2020深圳中考考前冲刺卷三套2
- 格式:docx
- 大小:434.41 KB
- 文档页数:19
…外…………○…………装…………订…学校:___________姓名:____________考号…内…………○…………装…………订…绝密★启用前2020年广东省深圳市中考数学模拟试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.7-的绝对值是 ( ) A .17-B .17C .7D .7-2.下列图形中,是轴对称图形的是( ) A .B .C .D .3.据介绍,2019年央视春晚直播期间,全球观众参与百度APP 红包互动活动次数达208亿次.“208亿”用科学记数法表示为( ) A .2.08×1010B .0.208×1011C .208×108D .2.08×10114.如图所示的正方体,如果把它展开,可以是下列图形中的( )A .B .C .D .5.一专卖店某品牌鞋某日不同尺码的鞋的销售情况记录如下:○…………装………订……※※请※※不※※要※线※※内※※答※○…………装………订……这天销售的11双鞋的尺码组成的数据的众数和中位数分别是( ) A .4,4B .4,4.5C .25,25D .25,24.56.下列计算正确的是( ) A .a 3•a 2=a 6B .a 2+a 4=2a 2C .(3a 3)2=9a 6D .(3a 2)3=9a 67.将一块含30°角的直角三角板按图中所示摆放在一张矩形纸片上.若182∠=︒,则2∠的度数是( )A .82︒B .98︒C .131︒D .120︒8.如图,在Rt △ABC 中,∠ABC =90°,点D 是BC 边的中点,分别以B ,C 为圆心,大于线段BC 长度一半的长为半径画圆弧.两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A =∠EBA ;③EB 平分∠AED .一定正确的是( )A .①②③B .①②C .①③D .②③9.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则一次函数y =ax ﹣2b (a ≠0)与反比例函数y =cx(c ≠0)在同一平面直角坐标系中的图象大致是( )○…………………订…………○…………线…………○……___________考号:___________○…………………订…………○…………线…………○……A .B .C .D .10.下列命题正确的是( ) A .矩形对角线互相垂直 B .方程214x x =的解为14x = C .六边形内角和为540°D .一条斜边和一条直角边分别相等的两个直角三角形全等 11.定义一种新运算a b⎰n •x n ﹣1dx =a n ﹣b n ,例如k n⎰2xdx =k 2﹣n 2,若5m m⎰﹣x ﹣2dx =﹣2,则m =( ) A .﹣2B .﹣25C .2D .2512.如图,在菱形ABCD 中,∠A =60°,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论:①∠BGD =120°;②BG +DG =CG ;③△BDF ≌△CGB ;④S △ADE =2.其中正确的有( )…○…………装…………订……※※请※※不※※要※※※线※※内※※答※※…○…………装…………订……A .1个 B .2个 C .3个 D .4个第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.分解因式:4m 2﹣16n 2=_____.14.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色兵乓球和若干个白色兵乓球,从盒子里随机摸出一个兵乓球,摸到黄色兵乓球的概率为13,那么盒子内白色兵乓球的个数为________.15.如图,正方形ABCD 中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是___.16.如图,直线y =﹣3x +3与y 轴交于点A ,与x 轴交于点B ,以线段AB 为边,在线段AB 的左侧作正方形ABCD ,点C 在反比例函数y =kx(k ≠0)的图象上,当正方形ABCD 沿x 轴正方向向右平移_____个单位长度时,正方形ABCD 的一个顶点恰好落在该反比例函数图象上.三、解答题17.计算:()21230320173sin π-⎛⎫︒--+-- ⎪⎝⎭. 18.先化简,再求值:224144124x x x x x-++÷-,其中14x =-. 19.某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成装…………○…………线…………○…_姓名:___________班装…………○…………线…………○…下列问题:()1学校这次调查共抽取了 名学生; ()2求m 的值并补全条形统计图;()3在扇形统计图中,“围棋”所在扇形的圆心角度数为 ; ()4设该校共有学生1000名,请你估计该校有多少名学生喜欢足球.20.如图,广场上空有一个气球A ,地面上点B 、C 在一条直线上,BC =22m .在点B 、C 分别测得气球A 的仰角为30°、63°,求气球A 离地面的高度.(精确到个位)(参考值:sin63°≈0.9,cos63°≈0.5,tan63°≈2.0)21.我县第一届运动会需购买A ,B 两种奖品,若购买A 种奖品4件和B 种奖品3件,共需85元;若购买A 种奖品3件和B 种奖品1件,共需45元. (1)求A 、B 两种奖品的单价各是多少元?(2)运动会组委会计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,设购买A 种奖品m 件,购买总费用W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并设计出购买总费用最少的方案.22.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0). (1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,………○…………装………………○…………线……※※请※※不※※要※※答※※题※※………○…………装………………○…………线……(3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +).23.△ABC 中,CA =CB ,AB =CD ⊥AB 于点D ,CD =5,点O 和点E 在线段CD 上,ED =1,点P 在边AB 上,以E 为圆心,EP 为半径的圆与AB 边的另一个交点为点Q (点P 在点Q 的左侧),以O 为圆心,OC 为半径的圆O 恰好经过P 、Q 两点,联结CP ,设线段AP 的长度为x .(1)当圆E 恰好经过点O 时,求圆E 的半径;(2)联结CQ ,设∠PCQ 的正切值为y ,求y 与x 的函数关系式及定义域; (3)若∠PED =3∠PCE ,求S △PCQ 的值.参考答案1.C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.2.D【解析】【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【详解】A、不是轴对称图形,故A错误;B、不是轴对称图形,故B错误;C、不是轴对称图形,故C错误;D、是轴对称图形,故D正确.故选:D.【点睛】此题考查轴对称图形.解题关键在于寻找对称轴,图形两部分折叠后可重合.3.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】208亿=20800000000=2.08×1010.故选:A.【点睛】本题主要考查科学记数法,根据掌握科学记数法的定义,是解题的关键.4.B【解析】【分析】根据正方形展开图的特征,判断各个面的对面、邻面的特征即可.【详解】解:由“相间Z端是对面”可知A、D不符合题意,而C折叠后,圆形在前面,正方形在上面,则三角形的面在右面,与原图不符,只有B折叠后符合,故选:B.【点睛】此题考查的是正方体的展开图,掌握利用正方形展开图的特征判断各个面的对面、邻面的特征是解决此题的关键.5.C【解析】【分析】找中位数要把数据按从小到大的顺序排列,运用中位数和众数的概念即可解答【详解】本题从小到大的排列次数据为:23.4、24、24.5、24.5、24.5、25、25、25、25、25.5、26 数据25共出现了4次,出现次数最多,则众数为25中间数为25,则中位数为25故选答案C【点睛】本题主要考查中位数和众数的概念,熟练掌握其概念是解题关键6.C【解析】【分析】分别根据同底数幂的乘法法则,合并同类项法则,积的乘方运算法则逐一判断即可.【详解】A.a3•a2=a5,故本选项不合题意;B.a2与a4不是同类项,所以不能合并,故本选项不合题意;C.(3a3)2=9a6,正确,故本选项符合题意;D.(3a2)3=27a6,故本选项不合题意.故选C.【点睛】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟练掌握幂的运算法则是解答本题的关键.7.B【解析】【分析】先利用互余计算出∠DBC,从而得到∠ABD=98°,然后根据平行线的性质得到∠2的度数.【详解】解:如图,∵∠D=90°,∴∠DBC=90°-∠1=90°-82°=8°,∴∠ABD=90°+8°=98°,∵DG∥EF,∴∠2=∠ABD=98°,故选:B.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8.B【解析】【分析】利用基本作图得到DE BC ⊥,则DE 垂直平分BC ,所以EB =EC ,根据等腰三角形的性质得∠EBC =∠C ,然后根据等角的余角相等得到∠A =∠EBA . 【详解】由作法得DE BC ⊥,而D 为BC 的中点,所以DE 垂直平分BC ,则EB =EC , 所以∠EBC =∠C , 而90ABC ∠︒=, 所以∠A =∠EBA , 所以①②正确, 故选:B . 【点睛】本题主要考查了垂直平分线的性质及等腰三角形的性质,熟练掌握相关性质特点是解决本题的关键. 9.D 【解析】 【分析】先根据二次函数的图象开口向上可知a >0,对称轴在y 轴的左侧可知b >0,再由函数图象交y 轴的负半轴可知c <0,然后根据一次函数的性质和反比例函数的性质即可得出正确答案. 【详解】∵二次函数的图象开口向上,对称轴在y 轴的左侧,函数图象交于y 轴的负半轴 ∴a >0,b >0,c <0, ∴反比例函数y =cx的图象必在二、四象限; 一次函数y =ax ﹣2b 一定经过一三四象限, 故选:D . 【点睛】此题主要考查二次函数与反比例函数的图像与性质,解题的关键是熟知二次函数各系数与图像的关系. 10.D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.11.B【解析】【分析】根据定义新运算公式即可列出分式方程,然后解分式方程即可.【详解】解:由题意得:m﹣1﹣(5m)﹣1=﹣2,1 m ﹣15m=﹣2,5﹣1=﹣10m,m=﹣25,经检验:m=﹣25是方程1m﹣15m=﹣2的解;故选:B.【点睛】此题考查的是定义新运算和解分式方程,掌握定义新运算公式和分式方程的解法是解决此题的关键.12.B【解析】【分析】根据菱形的性质和等边三角形的判定可得△ABD 为等边三角形,然后根据三线合一可得DE ⊥AB ,BF ⊥AD ,根据四边形的内角和即可判断①;利用HL 证出Rt △CDG ≌Rt △CBG ,根据全等三角形的性质和30°所对的直角边是斜边的一半即可判断②;证出CG >BD 即可判断③;利用等边三角形的性质可得S △ABD 2,即可判断④. 【详解】解:∵四边形ABCD 为菱形,∴AD =AB ,且∠A =60°,∴△ABD 为等边三角形,又∵E 、F 分别是AB 、AD 的中点,∴DE ⊥AB ,BF ⊥AD ,∴∠GF A =∠GEA =90°,∴∠BGD =∠FGE =360°﹣∠A ﹣∠GF A ﹣∠GEA =120°,∴①正确;∵四边形ABCD 为菱形,∴AB ∥CD ,AD ∥BC ,∴∠CDG =∠CBG =90°,在Rt △CDG 和Rt △CBG 中, CD CB CG CG=⎧⎨=⎩, ∴Rt △CDG ≌Rt △CBG (HL ),∴DG =BG ,∠DCG =∠BCG =12∠DCB =30°, ∴DG =BG =12CG , ∴DG +BG =CG ,在Rt △BDF 中,BD 为斜边,在Rt △CGB 中,CG 为斜边,且BD =BC ,在Rt △CGB 中,显然CG >BC ,即CG >BD ,∴△BDF 和△CGB 不可能全等,∴③不正确;∵△ABD 为等边三角形,∴S △ABD 2,∴S △ADE =12S △ABD 2, ∴④不正确;综上可知正确的只有两个,故选:B .【点睛】此题考查的是菱形的性质、等边三角形的判定及性质和全等三角形的判定及性质,掌握菱形的性质、等边三角形的判定及性质和全等三角形的判定及性质是解决此题的关键. 13.4(m+2n )(m ﹣2n ).