan θ=-32=-32. 5 B [解析] ∵201.2°是第三象限角,∴cos201.2°<0,6 C [解析] 由题意得cos α=mm 2+9=-45,解得m =±4.又cos α=-45<0,则α的终边在第二或三象限,则点P 在第二或三象限,所以m <0,则m =-4.7. C [解析] 由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则⎩⎪⎨⎪⎧sin θ+cos θ<0,sin θcos θ>0,所以有sin θ<0,cos θ<0,所以θ是第三象限角.8 A [解析] ∵|OP |=x 2+5,∴cos α=xx 2+5=24x ,又因为α是第二象限角,∴x <0,得x =- 3∴sin α=5x 2+5=104,故选A.9 C [解析] ∵P (1,-3),∴r =12+(-3)2=2,∴sin α=-32.10 C [解析] ∵该函数的定义域是{x |x ∈R 且x ≠k π2,k ∈Z},∴当x 是第一象限角时,y =3;当x 是第二象限角时,y =1-1-1=-1;当x 是第三象限角时,y =-1-1+1=-1;当x 是第四象限角时,y =-1+1-1=-1.综上,函数的值域是{-1,3}. 11[答案] A[解析] 三角函数线的方向和三角函数值的符号是一致的.MP =sin 11π6<0,AT =tan11π6<0.12[答案] C[解析] ∵sin α>0,tan α<0,∴α是第二象限角.∴cos α<0.∴余弦线方向向左,正切线方向向下.13 一或二,12 -33, 13 ±2在角α终边上任取一点P (x ,y ),则y =x ,当x >0时,r =x 2+y 2=2x ,sin α+cos α=y r +x r =22+22=2,当x <0时,r =x 2+y 2=-2x ,sin α+cos α=y r +x r =-22-22=- 2.,14 ∵cos α≤0,sin α>0,∴角α的终边在第二象限或y 轴非负半轴上,∵α终边过(3a -9,a +2),∴⎩⎪⎨⎪⎧3a -9≤0a +2>0,∴-2<a ≤3. 15(1)sin25π3+tan(-23π4)=sin(8π+π3)+tan(-6π+π4)=sin π3+tan π4=32+1=3+22.(2)sin1170°+cos360°-tan1125° =sin(3×360°+90°)+cos(0°+360°)-tan(3×360°+45°)=sin90°+cos0°-tan45°=1+1-1=1.16(1)由1|sin α|=-1sin α可知sin α<0,∴α是第三或第四象限角或终边在y 轴的负半轴上的角.由lgcos α有意义可知cos α>0, ∴α是第一或第四象限角或终边在x 轴的正半轴上的角.综上可知角α是第四象限的角. (2)∵|OM |=1,∴(35)2+m 2=1,解得m =±45. 又α是第四象限角,故m <0, 从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.18 (1)当m =0时,cos θ=-1,tan θ=0; (2)当m =5时,cos θ=-64,tan θ=-153; (3)当m =-5时,cos θ=-64,tan θ=153.。