【解析】【分析】原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(224m n - )()()422m n m n =+-.故答案为()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法. 14.4【解析】【分析】先求出盒子内乒乓球的总个数,然后用总个数减去黄色兵乓球个数得到白色乒乓球的个数.解:盒子内乒乓球的总个数为2÷13=6(个),白色兵乓球的个数6−2=4(个),故答案为:4.【点睛】此题主要考查了概率公式,关键是掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.15.2【解析】【分析】连接AE ,由折叠的性质可得AF=AB=AD ,BG=GF ,易证Rt △ADE ≌Rt △AFE ,得到DE=EF ,设DE=x ,在Rt △CEG 中利用勾股定理建立方程求解.【详解】如图所示,连接AE ,∵四边形ABCD 为正方形,∴AB=BC=CD=AD=6,∠B =∠C=∠D=90°∵G 为BC 的中点∴BG=GC=3由折叠的性质可得AF=AB=6,BG=GF=3,在Rt △ADE 和Rt △AFE 中,∵AE=AE ,AF=AD=6∴Rt △ADE ≌Rt △AFE (HL )∴DE=EF设DE=EF=x ,则EC=6-x在Rt △CEG 中,GC 2+EC 2=GE 2,即()()222363x x +-=+解得2x =故答案为:2.【点睛】本题考查正方形中的折叠问题,利用正方形的性质证明DE=EF ,然后利用勾股定理建立方程是解题的关键.16.23或4 【解析】【分析】根据题意直线关系式可先求出点C 的坐标,进而求出反比例函数的k 值,然后分类讨论正方形的哪个点恰好落在该反比例函数图象上进而解答.【详解】解:当x =0时,y =﹣3×0+3=3,∴A (0,3),即OA =3;当y =0时,即0=﹣3x +3,∴x =1,∴B (1,0),即OB =1;过点C 作CE ⊥x 轴,垂足为E ,过点D 作DF ⊥y 轴,垂足为F ,∵ABCD 是正方形,∴AB =BC ,∠ABC =90°,∴∠CBE +∠ABO =90°又∵CE ⊥x 轴∴∠CEB =90°=∠AOB ,∴∠ECB +∠CBE =90°∴∠ECB =∠ABO ,∴△AOB ≌△BEC (AAS )∴BE =AO =3,CE =OB =1,同理可证△ADF ≌△ABO ,得DF =AO =3,AF =OB =1∴C (﹣2,﹣1)D (﹣3,2)将C (﹣2,﹣1)代入y =k x得:k =2∴y =2x; (1)当y =3时,即3=2x ,∴x =23, 即当正方形ABCD 沿x 轴正方向向右平移23个单位,点A 落在反比例函数的图象上;(2)当y =2时,即2=2x,∴x =1,D 沿着x 轴向右平移1+3=4个单位落在反比例的图象上,即当正方形ABCD 沿x 轴正方向向右平移4个单位,点D 落在反比例函数的图象上; 故答案为:23或4【点睛】本题主要考查学生数形结合的和分类讨论问题的能力,掌握正方形的性质和平移的原理是解决此题的关键.17.-10【解析】【分析】根据特殊角的三角函数值、绝对值性质、零次幂性质以及负指数幂性质进一步计算即可.【详解】()201230320173sin π-⎛⎫︒--+-- ⎪⎝⎭ =123192⨯-+- =10-.【点睛】本题主要考查了特殊角三角函数值计算及幂的运算,熟练掌握相关概念是解题关键.18.42x x -+,14. 【解析】【分析】根据分式的除法法则把原式进行化简,再把x 的值代入进行计算即可.【详解】原式=()()22121212422()1()x x xx x x x +-⋅=--++,当x=−14时,原式=14. 【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.19.(1)100;(2)m =20,补图见解析;(3)36°;(4)250.【解析】【分析】(1)用“围棋”的人数除以其所占百分比可得;(2)用总人数乘以“书法”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“围棋”人数所占百分比即可得;(4)用总人数乘以样本中“舞蹈”人数所占百分比可得.【详解】(1)学校本次调查的学生人数为10÷10%=100(名). 故答案为:100;(2)m =100﹣25﹣25﹣20﹣10=20,∴“书法”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“书法”所在扇形的圆心角度数为360°×10%=36°.故答案为:36°;(4)估计该校喜欢舞蹈的学生人数为1000×25%=250人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.20.气球A离地面的高度约为18m.【解析】【分析】如图,过点A作AD⊥l,设AD=x,根据锐角三角函数即可求出BD,再根据锐角三角函数列出方程即可求出结论.【详解】解:如图,过点A作AD⊥l,设AD=x,则BD=ADtan30x,∴tan63°=2,∴AD =x =+4≈18m ,答:气球A 离地面的高度约为18m .【点睛】此题考查的是解直角三角形的应用,掌握构造直角三角形的方法和锐角三角函数是解决此题的关键.21.(1)A 奖品的单价是10元,B 奖品的单价是15元;(2)购买总费用最少的方案是购买A 奖品75件,B 奖品25件【解析】试题分析:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W 与m 的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.试题解析:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得4386345x y x y +=⎧⎨+=⎩ 解得:1015x y =⎧⎨=⎩答:A 奖品的单价是10元,B 奖品的单价是15元.(2)由题意,得W=10m+15(100-m )=-5m+1500.∴ ()5150011503100m m m -+≤⎧⎨≤-⎩解得:70≤m≤75.∴W=-5m+1500(70≤m≤75)∵k=-5<0,W 随m 的增大而减小∴当m=75时,W 有最小值=-5×75+1500=1125,此时100-m=100-75=25答:购买总费用最少的方案是购买A 奖品75件,B 奖品25件。
广东省2020届中考冲刺第二次模拟考试语文说明:1.全卷共8页,满分120分,考试时间为120分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号,用2B铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.本试卷设有附加题,共10分,考生可答可不答;该题得分作为补偿分计入总分,但全卷最后得分不得超过120分。
6.考生务必保持答题卡的整洁,考试结束时,将试卷和答题卡一并交回。
一、基础(24分)1.根据课文默写古诗文。
(10分)(1)春蚕到死丝方尽,___________________。
(李商隐《无题》)(2)___________________,在乎山水之间也。
(欧阳修《醉翁亭记》)(3)我欲乘风归去,又恐琼楼玉宇,高处不胜寒。
___________________,___________________。
(苏轼《水调歌头》)(4)《酬乐天扬州初逢席上见赠》中既表达对友人关怀的感谢,也是和友人共勉,表现了诗人坚定意志和乐观精神的诗句是:___________________,___________________。
(5)请把李白的《行路难》补充默写完整。
金樽清酒斗十千,玉盘珍羞直万钱。
停杯投箸不能食,拔剑四顾心茫然。
欲渡黄河冰塞川,将登太行雪满山。
___________________,___________________。
行路难,行路难,多歧路,今安在?___________________,___________________。
2.按拼音写词语。
深圳市2020年中考考前冲刺热身卷数学班级___________ 姓名___________ 学号____________ 分数____________ 注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。
2.回答第I卷时,选出每小题答案后,将答案填在选择题上方的答题表中。
3.回答第II卷时,将答案直接写在试卷上。
第Ⅰ卷(选择题共36分)一、选择题(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)1.(3分)π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个2.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个3.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1084.(3分)下列计算正确的是()A.a•a2=a3B.(a3)2=a5C.a+a2=a3D.a6÷a2=a3 5.(3分)如图,已知AB∥CD,∠D=50°,BC平分∠ABD,则∠ABC等于()A.65°B.55°C.50°D.45°6.(3分)如图,用直尺和圆规作∠A′O′B′=∠AOB,能够说明作图过程中△C′O′D′≌△COD的依据是()A.角角边B.角边角C.边角边D.边边边7.(3分)若,,则x的取值范围()A.B.或C.或D.以上答案都不对8.(3分)玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.9.(3分)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.10.(3分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个11.(3分)如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80 B.89 C.99 D.10912.(3分)如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG ∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②第II卷(非选择题共64分)二、填空题(本题共4小题,每小题3分,共12分,请将正确的选项填在答题卡上)13.(3分)分解因式:(1)3m(a﹣b)+2n(b﹣a)=;(2)2a﹣1﹣a2=.14.(3分)一台机床生产一种零件,5天内出现次品的件数为:1,0,1,2,1.则出现次品的方差为.15.(3分)在△ABC中,AB=2,AC=3,cos∠ACB=,则∠ABC的大小为度.16.(3分)如图,在平面直角坐标系xOy中,点A,B在双曲线y=(k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为.三、解答题(本大题共7题,其中17题5分,18题5分,19题7分,20题7分,21题8分,22题10分,23题10分,共52分)17.(5分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.18.(5分)若a+b=1,且a≠0,求(a+)÷的值.19.(8分)为了提高学生书水平.我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分.根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值,并把频数分布方图补充完整;(2)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.20.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.21.(8分)已知甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同.甲、乙两人每天共加工35个零件,设甲每天加工x个A型零件.(1)直接写出乙每天加工的零件个数;(用含x的代数式表示)(2)求甲、乙每天各加工零件多少个?(3)根据市场预测,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求甲、乙每天加工的零件所获得的总利润P(元)与m 的函数关系式,并求P的最大值和最小值.22.(9分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=,AK=,求CN的长.23.(10分)已知:如图,抛物线y=ax2+bx+6交x轴于A(﹣2,0),B(3,0)两点,交y 轴于点C,(1)求a,b的值;(2)连接BC,点P为第一象限抛物线上一点,过点A作AD⊥x轴,过点P作PD⊥BC于交直线AD于点D,设点P的横坐标为t,AD长为d,求d与t的函数关系式(请求出自变量t的取值范围);(3)在(2)的条件下,DP与BC交于点F,过点D作DE∥AB交BC于点E,点Q为直线DP上方抛物线上一点,连接AP、PC,若DP=CE,∠QPC=∠APD时,求点Q坐标.深圳市2020年中考数学考前热身卷(解析版)一、选择题(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)1.(3分)π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可判定选择项.【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.【点评】此题主要考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.本题中是有理数中的整数.2.(3分)下图中是中心对称图形而不是轴对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形,既是中心对称图形,又是轴对称图形,故错误;第二个图形,是轴对称图形,不是中心对称图形,故错误;第三个图形,是轴对称图形,不是中心对称图形,故错误;第四、五个是中心对称图形而不是轴对称图形,故正确.故选:B.【点评】掌握好中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合.3.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5 300万=5 300×103万美元=5.3×107美元.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.a•a2=a3B.(a3)2=a5C.a+a2=a3D.a6÷a2=a3【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a•a2=a3,正确;B、应为(a3)2=a3×2=a6,故本选项错误;C、a与a2不是同类项,不能合并,故本选项错误D、应为a6÷a2=a6﹣2=a4,故本选项错误.故选:A.【点评】本题考查同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不能合并.5.(3分)如图,已知AB∥CD,∠D=50°,BC平分∠ABD,则∠ABC等于()A.65°B.55°C.50°D.45°【分析】关键平行线的性质求出∠ABD的大小,关键角平分线求出∠ABC即可.【解答】解:∵AB∥CD,∴∠D+∠ABD=180°,∵∠D=50°,∴∠ABD=130°,∵BC平分∠ABD,∴∠ABC=∠ABD=×130°=65°,【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD 的度数,题目较好,难度不大.6.(3分)如图,用直尺和圆规作∠A′O′B′=∠AOB,能够说明作图过程中△C′O′D′≌△COD的依据是()A.角角边B.角边角C.边角边D.边边边【分析】根据SSS可以判断△COD≌△C′O′D′,进而得出∠A′O′B′=∠AOB的依据是SSS.【解答】解:由题意可知,OD=OC=O′D′=O′C′,CD=C′D′,在△COD和△C′O′D′中,,∴△COD≌△C′O′D′(SSS),故选:D.【点评】本题考查基本作图、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(3分)若,,则x的取值范围()A.B.或C.或D.以上答案都不对【分析】在同一平面直角坐标系中作出反比例函数y=与y=2、y=﹣3的图象,观察图象可知,反比例函数y=落在直线y=2下方且在直线y=﹣3上方的部分所对应的x 的取值,即为所求的x的取值范围.【解答】解:作出函数y=与y=2、y=﹣3的图象,由图象可知交点为(,2),(﹣,﹣3),∴当或时,有,.故选:C.【点评】本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.8.(3分)玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.【分析】根据每天能生产甲种玩具零件24个或乙种玩具零件12个,则x天能够生产24x 个甲种零件,y天能够生产12y个乙种零件.此题中的等量关系有:①总天数是60天;②根据甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,则乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.【解答】解:根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.则可列方程组为.故选:C.【点评】此题的难点在于列第二个方程,注意甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,说明生产的乙种零件是甲种零件的2倍,要列方程,则应让少的2倍,方可列出方程.9.(3分)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.【分析】连接OB、OC,利用圆周角定理求得∠BOC=60°,然后利用弧长公式l=来计算劣弧的长.【解答】解:如图,连接OB、OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴BC=OB=OC=2,∴劣弧的长为:=.故选:A.【点评】本题考查了圆周角定理,弧长的计算以及等边三角形的判定与性质.根据圆周角定理得到∠BOC =60°是解题的关键所在.10.(3分)下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个【分析】①﹣1的平方是1;②32xy3是4次单项式;③中方程右应还为1.2;④只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.【解答】解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.【点评】本题考查了数的平方,单项式的概念,方程的分母化为整数,点与直线条数的关系.11.(3分)如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80 B.89 C.99 D.109【分析】根据图形的变化规律,可得第n个图形中的点数一共有2n+(2n﹣1)+(2n﹣3)+…+3+1,据此即可得到第9个图形中点的个数.【解答】解:第①个图形中一共有3个点,3=2+1,第②个图形中一共有8个点,8=4+3+1,第③个图形中一共有15个点,15=6+5+3+1,…,按此规律排列下去,第n个图形中的点数一共有2n+(2n﹣1)+(2n﹣3)+…+3+1,∴当n=9时,2n+(2n﹣1)+(2n﹣3)+…+1=18+17+15+13+…+3+1=18+=18+81=99,即第9个图形中点的个数是99个,故选:C.【点评】本题主要考查了图形变化类问题,解决问题的关键是依据图形的变化,得到第n 个图形中的点数一共有2n+(2n﹣1)+(2n﹣3)+…+3+1.12.(3分)如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG ∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②【分析】依据全等三角形的性质即可得到∠ADG=∠AFG;依据DG=GF=DE=EF,即可得到四边形DEFG为菱形;依据相似三角形的对应边成比例,即可得到DG2=AE•EG;依据Rt△CEF中,CE2+CF2=EF2,即可得到方程x2+22=(4﹣x)2,求得x的值即可得出结论.【解答】解:①由折叠可得,AD=AF,DG=FG,在△ADG和△AFG中,,∴△ADG≌△AFG(SSS),∴∠ADG=∠AFG,故①正确;②∵GF∥DC,∴∠EGF=∠DEG,由翻折的性质可知:GD=GF,DE=EF,∠DGE=∠EGF,∴∠DGE=∠DEG,∴GD=DE,∴DG=GF=DE=EF,∴四边形DEFG为菱形,故②正确;③如图所示,连接DF交AE于O,∵四边形DEFG为菱形,∴GE⊥DF,OG=OE=GE,∵∠DOE=∠ADE=90°,∠OED=∠DEA,∴△DOE∽△ADE,∴=,即DE2=EO•AE,∵EO=GE,DE=DG,∴DG2=AE•EG,故③正确;④由折叠可得,AF=AD=5,∴Rt△ABF中,BF==3,∴CF=5﹣3=2,设CE=x,则DE=EF=4﹣x,∵Rt△CEF中,CE2+CF2=EF2,∴x2+22=(4﹣x)2,解得x=,∴CE=,故④错误;故选:B.【点评】本题属于折叠问题,主要考查了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到对应边成比例,依据勾股定理列出关于x的方程是解题答问题的关键.二、填空题(本题共4小题,每小题3分,共12分,请将正确的选项填在答题卡上)13.(3分)分解因式:(1)3m(a﹣b)+2n(b﹣a)=(a﹣b)(3m﹣2n);(2)2a﹣1﹣a2=﹣(a﹣1)2.【分析】(1)直接提取公因式(a﹣b),进而分解因式得出即可;(2)直接提取负号,再利用完全平方公式分解因式得出即可.【解答】解:(1)3m(a﹣b)+2n(b﹣a)=(a﹣b)(3m﹣2n);故答案为:(a﹣b)(3m﹣2n);(2)2a﹣1﹣a2=﹣(a2﹣2a+1)=﹣(a﹣1)2.故答案为:﹣(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.14.(3分)一台机床生产一种零件,5天内出现次品的件数为:1,0,1,2,1.则出现次品的方差为0.4 .【分析】根据平均数和方差的公式计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:5天内出现次品的件数为:1,0,1,2,1;则其平均数为(1+1+2+1)=1,故出现次品的方差S2=[(1﹣1)2+(0﹣1)2+(1﹣1)2+(2﹣1)2+(1﹣1)2]=0.4.故填0.4.【点评】本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.(3分)在△ABC中,AB=2,AC=3,cos∠ACB=,则∠ABC的大小为度.15、【分析】作AD⊥BC,在Rt△ACD中,求得CD=AC cos∠ACB=2、AD==1,分点B在AD左右两侧这两种情况分别求解可得.【解答】解:如图,作AD⊥BC于点D,在Rt△ACD中,∵AC=3、cos∠ACB=,∴CD=AC cos∠ACB=3×=2,则AD===1,若点B在AD左侧,∵AB=2、AD=1,∴∠ABC=30°;若点B在AD右侧,则∠AB′D=30°,∴∠AB′C=150°,综上,∠ABC的度数为30°或150°,故答案为:30或150.【点评】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的定义及勾股定理、分类讨论思想的运用.16.(3分)如图,在平面直角坐标系xOy中,点A,B在双曲线y=(k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为.16、【分析】先连接BO、BD,根据点A的坐标求得反比例函数解析式,进而求得△BOC的面积=△BCD的面积=3,再根据四边形ABCD的面积为4,求得△ABD的面积=4﹣3=1,最后根据AD=,求得点B的坐标.【解答】解:连接BO、BD,∵点A在双曲线y=(k是常数,且k≠0)上,点A的坐标为(4,),∴k=4×=6,又∵BC⊥y轴于点C,∴BC∥OD,∴△BOC的面积=△BCD的面积=3,又∵四边形ABCD的面积为4,∴△ABD的面积=4﹣3=1,设B(a,),∵AD⊥x轴于点D,A的坐标为(4,),∴AD=,∵××(4﹣a)=1,解得a=,∴=,∴点B的坐标为(,).故答案为:(,).【点评】本题主要考查了反比例函数系数k的几何意义的运用,解决问题的关键是作辅助线构造三角形,根据三角形的面积求得点B的坐标.解题时注意数形结合思想的运用.三、解答题(本大题共7题,其中17题5分,18题5分,19题7分,20题7分,21题8分,22题10分,23题10分,共52分)17.(5分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.【分析】原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可求出值.【解答】解:原式=+1﹣2×+=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(5分)若a+b=1,且a≠0,求(a+)÷的值.【分析】根据a+b=1,且a≠0,可以对所求的式子化简,并求出化简后式子的值,本题得以解决.【解答】解:∵a+b=1,且a≠0,∴(a+)÷===a+b=1.【点评】本题考查分式的化简求值,解题的关键是明确题意,可以对所求式子化简并求值.19.(8分)为了提高学生书水平.我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分.根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值,并把频数分布方图补充完整;(2)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【分析】(1)利用总数50减去其它项的频数即可求得;根据计算结果即可补全直方图;(2)利用树状图方表示出所有可能的结果,然后利用概率公式即可求解.【解答】解:(1)表中a的值是:a=50﹣4﹣8﹣16﹣10=12;根据题意画图如下:(2)用A表示小宇、B表示小强,C、D表示其他两名同学,根据题意画树状图如下:从上图可知共有12种等可能情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是P==.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.【分析】(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.【解答】解:(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)能.理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40•sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.【点评】此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.21.(8分)已知甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同.甲、乙两人每天共加工35个零件,设甲每天加工x个A型零件.(1)直接写出乙每天加工的零件个数;(用含x的代数式表示)(2)求甲、乙每天各加工零件多少个?(3)根据市场预测,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求甲、乙每天加工的零件所获得的总利润P(元)与m 的函数关系式,并求P的最大值和最小值.【分析】(1)由题意可以直接写出乙每天加工的零件个数;(2)根据题意可以得到相应的分式方程,然后解答分式方程,即可解答本题;(3)根据题目提供的信息可以写出P与m的关系式,根据3≤m≤5,可以求得P的最大值与最小值.【解答】解:(1)∵甲、乙两人每天共加工35个零件,∴乙每天加工的零件个数为:35﹣x,即乙每天加工的零件个数为:35﹣x;(2)根据题意,每天甲、乙两人共加工35个零件,因为甲每天加工x个,乙每天加工(35﹣x)个;根据题意,得,解得x=15,经检验,x=15是原方程的解,且符合题意.这时35﹣x=35﹣15=20,答:甲每天加工15个,乙每天加工20个;(3)P=15m+20(m﹣1),即P=35m﹣20,∵在P=35m﹣20中,P是m的一次函数,m的系数k=35>0,P随m的增大而增大,又∵已知:3≤m≤5,∴当m=5时,P取得最大值,P的最大值是155,当m=3时,P取得最小值,P的最小值是85.即P的最大值是155,最小值是85.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出题目中的等量关系,然后找出所求问题需要的条件.22.(9分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=,AK=,求CN的长.【分析】(1)欲证明KE=GE,只要证明∠EGK=∠EKG即可;(2)欲证明CA∥FE,只要证明∠ACH=∠E即可;(3)作NP⊥AC于P.首先证明AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK ==a由AK=,推出a=,可得a=1.AC=5,在Rt△APN 中,tan∠CAH==,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN==3,推出CP=4b,推出AC=AP+CP=13b,由AC=5,推出13b=5,推出b=,可得CN==4b解决问题;【解答】(1)证明:连接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)设∠FGB=α,∵AB是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH==,设AH=3a,AC=5a,则CH==4a,tan∠CAH==,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=a,tan∠AKH==3,AK==a,∵AK=,∴a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH==,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN==4b=.【点评】本题考查圆综合题、锐角三角函数、平行线的判定和性质、勾股定理、直径的性质、圆周角定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考压轴题.23.(10分)已知:如图,抛物线y=ax2+bx+6交x轴于A(﹣2,0),B(3,0)两点,交y 轴于点C,(1)求a,b的值;(2)连接BC,点P为第一象限抛物线上一点,过点A作AD⊥x轴,过点P作PD⊥BC于交直线AD于点D,设点P的横坐标为t,AD长为d,求d与t的函数关系式(请求出自变量t的取值范围);(3)在(2)的条件下,DP与BC交于点F,过点D作DE∥AB交BC于点E,点Q为直线DP上方抛物线上一点,连接AP、PC,若DP=CE,∠QPC=∠APD时,求点Q坐标.【分析】(1)根据待定系数法可求a,b的值;(2)如图2,过点P作PG⊥DE于点K,交x轴于点G,结合三角函数表示出DK=t+2,PK=DK=(t+2),得出四边形ADKG为矩形,得到AD=KG,再根据d=AD=KG=PG﹣PK即可求解;(3)如图3,过点P作PH⊥AD于点H,根据AAS可证△PHD≌△CNE,再分两种情况:当点Q在第一象限时,过点Q作QL⊥PH于点L;当点Q在第二象限时,过点Q作QM⊥PH;进行讨论可求点Q坐标.【解答】解:(1)∵抛物线y=ax2+bx+6过点A(﹣2,0),B(3,0),则,解得.故抛物线解析式为y=﹣x2+x+6;(2)如图2,过点P作PG⊥DE于点K,交x轴于点G,∵PD⊥BC,DE⊥y轴,∠BCO=∠PDK,OB=3,OC=6∴tan∠BCO=tan∠PDK=,DK=t+2,PK=DK=(t+2),∵DK∥AB,AD⊥AB,∴四边形ADKG为矩形,∴AD=KG,d=AD=KG=|PG﹣PK|=|﹣t2+t+6﹣(t+2)|=;(3)如图3,过点P作PH⊥AD于点H,在△PHD与△CNE中,,∴△PHD≌△CNE,∴PH=CN=OC﹣ON,∵四边形ADON为矩形,∴CN=6﹣(﹣t2+t+5)=t2﹣t+1,PH=t+2,∴t+2=t2﹣t+1,解得t1=2,t2=﹣(舍),把t=2代入抛物线y=﹣x2+x+6=4,∴点P(2,4),∵PH与y轴交于点R,PR=CR=2,∴∠CPR=45°,PH=AH=4,∴∠APH=45°,∴∠APC=90°,∵∠QPC=∠APD,∴∠QPD=90°,当点Q在第一象限时,过点Q作QL⊥PH于点L,∴∠LQP=∠HPD,∴tan∠LQP=tan∠HPD=,设点Q(m,﹣m2+m+6),则PL=2﹣m,QL=﹣m2+m+2,则=,解得m1=1,m2=2(舍),把m=1 代入﹣m2+m+6=6,∴Q(1,6),当点Q在第二象限时,过点Q作QM⊥PH,∵∠CPH=∠APH=45°∠QPC=∠APD,∴∠QPM=∠DPH tan∠QPM=tan∠DPH=,设点Q(n,﹣n2+n+6)PM=2﹣n QM=﹣n2+n+2,∴=,解得n1=﹣,n2=2(舍),把n=1﹣代入﹣n2+n+6=,∴Q(﹣,).综上所述,点Q坐标为Q(1,6)或Q(﹣,).【点评】本题为二次函数综合应用,涉及三角函数、待定系数法、函数与方程及分类讨论思想等知识点.涉及的知识点较多,计算量较大,综合性较强,难度较大.。
2020年广东省深圳市数学中考基础冲刺训练(二)一.选择题1.与﹣3的和为0的有理数是()A.﹣3 B.3 C.﹣D.2.据统计响应“光盘行动”,全国每年可节约食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×1010千克D.5×109千克3.图中立体图形的主视图是()A.B.C.D.4.观察下列图形,是中心对称图形的是()A.B.C.D.5.某公司销售部有营销人员15 名,销售部为了制定某种商品的月销售定额,统计了这15名人某月销售量(如统计图),销售部负责人为调动大部分营销人员工作积极性,确定每位销售员下个月的销售定额比较合适的依据应是月销售量的()A.平均数B.极差数C.最小值D.中位数和众数6.下列计算正确的是()A.+=B.7m﹣4m=3C.a5•a3=a8D.(a3)2=a97.如果一次函数y=2x﹣4的图象与另一个一次函数y1的图象关于y轴对称,那么函数y1的图象与x轴的交点坐标是()A.(2,0)B.(﹣2,0)C.(0,﹣4)D.(0,4)8.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°9.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.B.C.D.10.如图,AB是⊙O的直径,点C为⊙O外一点,CA、CD是⊙O的切线,A、D为切点,连接BD、AD.若∠ACD=48°,则∠DBA的大小是()A.32°B.48°C.60°D.66°11.如图所示,抛物线y=ax2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2﹣4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有()个.A.1 B.2 C.3 D.412.如图,已知反比例函数y=的图象过直角三角形OAB斜边OB的中点D,与直角边AB 相交于C,连结AD、OC,△OAB的周长为4+8.AD=4.下列结论:①k=﹣1;②AC:CB=1:3;③△OBC的面积等于3;④k=﹣2,其中正确的是()A.①②③B.②③④C.①②D.③④二.填空题13.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.14.张老师上班途中要经过1个十字路口,十字路口红灯亮30秒、黄灯亮5秒、绿灯亮25秒,张老师希望上班经过路口是绿灯,但实际上这样的机会是.15.如图,在Rt△ABC中,∠C=90°,AC=5,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,OC=4,则BC边的长为.16.如图.Rt△ABC中,∠BAC=90°,O是三角形内一点,连结OA,OB,OC,满足S△ABC=2S△BOC =4S△AOB,则的值为.三.解答题17.计算:()﹣2﹣+(﹣4)0﹣cos45°.18.先化简,再求值:(2﹣)÷,其中x=﹣3.19.十九的大召开引起了广大中学生的广泛关注,中学生主要通过看电视、上网査看、看报纸、听广播及其他形式学习和了解十九大精神.某校为了了解学生获取十九大知识的渠道,随机调查了若干名学生,根据调查结果绘制了两幅不完整的统计图表如下:了解方式频数频率看电视18 0.3上网a0.4听广播 6 m看报纸b0.15其他 3 n (1)本次调查的人数是;(2)a=,b=,m=,n=;(3)补全条形图;(4)若该校有2000名学生,请你估计该校通过看电视和上网获取十九大知识的共有多少人?20.已知,如图所示,在Rt△ABC中,∠C=90°,(1)作∠B的平分线BD交AC于点D;(要求:尺规作图,保留作图痕迹,不写作法.)(2)若CD=6,AD=10,求AB的长.21.某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?22.如图,在平面直角坐标系中,A(0,4),B(3,4),P为线段OA上一动点,过O,P,B三点的圆交x轴正半轴于点C,连结AB,PC,BC,设OP=m.(1)求证:当P与A重合时,四边形POCB是矩形.(2)连结PB,求tan∠BPC的值.(3)记该圆的圆心为M,连结OM,BM,当四边形POMB中有一组对边平行时,求所有满足条件的m的值.(4)作点O关于PC的对称点O',在点P的整个运动过程中,当点O'落在△APB的内部(含边界)时,请写出m的取值范围.23.如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C 三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)点M在抛物线上,且△AOM的面积与△AOC的面积相等,求出点M的坐标.参考答案一.选择题1.解:与﹣3的和为0的有理数是3,故选:B.2.解:50 000 000 000=5×1010,故选:C.3.解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.4.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.5.解:这15名营销人员销售的平均数为=320(件),众数为210件,中位数为210件,极差为1800﹣120=1680件,若以平均数320件为每位销售员下个月的销售定额,有2位营销员能达标,不适合;若以极差数1680件为每位销售员下个月的销售定额,有1位营销员能达标,不适合;若以最小值120件为每位销售员下个月的销售定额,所有营销员都能达标,不适合;若以中位数和众数为每位销售员下个月的销售定额,有10位营销员能达标,较为适合;故选:D.6.解:A、+无法计算,故此选项错误;B、7m﹣4m=3m,故此选项错误;C、a5•a3=a8,正确;D、(a3)2=a6,故此选项错误;故选:C.7.解:∵一次函数y=kx+b的图象与直线y=2x﹣4关于y轴对称,∴k=﹣2,b=﹣4,∴一次函数的解析式为:y=﹣2x﹣4,∵当y=0时,x=﹣2,∴这个一次函数的图象与x轴交点的坐标为(﹣2,0).故选:B.8.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.9.解:设小明和他妈妈现在分别是x岁和y岁.由题意得,,故选:B.10.解:∵CA、CD是⊙O的切线,∴CA=CD,∵∠ACD=48°,∴∠CAD=∠CDA=66°,∵CA⊥AB,AB是直径,∴∠ADB=∠CAB=90°,∴∠DBA+∠DAB=90°,∠CAD+∠DAB=90°,∴∠DBA=∠CAD=66°,故选:D.11.解:抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,故①错误;由于对称轴为x=﹣1,∴x=﹣3与x=1关于x=﹣1对称,∵x=﹣3时,y<0,∴x=1时,y=a+b+c<0,故③正确;∵对称轴为x=﹣=﹣1,∴2a﹣b=0,故②正确;∵顶点为B(﹣1,3),∴y=a﹣b+c=3,∴y=a﹣2a+c=3,即c﹣a=3,故④正确;故选:C.12.解:在Rt△AOB中,AD=4,AD为斜边OB的中线,∴OB=2AD=8,由周长为4+8,得到AB+AO=4,设AB=x,则AO=4﹣x,根据勾股定理得:AB2+OA2=OB2,即x2+(4﹣x)2=82,整理得:x2﹣4x+8=0,解得:x1=2+2,x2=2﹣2,∴AB=2+2,OA=2﹣2,∴S△AOB=AB•OA=×(2+2)×(2﹣2)=4,过D作DE⊥x轴,交x轴于点E,可得E为AO中点,∴OE=OA=﹣(假设OA=2﹣2,若OA=2+2,求出结果相同),在Rt△DEO中,利用勾股定理得:DE==+,∴k=﹣DE•OE=﹣(+)×(﹣)=﹣2,∴S△COA =|k|=1,S△BCO=4﹣1=3,∵△BCO与△CAO同高,且面积之比为3:1,∴BC:AC=3:1,则其中正确的选项有②③④.故选:B.二.填空题13.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式,∴2(3﹣m)=±10解得:m=﹣2或8.故答案为:﹣2或8.14.解:张老师上班经过路口是绿灯的机会是:==,故答案为:.15.解:作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,5).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,,∴△ACB≌△BQE(AAS),∴AC=BQ=5,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得:x=3,则BC=3.故答案为:3.16.解:过点O作OD⊥AB于D,OE⊥AC于E,∴∠ADO=∠AEO=90°,∵∠DAE=90°,∴四边形ADOE是矩形,∴OD=AE,OE=AD,∵S△ABC =2S△BOC=4S△AOB,∴S△AOB =S△AOC=S△ABC,设AB=c,AC=b,OD=m,OE=n∴cm=×bcbn=bc∴b=4m,c=4n∴BD=3n,CE=3m∴OB2=9n2+m2OC2=9m2+n2OA2=m2+n2则==10故答案为:10.三.解答17.解:原式=4﹣3+1﹣×=2﹣1=1.18.解:原式=×=,把x=﹣3代入得:原式===1﹣2.19.解:(1)本次调查的人数是18÷0.3=60人,故答案为:60;(2)a=60×0.4=24、b=60×0.15=9、m=6÷60=0.1、n=3÷60=0.05,故答案为:24、9、0.1、0.05;(3)补全图形如下:(4)估计该校通过看电视和上网获取十九大知识的共有2000×(0.3+0.4)=1400(人).20.解:(1)作图如下:(2)过点D作DE⊥AB于点E,∵DC⊥BC,BD平分∠ABC,∴DE=DC=6,BC=BE,∵AD=10,∴AE=8,∵BE=BC,设BC=x,则AB=x+8,∴在Rt△ABC中,由勾股定理得:x2+162=(x+8)2,解得:x=12,∴AB=12+8=20.21.解:(1)设第一批购进文化衫x件,根据题意得:+10=,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:第一批购进文化衫50件.(2)第二批购进文化衫(1+40%)×50=70(件).设该服装店销售该品牌文化衫每件的售价为y元,根据题意得:(50+70)y﹣4000﹣6300≥4100,解得:y≥120.答:该服装店销售该品牌文化衫每件最低售价为120元.22.解:(1)∵∠COA=90°∴PC是直径,∴∠PBC=90°∵A(0,4)B(3,4)∴AB⊥y轴∴当A与P重合时,∠OPB=90°∴四边形POCB是矩形(2)连结OB,(如图1)∴∠BPC=∠BOC∵AB∥OC∴∠ABO=∠BOC∴∠BPC=∠BOC=∠ABO∴tan∠BPC=tan∠ABO=(3)∵PC为直径∴M为PC中点①如图2,当OP∥BM时,延长BM交x轴于点N ∵OP∥BM∴BN⊥OC于N∴ON=NC,四边形OABN是矩形∴NC=ON=AB=3,BN=OA=4设⊙M半径为r,则BM=CM=PM=r∴MN=BN﹣BM=4﹣r∵MN2+NC2=CM2∴(4﹣r)2+32=r2解得:r=∴MN=4﹣∵M、N分别为PC、OC中点∴m=OP=2MN=②如图3,当OM∥PB时,∠BOM=∠PBO∵∠PBO=∠PCO,∠PCO=∠MOC∴∠OBM=∠BOM=∠MOC=∠MCO在△BOM与△COM中∴△BOM≌△COM(AAS)∴OC=OB==5∵AP=4﹣m∴BP2=AP2+AB2=(4﹣m)2+32∵∠ABO=∠BOC=∠BPC,∠BAO=∠PBC=90°∴△ABO∽△BPC∴∴PC=∴PC2=BP2=[(4﹣m)2+32]又PC2=OP2+OC2=m2+52∴[(4﹣m)2+32]=m2+52解得:m=或m=10(舍去)综上所述,m=或m=(4)∵点O与点O'关于直线对称∴∠PO'C=∠POC=90°,即点O'在圆上当O'与O重合时,得m=0当O'落在AB上时,则m2=4+(4﹣m)2,得m=当O'与点B重合时,得m=∴0≤m≤或m=23.解:(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入得:y=﹣x2+x+4,∴b=,c=4(2)在点P 、Q 运动过程中,△APQ 不可能是直角三角形.理由如下:连结QC .∵在点P 、Q 运动过程中,∠PAQ 、∠PQA 始终为锐角,∴当△APQ 是直角三角形时,则∠APQ =90°.将x =0代入抛物线的解析式得:y =4,∴C (0,4).∵AP =OQ =t ,∴PC =5﹣t ,∵在Rt △AOC 中,依据勾股定理得:AC =5在Rt △COQ 中,依据勾股定理可知:CQ 2=t 2+16在Rt △CPQ 中依据勾股定理可知:PQ 2=CQ 2﹣CP 2,在Rt △APQ 中,AQ 2﹣AP 2=PQ 2 ∴CQ 2﹣CP 2=AQ 2﹣AP 2,即(3+t )2﹣t 2=t 2+16﹣(5﹣t )2解得:t =4.5,∵由题意可知:0≤t ≤4∴t =4.5不合题意,即△APQ 不可能是直角三角形.(3 )∵AO 是△AOM 与△AOC 的公共边∴点M 到AO 的距离等于点C 到AO 的距离即点M 到AO 的距离等于CO所以M 的纵坐标为4或﹣4把y =4代入y =﹣x 2+x +4得 ﹣x 2+x +4=4解得x 1=0,x 2=1把y =﹣4代入y =﹣x 2+x +4得 ﹣x 2+x +4=﹣4解得x 1=,x 2=M (1,4)或M (,﹣4)或M (,﹣4)。
人教版2020年英语中考模拟冲刺(三)(II )卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)Can I use your dictionary? I need to ________ these words.A . look atB . look upC . look afterD . look into2. (2分)Mum wants to watch the CCTV news. Let's ________________ the TV.A . turn downB . turn onC . turn offD . turn out3. (2分)I think basketball is _______. I like to watch it.A . boringB . boredC . excitingD . excited4. (2分)—I think dragons are the of China. Do you think so?—I agree with you.A . situationB . symbolC . promiseD . shape5. (2分)—May I go to the city library after school?—OK. But please call me first when you arrive or I will .A . be strict withB . be worried aboutC . be harmful to6. (2分)—Could I call you by your first name?—Yes, you ____.A . willB . mustC . mightD . may7. (2分)—Why did you like Mickey Mouse?—Because I wanted to make my son happy."A . put upB . make upC . dress upD . cut up8. (2分)—My last _________is “Do you have salad for lunch?”—Er, yes. I like salad after lunch.A . classB . questionC . foodD . game二、根据句子意思,从下面每小题的A、B、C三个选项中选出恰当的词 (共7题;共14分)9. (2分)—When did you arrive at the station?—At three o'clock yesterday afternoon .A . get toB . reach toC . lead to10. (2分)—Have you written anything on Chinese traditional medicine so far?— _________, but I have a plan for it.A . Ever sinceB . Later onC . Not yetD . From now on11. (2分)We teenagers should the old and offer our seats to them on buses.A . laugh atB . depend onC . care for12. (2分)Almost every university now has a website which allows us to ________________ the information about it.A . look atB . look afterC . look aroundD . look through13. (2分)—Trees can make the air clean.—Yes. They can ________ harmful gases from the air.A . take offB . take inC . take out14. (2分)My grandma took care of the whole family all year round.A . looked atB . looked upC . looked afterD . looked for15. (2分)—Who is the girl?—________.A . She is my friendB . He is my brotherC . That is my sisterD . This is my cousin三、完形填空 (共1题;共15分)16. (15分)阅读下面短文,掌握大意,然后从每题所给的A、B、C、D四个选项中选出最佳选项。
深圳市2020年中考考前冲刺热身卷数学班级___________ 姓名___________ 学号____________ 分数____________注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。
2.回答第I卷时,选出每小题答案后,将答案填在选择题上方的答题表中。
3.回答第II卷时,将答案直接写在试卷上。
第Ⅰ卷(选择题共36分)一.(本部分共12小题,每小题3分,共36分每小题给出4个选项,其中只有一个选项是正确的)1.(3分)2019的相反数是()A.﹣2019 B.2019 C.D.﹣2.(3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×10103.(3分)下列几何体中从正面、左面和上面看到的图形完全相同的是()A.B.C.D.4.(3分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.(3分)若一组数据3,4,x,6,7的众数是3,则这组数据的中位数为()A.3 B.4 C.6 D.76.(3分)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1C.(﹣2x2)3=﹣6x6D.x6÷x2=x47.(3分)把函数y=x向左平移3个单位,下列点在该平移后的直线上的是()A.(2,﹣1)B.(0,﹣3)C.(2,5)D.(2,2)8.(3分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=36°,则∠BDF的度数为()A.18°B.36°C.54°D.72°9.(3分)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.10.(3分)如图,A,B是⊙O上的两点,AC是⊙O的切线,延长OB交AC于点C,∠OBA=75°,OC=,则⊙O的面积为()A.B.C.πD.2π11.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b 12.(3分)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN 的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5第II卷(非选择题共64分)二.填空题(本题共4小题,每小题3分,共12分)13.(3分)式子无意义,则(y+x)(y﹣x)+x2的值等于.14.(3分)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.15.(3分)如图,△ABC的顶点均在坐标轴上AE⊥BC于点E,交y轴于点D,已知点B,C 的坐标分别为B(0,6),C(2,0).若AD=BC,则△AOD的面积为.16.(2020碑林区校级模拟)如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA 所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF 沿E对折后,C点恰好落在OB上的点D处,则k的值为.三.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:﹣12+(﹣)﹣2+(﹣π)0+2cos30°.18.(6分)先化简,再求值:(+)÷,其中a=+1.19.(7分)为了坚持以人民为中心的发展思想,以不断改善民生为发展的根本目的,某机构随机对某小区部分居民进行了关于“社区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表根据图标信息解答下列问题:满意度人数所占百分比非常满意12 10%满意54 m比较满意n40%不满意 6 5%(1)本次调查的总人数为,表中m的值为;(2)请补全条形统计图;(3)据统计,该社区服务站平均每天接待居民约1000,若将“非常满意”和“满意”作为居民对社区服务站服务工作的肯定,请你估计该社区服务站服务工作平均每天得到多少名居民的肯定.20.(8分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.21.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?22.(9分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sin B=,求DG的长,23、(2020福田区模拟)如图,抛物线y=ax2+bx+2(a<0)与x轴交于点A(﹣1,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD、CD,OD交BC于点F,当S△COF:S△CDF=2:1时,求点D的坐标;(3)如图2,点E的坐标为(0,﹣1),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由深圳市2020年中考数学考前热身卷(解析版)一.(本部分共12小题,每小题3分,共36分每小题给出4个选项,其中只有一个选项是正确的)1.(3分)2019的相反数是()A.﹣2019 B.2019 C.D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:2019的相反数是:﹣2019.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)2018年5月26日至29日,中国国际大数据产业博览会在贵州召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010C.3.5×1011D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列几何体中从正面、左面和上面看到的图形完全相同的是()A.B.C.D.【分析】根据常见几何体的三视图,可得答案.【解答】解:A球的三视图都是圆,故A符合题意;B、圆柱的主视图、俯视图都是矩形,左视图是圆,故B不符合题意;C、四棱锥的左视图,主视图都是三角形,俯视图是四边形,故C不符合题意;D、圆锥的主视图、左视图都是三角形,俯视图是圆,故D不符合题意;故选:A.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.(3分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选:B.【点评】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(3分)若一组数据3,4,x,6,7的众数是3,则这组数据的中位数为()A.3 B.4 C.6 D.7【分析】根据众数的意义求出x的值,再根据中位数的意义,从小到大排序后,找出处在第3位的数即可.【解答】解:一组数据3,4,x,6,7的众数是3,因此x=3,将一组数据3,4,3,6,7排序后处在第3位的数是4,因此中位数是4.故选:B.【点评】考查众数、中位数的意义和求法,众数指在一组数据中出现次数最多的数,而中位数是将一组数据排序后处在中间位置的一个数或两个数的平均数,理解众数、中位数的意义是正确解答的前提.6.(3分)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1C.(﹣2x2)3=﹣6x6D.x6÷x2=x4【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2x,不符合题意;B、原式=x2﹣2x+1,不符合题意;C、原式=﹣8x6,不符合题意;D、原式=x4,符合题意,故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7.(3分)把函数y=x向左平移3个单位,下列点在该平移后的直线上的是()A.(2,﹣1)B.(0,﹣3)C.(2,5)D.(2,2)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:把函数y=x向左平移3个单位后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,把x=0代入解析式y=x+3=3,故选:C.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=36°,则∠BDF的度数为()A.18°B.36°C.54°D.72°【分析】根据两直线平行,同位角相等,可得∠FAC=∠1,再根据角平分线的定义可得∠BAF=∠FAC.【解答】解:∵DF∥AC,∴∠FAC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠FAC=36°,∴∠BAC=72°,∵DF∥AC,∴∠BDF=∠BAC=72°故选:D.【点评】本题考查了平行线的性质,角平分线的定义,熟记平行线的性质是解题的关键.9.(3分)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.10.(3分)如图,A,B是⊙O上的两点,AC是⊙O的切线,延长OB交AC于点C,∠OBA=75°,OC=,则⊙O的面积为()A.B.C.πD.2π【分析】首先证明∠AOC=30°,解直角三角形求出OA即可解决问题.【解答】解:∵OA=OB,∠OBA=75°,∴∠AOC=180°﹣75°×2=30°.∵AC是切线,∴OA⊥AC,∴∠OAC=90°,∴OA=cos∠AOC×OC=×=1.∴⊙O的面积为π•12=π,故选:C.【点评】本题考查了等腰三角形的性质,解直角三角形,切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选:D.【点评】此题考查了二次函数图象与系数的关系.此题难度适中,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.12.(3分)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN 的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣=,故⑤正确;综上所述,正确结论的个数是5个,故选:D.【点评】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定与性质,相似三角形的判定以及勾股定理的综合应用,解题时注意二次函数的最值的运用.二.填空题(本题共4小题,每小题3分,共12分)13.(3分)式子无意义,则(y+x)(y﹣x)+x2的值等于.【分析】根据式子无意义,先确定y的值,再化简代数式(y+x)(y﹣x)+x2,最后代入求值.【解答】解:因为式子无意义,所以3y﹣1=0,y=.(y+x)(y﹣x)+x2=y2﹣x2+x2=y2当y=时,原式=()2=故答案为:【点评】本题考查了分式无意义的条件和多项式的化简求值.当分母等于0时,分式无意义.14.(3分)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.15.(3分)如图,△ABC的顶点均在坐标轴上AE⊥BC于点E,交y轴于点D,已知点B,C 的坐标分别为B(0,6),C(2,0).若AD=BC,则△AOD的面积为 6 .【分析】先利用等角的余角相等得到∠ADO=∠ACE,则可根据“AAS”证明△ADO≌△BCO,从而得到OD=OC=2,OA=OB=6,然后根据三角形面积公式计算.【解答】解:∵AE⊥BC,∴∠AEC=90°,∵∠EAC+∠ACE=90°,∠DAO+∠ADO=90°,∴∠ADO=∠ACE,在△ADO和△BCO中,∴△ADO≌△BCO(AAS),∴OD=OC=2,OA=OB=6,∴△AOD的面积=×2×6=6.故答案为6.【点评】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.也考查了全等三角形的判定与性质.16.如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF沿E对折后,C点恰好落在OB上的点D处,则k的值为.【分析】证明Rt△MED∽Rt△BDF,则==,而EM:DB=ED:DF=4:3,求出DB,在Rt△DBF中,利用勾股定理即可求解.【解答】解:如图,过点E作EM⊥x轴于点M,∵将△CEF沿EF对折后,C点恰好落在OB上的D点处,∴∠EDF=∠C=90°,EC=ED,CF=DF,∴∠MDE+∠FDB=90°,而EM⊥OB,∴∠MDE+∠MED=90°,∴∠MED=∠FDB,∴Rt△MED∽Rt△BDF;又∵EC=AC﹣AE=4﹣,CF=BC﹣BF=3﹣,∴ED=4﹣,DF=3﹣,∴==;∵EM:DB=ED:DF=4:3,而EM=3,∴DB=,在Rt△DBF中,DF2=DB2+BF2,即(3﹣)2=()2+()2,解得k=,故答案为.【点评】本题考查了反比例函数与一次函数的交点问题,涉及到图形折叠的性质、勾股定理以及三角形相似的判定与性质,综合性强,难度适中.三.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:﹣12+(﹣)﹣2+(﹣π)0+2cos30°.【分析】原式利用零指数幂、负整数指数幂法则,乘方的意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1+4+1+2×=4+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)先化简,再求值:(+)÷,其中a=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=+1时,原式=×=×===2【点评】本题考查分式的运算,解题的关键的是熟练运用分式的运算法则,本题属于基础题型.19.(7分)为了坚持以人民为中心的发展思想,以不断改善民生为发展的根本目的,某机构随机对某小区部分居民进行了关于“社区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表根据图标信息解答下列问题:满意度人数所占百分比非常满意12 10%满意54 m比较满意n40%不满意 6 5%(1)本次调查的总人数为120人,表中m的值为45% ;(2)请补全条形统计图;(3)据统计,该社区服务站平均每天接待居民约1000,若将“非常满意”和“满意”作为居民对社区服务站服务工作的肯定,请你估计该社区服务站服务工作平均每天得到多少名居民的肯定.【分析】(1)根据非常满意人数及其所占百分比可得中人数,再利用百分比的概念可得m 的值;(2)总人数乘以比较满意对应的百分比,从而补全图形;(3)利用样本估计总体思想可得答案;【解答】解:(1)本次调查的总人数为12÷10%=120(人),表中m的值为×100%=45%,故答案为:120人、45%;(2)n=120×40%=48,补全图形如下:(3)1000×(10%+45%)=550(名)答:估计该社区服务站服务工作平均每天得到550名居民的肯定.【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.20.(8分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC三种情况分别代入计算可得;(2)先证△ABC∽△DCA得CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD即可得;(3)作AH⊥BD,由AB=AD知BH=BD,再证△ABH∽△DBC得AB•BC=BH•DB,即AB•BC =BD2,结合AB•BC=AC2知BD2=AC2,据此可得答案.【解答】解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.【点评】本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.21.(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.【点评】本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程在最后要检验.22.(9分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sin B=,求DG的长,【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sin B的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sin B,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sin B==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.23、(2020福田区模拟)如图,抛物线y=ax2+bx+2(a<0)与x轴交于点A(﹣1,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD、CD,OD交BC于点F,当S△COF:S△CDF=2:1时,求点D的坐标;(3)如图2,点E的坐标为(0,﹣1),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.23、【分析】(1)把点A(﹣1,0)和点B(2,0)代入y=ax2+bx+2即可求得抛物线解析式;(2)过点D作DH∥y轴交BC于点H,交x轴于点G,根据S△COF:S△CDF=2:1,得出OF:DF=2:1,证明△OFC∽△DFH,得出OC=2DH,设D(a,﹣a2+a+2),则H(a,﹣a+2),得出2=2(﹣a2+2a),解出a即可得出答案;(3)分点P在x轴上方、点P在x轴下方两种情况,分别求解即可.【解答】解:(1)∵A(﹣1,0),B(2,0),∴把A(﹣1,0),B(2,0)代入y=ax2+bx+2得,,解得,,∴该抛物线的函数解析式为y=﹣x2+x+2;(2)如图1,过点D作DH∥y轴交BC于点H,交x轴于点G,∵抛物线y=﹣x2+x+2与y轴交于点C,∴C(0,2),设直线BC解析式为y=kx+b,则,解得,∴直线BC解析式为y=﹣x+2,∵S△COF:S△CDF=2:1,∴OF:DF=2:1,∵DH∥OC,∴△OFC∽△DFH,∴=2,∴OC=2DH,设D(a,﹣a2+a+2),则H(a,﹣a+2),∴DH=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a,∴2=2(﹣a2+2a),解得a=1,∴D(1,2).(3)①当点P在x轴上方时,在y轴上取点G(1,0),连接BG,则∠OBG=∠OBE,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,∵E(0,﹣1),∴OE=OG=GH=1,设MH=x,则MG=,在Rt△OBM中,OB2+OM2=MB2,∴(+1)2+4=(x+2)2,解得:x=,故MG===,∴OM=OG+MG=1+=,∴点M(0,),将点B(2,0)、M(0,)的坐标代入一次函数表达式y=mx+n,,解得:,∴直线BM的表达式为:y=﹣x+,∴,解得:x=或x=2(舍去),∴点P(,);②当点P在x轴下方时,作点M(0,)关于x轴的对称点N(0,﹣),求得直线BN的解析式为y=x﹣,∴,解得,x=﹣或x=2(舍去),∴点P(﹣,﹣);综合以上可得,点P的坐标为()或(﹣).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.。
2020年九年级复习冲刺试卷(二)一、精心选一选(本大题共10小题,每小题3分,共30分.)1. 下列运算正确的是( )A .B .(﹣3)2=﹣9 C .2﹣3=8 D .20=0 2. 不一定在三角形内部的线段是( ) A .三角形的角平分线 B .三角形的中线 C .三角形的高 D .三角形的中位线3. 如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是( )A .4个B .5个C .6个D .7个4.已知是二元一次方程组的解,则的算术平方根为( ) A .±2B . 2C .2D . 4 5.反比例函数的两个点为、,且,则下式关系成立的是( ) A . B . C . D .以上都不对6.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是和﹣1,则点C所对应的实数是( )A .1+B .2+C .2﹣1D .2+17.已知⊙O 的半径为2,直线l 上有一点P 满足PO=2,则直线l 与⊙O 的位置关系是( )A . 相切B .相离C .相离或相切D .相切或相交8.如图,把抛物线y =x 2沿直线y =x 平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线解析式是( )A .y =(x +1)2-1B .y =(x +1)2+1C .y =(x -1)2+1D .y =(x -1)2-19.如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,⊙A =120°,则图中阴影部分的面积是( )AB .2C .3 D⎩⎨⎧==12y x 81mx ny nx my +=⎧⎨-=⎩n m -22y x=11(,)x y 22(,)x y 12x x >12y y >12y y <12y y =3210.如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A.B两点,P是⊙M上异于A.B的一动点,直线PA.PB分别交y轴于C.D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4B.等于4C.等于6 D.随P点二、细心填一填(本大题共6小题,每小题3分,共18分)。
广东省深圳市中考语文冲刺模拟考试卷姓名:________ 班级:________ 成绩:________一、语文积累与运用(35分) (共3题;共34分)1. (10.0分)(2017·杨浦模拟) 万籁此俱寂,________。
(《题破山寺后禅院》)2. (12分) (2017七上·龙江开学考) 《钢铁是怎样炼成的》作者是________(国家)作家________。
小说以主人公________的生活经历为线索,展现了从1915到1930年前后该国广阔的历史画面和人民的艰苦卓绝的斗争生活。
主人公当过童工,从小就在社会最低层饱受折磨和侮辱。
后来在________的影响下,逐步走上革命道路。
3. (12分) (2016九上·浦城期末) 阅读材料,回答问题材料一:2016年5月25日1时10分,著名作家、文学翻译家和外国文学研究家杨绛先生在北京病逝,享年105岁。
杨绛先生出生名门,天赋文才,不仅在文学史上开辟了自己的一方天地,还因与文学大家钱钟书的动人爱情而备受艳羡。
先生希望:用最简单的方式安静地离开这个世界,不惊扰大家,不麻烦大家。
材料二:钱钟书先生在世时,他从来不见记者,不上报纸,也不上电视,甚至一些所谓的学术活动也不参加。
钱钟书先生去世后,杨绛先生也如出一辙。
有极高社会声誉的她,婉拒一切媒体的采访,从不开作品研讨会。
“安安静静写作,平平淡淡度日。
”这是杨绛的愿望,她做到了。
材料三:杨绛与丈夫钱钟书一生节俭。
她家里从未装修过,一张纸,连背面还要用一次,玻璃罐头,洗净了重复用。
就是这样清贫了一辈子的老人,在90岁那年,拿出了自己与先生共同积攒的72万元稿费,全部捐献给了母校清华大学,以“好读书”为名设立奖学金,并宣布,将日后所出版的所有钱杨二人作品稿酬及版税都投入该基金中。
材料四:(1)阅读材料,下列表述有误的一项是()A . 图一的数据表明杨绛先生去世的有关消息被大面积传播,但这个事件没有在媒介议程中持续太久。
深圳中考数学模拟试卷1(总分100分,考试时间90分钟)一、选择题(本大题共12小题,每小题3分,共36分) 1. 在“,3.14 ,,, sin 450”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个2. 太阳的半径约为696000km ,把696000这个数用科学记数法表示为( )A . 6.96×103B . 69.6×105C . 6.96×105D . 6.96×1063. 下列图案既是轴对称图形又是中心对称图形的是4. 某几何体的三种视图分别如下图所示,那么这个几何体可能是( ).A .长方体B .圆柱C . 圆锥D .球5. 有七个数由小到大依次排列,其平均数是38,如果这组数的前四个数的平均数是33,后四个数的平均数是42,则它们的中位数是( ) A .33 B .34 C .35 D .366. 如图所示,△ABC中,AC =5,cos B =,3sin 5C =,则△ABC 的面积是( ) A .212B .12C .14D .217. 若函数y x a =-+与41y x =-的图象交于x 轴上一点,则a 的值为( )A .4B .-4C .14D .±4()05()33()23-8. 如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -,(3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是 (A)M(B)N (C)P(D)Q9. 下列命题,假命题是( )A .平行四边形的两组对边分别相等B .两组对边分别相等的四边形是平行四边形C .矩形的对角线相等D .对角线相等的四边形是矩形10. 已知甲车行驶35千米与乙车行驶45千米所用时间相同,且乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )A .154535-=x x B .x x 451535=+ C .x x 451535=- D .154535+=x x11. 如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm ,点P 从点A 出发, 沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P′.设Q 点运动的时间t 秒,若四边形 QPCP′为菱形,则t 的值为( )A. 2B. 2C. 22D. 412. 已知一次函数y ax b =+的图象过点(-2,1),则关于抛物线23y ax bx =-+的三条叙述:①过定点(2,1);②对称轴可以是直线x =l ;③当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的有( ).A .0个B .1个C .2个D .3个二、填空题(本大题共4小题,每小题3分,共12分) 13.分解因式:x xy xy +-22=yACO xBMNPQ (第8题)1114.一个口袋中装有3个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是白色球的概率是 15.从一个三角形的一个顶点向它的对边引一条线段,此时图中共有3个三角形(如图2);若再向它的对边引一条线段,此时图中共有6个三角形(如图3);……依次类推,则第N 个图中共有 个三角形?16.如图,反比例函数y=(x >0)的图象交Rt△OAB 的斜边OA 于点D ,交直角边AB 于点C ,点B 在x 轴上.若△OAC 的面积为5,AD :OD=1:2,则k 的值为 _________ .三、解答题(本大题共7小题,共52分) 17.(6分)计算:18.(6分)先化简,再取一个你认为合理的值,代入求原式的值.4245tan 21)1(10+-︒+--22211111x x x x x ⎛⎫-++÷ ⎪-+⎝⎭x19.(7分)如图1所示是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高2米,房间高2.6米,所以不从高度方面考虑方案的设计),按此方案可以使该家具通过如图2中的长廊搬入房间,在图2中把你的设计方案画成草图,并说明按此方案可把家具搬入房间的理由(注:搬动过程中不准拆卸家具,不准损坏墙壁)。
20.(7分)如图,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .(1)求证:△ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.问题二图10.50.51.51.5问题二图2长廊房间321.(8分)某校为开展好阳光体育活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?22.(9分)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l 与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.23.(9分)如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上. (1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1深圳中考数学模拟试卷2(总分100分,考试时间90分钟)一、选择题(本大题共12小题,每小题3分,共36分)1. 9的算术平方根是()A.3B.-3C.±3D.92. 某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为()A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1093. 下列平面图形,既是中心对称图形,又是轴对称图形的是()A.等腰三角形 B.正五边形 C.平行四边形 D.矩形4. 如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的5. 深圳文博会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A.35B.710C.310D.16256. 已知直线l1:y=﹣3x+b与直线l2:y=﹣kx+1在同一坐标系中的图象交于点(1,﹣2),那么方程组的解是()A.B.C.D.7. 某市教委为了了解全市初三学生的身体状况,从中抽取了500名学生的体重进行分析。
在这个问题中,下列说法正确的是()A、全市初三学生的身体是总体;B、从中抽取的500名学生是总体的一个样本;C、其中每一名学生的体重是个体;D、500名学生的体重是样本容量。
8. 甲、乙两种商品原来的单价和为100元。
因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%。
求甲、乙两种商品原来的单价。
设甲商品原来的单价是x 元,乙商品原来的单价是y 元,根据题意可列方程组为( )。
A .⎩⎨⎧+=++-=+%)201(100%)401(%)101(100y x y x B .⎩⎨⎧⨯=++-=+%20100%)401(%)101(100y x y x C . ⎪⎩⎪⎨⎧+=++-=+%201100%401%101100y xy x D .⎩⎨⎧⨯=-++=+%80100%)401(%)101(100y x y x9. 将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为 ( )A .1B .2C .2D .310. 如图所示,是二次函数在平面直角坐标系中的图象.根据图形判断①c >0;②a+b+c <0;③2a-b <0;④中正确的有( )个.A .1个B .2个C .3个D .4个11. 如图,△ABC 中AB=AC=4,∠C=72°,D 是AB 中点,点E 在AC 上,DE ⊥AB ,则cosA 的值为( )A .B .C .D .2(0)y ax bx c a =++≠284b a ac +>12. 如图所示,抛物线y=ax 2+bx+c (a ≠0)与x 轴交于点A (﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD=MC ,连接AC 、BC 、AD 、BD ,某同学根据图象写出下列结论:①a﹣b=0;②当﹣2<x <1时,y >0;③四边形ACBD 是菱形;④9a﹣3b+c >0 你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③二、填空题(本大题共4小题,每小题3分,共12分)13.如果2ab=,则2222a ab b a b -++= . 14.已知矩形ABCD ,AD 在y 轴上,AB=3,BC=2,点A 的坐标为(0,1),在AB 边上有一点E(2,1),过点E 的直线与CD 交于点F.若EF 平分矩形ABCD 的面积,则直线EF 的解析式为 .15.如图,一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有 颗.16.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF 的边长为 .三、解答题(本大题共7小题,共52分) 17.(6分)计算:18.(6分)先化简,再求值:(-)÷,其中x =1.19.(7分)我市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题: (1)请将以上两幅统计图补充完整;(4分)(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有 人达标;(1分)(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?(2分)201()(32)2sin 3032--+︒+-212x x -2144x x -+222x x-20.(7分)如图,正方形ABCD 中,E 为BC 上一点,(1)若AF 平分∠DAE ,求证:BE +DF =AE . (2)若DF =CF ,DC +CE =AE ,求证:AF 平分∠DAE .21.(8分)植树节前夕,某林场组织20辆汽车装运芒果树、木棉树和垂叶榕三种树木共100棵来深圳销售.按计划20辆车都要装运,每辆汽车只能装运同一种树木,且必须装满.根据表格提供的信息,解答下列问题.(1)设装运芒果树的车辆数为x ,装运木棉树的车辆数为y ,求y 与x 之间的函数关系式;(2分)(2)如果安排装运芒果树的车辆数不少于5辆,装运木棉树的车辆数不少于6辆,那么车辆的安排有几种方案?并写出每种安排方案?(3分)(3)若要求总运费最少,应采用(2)中哪种安排方案?并求出最少总运费?(3分)ABCDEF22.(9分)如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.23.(9分)如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段34PQ AB时,求tan∠CED的值;②当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图1深圳中考数学模拟试卷3(总分100分,考试时间90分钟)一、选择题(本大题共12小题,每小题3分,共36分) 1. 的倒数是 ( ) A . B .C .D .52. 某文博会总成交额143 300 000 000元再创新高.数据143 300 000 000 用科学记数法(保留两个有效数字)表示为( )A.111043.1⨯ B.11104.1⨯ C.1210433.1⨯ D.121014.0⨯3. 下列几何体的主视图既是中心对称图形又是轴对称图形的是( )A .B .C .D .4. 某商场一天中售出李宁牌运动鞋10双,其中各种尺码的鞋的销售量如下表所示,则这A 、25,25B 、24.5,25C 、26,25D 、25,24. 755. 如图所示,将圆桶中的水倒入一个直径为40 cm ,高为55 cm 的圆口容器中,圆桶放置的角度与水平线的夹角为45°.要使容器中的水面与圆桶相接触,则容器中水的深度至少应为( ).A .10 cmB .20 cmC .30 cmD .35 cm6. 下面四条直线,其中直线上每个点的坐标都是二元一次方程x ﹣2y=2的解是( )51-51-515-A .B .C .D .7. 如图,AB∥CD,直线EF 交AB 于点E ,交CD 于点F ,EG 平分∠BEF,交CD 于点G ,∠1=50°,则∠2等于( )A . 50°B . 60°C . 65°D . 90°8. 希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( )A . 被调查的学生有200人B . 被调查的学生中喜欢教师职业的有40人C . 被调查的学生中喜欢其他职业的占40%D . 扇形图中,公务员部分所对应的圆心角为72°9. 下列命题,假命题是( )A .平行四边形的两组对边分别相等B .两组对边分别相等的四边形是平行四边形C .矩形的对角线相等D .对角线相等的四边形是矩形10. 如图,⊙O 1,⊙O ,⊙O 2的半径均为2cm ,⊙O 3,⊙O 4的半径均为1cm ,⊙O 与其他4个圆均相外切,图形既关于O 1O 2所在直线对称,又关于O 3O 4所在直线对称,则四边形O 1O 4O 2O 3的面积为A.12cm 2B.24cm 2C.36cm 2D.48cm 2(第10题图)11. 如图,将矩形ABCD 沿AE 折叠,点D 的对应点落在BC 上点F 处,过点F 作FG ∥CD ,连接EF ,DG ,下列结论中正确的有( ) ①∠ADG=∠AFG ;②四边形DEFG 是菱形;③DG 2=AE•EG;④若AB=4,AD=5,则CE=1.A .①②③④B .①②③C .①③④D .①②12. 已知二次函数2y ax bx c =++(a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④2c <3b ;⑤a+b >m(am+b),(m ≠l 的实数).其中正确的结论有( )个.A .2个B .3个C .4个D .5个二、填空题(本大题共4小题,每小题3分,共12分) 13.分解因式:x xy xy +-22=14.某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称的平均每条鱼重2.2千克,第三网捞出35条,称的平均每条鱼重2.8千克,试估计这池塘中鱼的重量为 千克。